Analysis of Near-Infrared Spectral Properties and Quantitative Detection of Rose Oxide in Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments and Reagents
2.3. Methods
2.3.1. Sample Preparation and Data Acquisition
2.3.2. Data Pre-Processing and Outlier Rejection
2.3.3. Synergy Interval Partial Least Squares Regression (Si-PLSR)
2.3.4. External Validation
2.4. Data Analysis
3. Results
3.1. Original Spectral Analysis of Model and De-Aromatic Wine
3.2. Spectral Pre-Processing and Outlier Rejection
3.3. Si-PLS Analysis
3.4. External Validation
4. Discussion
4.1. Spectral Band Allocation of Rose Oxide
4.2. Potential of Near-Infrared Spectroscopy Models of Rose Oxide
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruiz-García, L.; Hellín, P.; Flores, P.; Fenoll, J. Prediction of Muscat aroma in table grape by analysis of rose oxide. Food Chem. 2014, 154, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Chigo-Hernandez, M.M.; DuBois, A.; Tomasino, E. Aroma perception of rose oxide, linalool and α-terpineol combinations in Gewürztraminer wine. Fermentation 2022, 8, 30. [Google Scholar] [CrossRef]
- Tang, Z.; Zeng, X.; Brennan, M.; Zhong, H.; Niu, D.; Huo, Y. Characterization of aroma profile and characteristic aromas during lychee wine fermentation. J. Food Process. Pres. 2019, 43, e14003. [Google Scholar] [CrossRef]
- Bowen, A.J.; Reynolds, A.G. Odor potency of aroma compounds in Riesling and Vidal blanc Table Wines and Icewines by gas chromatography-olfactometry-mass spectrometry. J. Agric. Food Chem. 2012, 60, 2874–2883. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.L.; Ruan, S.L.; Yang, X.K.; Chen, Q.L.; Shi, K.; Lu, K.; He, L.; Liu, S.W.; Song, Y.B. Characterization of volatile aroma compounds in litchi (Heiye) wine and distilled spirit. Food Sci. Nutr. 2021, 9, 5914–5927. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, H.; Lu, K.; Su, M.; Cai, J. Aroma Compounds Composition of "Rose Honey" Low-alcohol Rose Wine and the Influence of Commercial Yeast Strain. China Fruit Veg. 2020, 40, 49–55. [Google Scholar]
- Maslov, L.; Tomaz, I.; Mihaljević Žulj, M.; Jeromel, A. Aroma characterization of predicate wines from Croatia. Eur. Food Res. Technol. 2016, 243, 263–274. [Google Scholar] [CrossRef]
- Souza-Coutinho, M.; Brasil, R.; Souza, C.; Sousa, P.; Malfeito-Ferreira, M. Consumers Associate High-Quality (Fine) Wines with Complexity, Persistence, and Unpleasant Emotional Responses. Foods 2020, 9, 452. [Google Scholar] [CrossRef] [Green Version]
- Genisheva, Z.; Quintelas, C.; Mesquita, D.P.; Ferreira, E.C.; Oliveira, J.M.; Amaral, A.L. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR). Food Chem. 2018, 246, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Bauer, R.; Nieuwoudt, H.; Bauer, F.F.; Kossmann, J.; Koch, K.R.; Esbensen, K.H. FTIR Spectroscopy for Grape and Wine Analysis. Anal. Chem. 2008, 80, 1371–1379. [Google Scholar] [CrossRef] [Green Version]
- Birenboim, M.; Chalupowicz, D.; Barel, S.; Chen, Y.; Falik, E.; Kengisbuch, D.; Shimshoni, J.A. Optimization of sweet basil harvest time and cultivar characterization using near-infrared spectroscopy, liquid and gas chromatography, and chemometric statistical methods. J. Sci. Food Agric. 2021, 102, 3325–3335. [Google Scholar] [CrossRef] [PubMed]
- Buratti, S.; Ballabio, D.; Giovanelli, G.; Dominguez, C.M.; Moles, A.; Benedetti, S.; Sinelli, N. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue. Anal. Chim. Acta 2011, 697, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.D.; Feliciano, R.P.; Boas, L.V.; Bronze, M.R. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem. 2014, 150, 489–493. [Google Scholar] [CrossRef]
- Cuq, S.; Lemetter, V.; Kleiber, D.; Levasseur-Garcia, C. Assessing macro- (P, K, Ca, Mg) and micronutrient (Mn, Fe, Cu, Zn, B) concentration in vine leaves and grape berries of vitis vinifera by using near-infrared spectroscopy and chemometrics. Comput. Electron. Agric. 2020, 179, 105841. [Google Scholar] [CrossRef]
- Champagne, E.; Bonin, M.; Royo, A.A.; Tremblay, J.P.; Raymond, P. Predicting terpene content in dried conifer shoots using near infrared spectroscopy. J. Near Infrared Spectrosc. 2020, 28, 308–314. [Google Scholar] [CrossRef]
- Yue, X.; Shi, P.; Tang, Y.; Zhang, H.; Ma, X.; Ju, Y.; Zhang, Z. Effects of methyl jasmonate on the monoterpenes of Muscat Hamburg grapes and wine. J. Sci. Food Agric. 2020, 101, 3665–3675. [Google Scholar] [CrossRef]
- Zhang, B.; Shen, J.; Duan, C.; Yan, G. Use of Indigenous Hanseniaspora vineae and Metschnikowia pulcherrima Co-fermentation With Saccharomyces cerevisiae to Improve the Aroma Diversity of Vidal Blanc Icewine. Front Microbiol. 2018, 9, 2303. [Google Scholar] [CrossRef]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.C. Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef]
- Diwu, P.Y.; Bian, X.H.; Wang, Z.F.; Liu, W. Study on the Selection of Spectral Preprocessing Methods. Spectrosc. Spect. Anal. 2019, 39, 2800–2806. [Google Scholar]
- Bi, R.; Zhao, M. Online NIR modeling study based on PCA and Hotelling T2 distribution. Electron. Technol. Softw. Eng. 2021, 207, 189–191. [Google Scholar]
- Lu, B.; Liu, N.; Wang, X.; Hu, C.; Tang, X. A feasibility quantitative analysis of NIR spectroscopy coupled Si-PLS to predict coco-peat available nitrogen from rapid measurements. Comput. Electron. Agric. 2020, 173, 105400. [Google Scholar] [CrossRef]
- Li, Y.; Li, F.; Yang, X.; Guo, L.; Huang, F.; Chen, Z.; Chen, X.; Zheng, S. Quantitative analysis of glycated albumin in serum based on ATR-FTIR spectrum combined with SiPLS and SVM. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 201, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Wan, X.; Chen, Q. Feasibility study for the use of near-infrared spectroscopy in the quantitative analysis of TVB-N content in pork. Acta Opt. Sin. 2009, 29, 2808. [Google Scholar]
- Zhu, Z.; Chen, S.; Su, J.; Tao, Y. Correlation Analysis Between Amino Acids and Fruity Esters During Spine Grape Fermentation. Sci. Agric. Sin. 2020, 53, 2272–2284. [Google Scholar]
- Davis, J.C.; Koritzke, A.L.; Caravan, R.L.; Antonov, I.O.; Christianson, M.G.; Doner, A.C.; Osborn, D.L.; Sheps, L.; Taatjes, C.A.; Rotavera, B. Influence of the ether functional group on ketohydroperoxide formation in cyclic hydrocarbons: Tetrahydropyran and cyclohexane. J. Phys. Chem. A 2019, 123, 3634–3646. [Google Scholar] [CrossRef] [PubMed]
- Tosi, C.; Pinto, A. Near-infrared spectroscopy of hydrocarbon functional groups. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1972, 28, 585–597. [Google Scholar] [CrossRef]
- Burns, D.A.; Ciurczak, E.W. Handbook of Near-Infrared Analysis; CRC Press: Beijing, China, 2007. [Google Scholar]
- Gerasimov, T.G.; Snavely, D.L. Vibrational photopolymerization of methyl methacrylate and quantitative analysis of polymerization results. Macromolecules 2002, 35, 5796–5800. [Google Scholar] [CrossRef]
- Smyth, H.E.; Cozzolino, D.; Cynkar, W.U.; Dambergs, R.G.; Sefton, M.; Gishen, M. Near infrared spectroscopy as a rapid tool to measure volatile aroma compounds in Riesling wine: Possibilities and limits. Anal. Bioanal. Chem. 2008, 390, 1911–1916. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Lorenzo, C.; Alonso, G.L.; Salinas, M.R. Employment of near infrared spectroscopy to determine oak volatile compounds and ethylphenols in aged red wines. Food Chem. 2010, 119, 823–828. [Google Scholar] [CrossRef]
Pre-Processing Methods | Model Wine | De-Aromatic Wine | ||||||
---|---|---|---|---|---|---|---|---|
MMN | 0.75 | 6.37 | 0.23 | 10.70 | 0.04 | 12.10 | 0.14 | 11.34 |
VN | 0.78 | 5.97 | 0.31 | 10.10 | 0.06 | 11.90 | 0.03 | 12.30 |
FD | 0.51 | 8.85 | 0.12 | 11.40 | 0.05 | 12.00 | 0.05 | 12.00 |
SD | 0.14 | 11.34 | 0.09 | 11.80 | 0.06 | 11.90 | 0.09 | 11.80 |
Sample Exclusion | RPD | |||||
---|---|---|---|---|---|---|
Model wine | All samples (except number 90, 122, and 130) | 0.78 | 5.93 | 0.44 | 9.03 | 1.33 |
1 | 0.79 | 5.79 | 0.47 | 8.67 | 1.38 | |
De-aromatic wine | All samples (except number 3, 63, 71, and 99) | 0.61 | 7.95 | 0.11 | 11.60 | 1.06 |
13 | 0.70 | 7.06 | 0.14 | 11.30 | 1.08 | |
31 | 0.67 | 7.32 | 0.09 | 11.70 | 1.05 | |
47 | 0.57 | 8.37 | 0.08 | 11.80 | 1.04 | |
109 | 0.63 | 7.82 | 0.18 | 11.10 | 1.10 | |
128 | 0.71 | 6.86 | 0.22 | 10.80 | 1.13 |
Chemicals | Assignment Groups | Wave Numbers (cm−1) | ||
---|---|---|---|---|
First Overtone | Second Overtone | Combination Regions | ||
Alkanes | V(C–H) | 5555–5882 | 8264–8696 | 6666–7090, 4545, and 4500 |
V(–CH2–) | Near 6135 | Near 8290 | 4545 and 4525 | |
V(–CH3) | 5901–5909 | 8264–8696 | 4500–4545, 4395, 4100, 4400, 5520, 5814, 7355, and 7263 | |
Alkenes | V(C–H=) | 6100–6200 | ||
V(=CH2) | About 9260, 8787–9009, and 9091 | |||
V(C=C) | 4482, near 4600, 4670–4780, and 6130 | |||
Tetrahydropyran | V(C–H) | 5565–6150 | 8040–9320 | 3885–4795, 6500, and 7500 |
Ethers | V(C–H) | 3800–4500 and 6400–7515 | ||
V(–CH2–) | 5690 and 5790 | |||
V(–CH3) | 5898 and 5910 | |||
V(CH–O–) | 8300 | 6400–7515 | ||
V(CH2–O–) | 8495 |
Chemical Structure | Assignment Group | Wave Numbers (cm−1) | ||
---|---|---|---|---|
First Overtone | Second Overtone | Combination Regions | ||
Tetrahydropyran ring | V(C–H) | 5600–6000 | 8400–8800 | 4000–4800, 6400–6800, and 7200–7600 |
V(C–O) | 8400–8800 | 6400–7600 | ||
Methyl | V(CH3) | 5600–6000 | 8400–8800 | 4000–4800, 5600–6000, 7200–7600 |
Isobutyl | V(C–H=) | 6000–6400 | ||
V(C=C) | 4400–4800, 6000–6400 |
Interval Combinations | Model Wine | De-Aromatic Wine | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
RPD | RPD | |||||||||
Full waveband | 0.75 | 6.37 | 0.23 | 10.70 | 1.19 | 0.04 | 12.10 | 0.14 | 11.34 | 0.99 |
Joint interval | 0.97 | 2.22 | 0.96 | 2.55 | 4.78 | 0.97 | 2.36 | 0.96 | 2.33 | 5.24 |
Spectral Number | External Validation | |||
---|---|---|---|---|
RPD | Regression Equation | |||
21 | 2.72 | 2.36 | 0.84 | y = 0.717x + 3.5288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Xu, Y.; Chen, X.; Dai, B.; Tao, Y.; Xiong, X. Analysis of Near-Infrared Spectral Properties and Quantitative Detection of Rose Oxide in Wine. Agronomy 2023, 13, 1123. https://doi.org/10.3390/agronomy13041123
Bai X, Xu Y, Chen X, Dai B, Tao Y, Xiong X. Analysis of Near-Infrared Spectral Properties and Quantitative Detection of Rose Oxide in Wine. Agronomy. 2023; 13(4):1123. https://doi.org/10.3390/agronomy13041123
Chicago/Turabian StyleBai, Xuebing, Yaqiang Xu, Xinlong Chen, Binxiu Dai, Yongsheng Tao, and Xiaolin Xiong. 2023. "Analysis of Near-Infrared Spectral Properties and Quantitative Detection of Rose Oxide in Wine" Agronomy 13, no. 4: 1123. https://doi.org/10.3390/agronomy13041123
APA StyleBai, X., Xu, Y., Chen, X., Dai, B., Tao, Y., & Xiong, X. (2023). Analysis of Near-Infrared Spectral Properties and Quantitative Detection of Rose Oxide in Wine. Agronomy, 13(4), 1123. https://doi.org/10.3390/agronomy13041123