Breeding Wheat for Powdery Mildew Resistance: Genetic Resources and Methodologies—A Review
Abstract
:1. Introduction
2. Constraints to Wheat Production
3. Pathogenesis, Distribution, and Economic Importance
3.1. Pathogenesis
3.1.1. Life Cycle and Epidemiology
3.1.2. Damages
3.1.3. Population Genetics
3.2. Geographic Distribution and Economic Importance
4. Current Control Strategies
4.1. Monitoring: Remote Sensing Technologies
4.2. Intervention Strategies
4.2.1. Integrated Management Strategies
4.2.2. Chemical Control
4.2.3. Host-Plant Resistance
5. Host-Plant Resistance: Progress and Achievements
5.1. Resistance Types for Powdery Mildew
5.2. Pleiotropic APR Genes for Powdery Mildew and Other Wheat Diseases
6. Wheat Genetic Resources: Conservation and Use in PM Breeding Programs
6.1. Wheat Gene Banks as a Source of PM Resistance
6.2. Wheat Databases as a Source of PM Resistance
6.3. Genetic Resources of Wheat for Powdery Mildew Resistance
6.3.1. Wheat Landraces
6.3.2. Tetraploid Wheats
6.3.3. Synthetic Hexaploid Wheat
Genotype Name | Type of Accession | Traits Type(s) or Gene | Country or Organization | Year of Release | References |
---|---|---|---|---|---|
Hongyoumai | Landrace | pmHYM | China | - | [171,229] |
Duanganmang | Landrace | PmDGM | China | - | [172] |
Baiyouyantiao | Landrace | PmBYYT | China | - | [210] |
Xiaohongpi | Landrace | pmX | China | - | [191] |
Pingyuan 50 | Landrace | Powdery mildew and stripe rust | 1950s | [78,271] | |
Niaomai | Landrace | Pm2c | China | - | [233] |
Hongyanglazi | Landrace | Pm47 | China | - | [152] |
Guizi 1 | Landrace | PmGZ1 | China | - | [275] |
Xiaobaidong and Fuzhuang 30 | Landrace | mlxbd and mlfz | Germany | - | [132,170,276] |
Hulutou | Landrace | MlHLT | China | - | [168] |
Xuxusanyuehuang ‘XXSYH’ | Landrace | Pm61 | China | - | [160] |
Baihulu | Landrace | mlbhl | China | - | [133,277] |
Baihulu and Hulutou | Landrace | Pm24 | China | - | [133,232] |
Qingxinmai | Landrace | PmQ | China | - | [173] |
Dahongtou | Landrace | pmDHT | China | - | [229] |
Shangeda | Landrace | PmSGD | China | - | [278] |
Youbailan | Landrace | pmYBL | China | - | [230] |
Honghauaxiaomai | Landrace | PmHHXM | China | - | [279] |
Dataumai | Landrace | PmDTM | China | - | [280] |
Youzimai | Landrace | Seedling resistance to powdery mildew | China | - | [281] |
PI 181356 | Landrace | Pm59 | Great plains | - | [158] |
PI 223899 | Landrace | pm223899 | USDA-ARS, Oklahoma | - | [231] |
PI 628024 | Landrace | Pm63 | USDA-ARS, Oklahoma | - | [161] |
Synthetic 43 | Synthetic | pmT | North Western Plain Zone of India | 1993 | [22] |
SE5785 | SHW | PmSE5785 | Chinese Academy of Agricultural Sciences, Beijing, China | - | [256] |
N07228-1 and N07228-2 | SDL | Large seeds and PM resistance | College of Agronomy, Northwest A&F University, China | [256] | |
Chuanmai 104 | SHW | APR to PM, stripe rust, and pre-harvest sprouting; high yielding, good quality, wide adaptability | Crop Research Institute, Sichuan Academy of Agricultural Sciences (CRI-SAAS) | 2012 | [246,261] |
MG5323 | T. turgidum | Ml5323 | University of Bari, Italy | [135] | |
NC96BGTA4 | T. monococcum | Pm resistance | North Carolina Agricultural Research Service and the USDA-ARS | 1996 | [134] |
NC96BGTA5 | T. monococcum | Pm25 | North Carolina Agricultural Research Service and the USDA-ARS | 1996 | [134,282] |
NC96BGTA6 | T. monococcum | PM resistance | North Carolina Agricultural Research Service and the USDA-ARS | 1996 | [134] |
NC99BGTAG11 | T. timopheevii | Pm37 | North Carolina Agricultural Research Service and the USDA-ARS | 2000 | [146,283] |
MG29896 | T. turgidum | Pm36, high grain protein content, and acceptable seed size | University of Bari, Italy | - | [145] |
Translocation line L50 | Ae. speltoides | Pm32 | Technical university of Munich, Germany | - | [141] |
Wild emmer IW2 | T. dicoccum | Pm41 | Mount Hermon, Israel, | - | [148] |
Wild emmer accession G-303-IM | T. dicoccum | Pm42 | Israel | - | [149] |
K2 | T. dicoccum | Pm50 | Institute for Crop Science and Plant Breeding, Germany | - | [257] |
CH7086 | Thinopyrum ponticum | Pm51 | Crop Science Institute, Shanxi Academy of Agricultural Sciences | - | [154] |
Qinling | Secale cereale | Pm56 | Sichuan Agricultural University, Ya’an, China | - | [186] |
NAU421 (T5VS·5AL) | Dasypyrum villosum | Pm55 (growth-stage and tissue-specific dependent resistance) | Nanjing Agricultural University, China | - | [185] |
TA1662 | Ae. tauschii | Pm58 | Michigan State University, USA | - | [187] |
T.urartu | T. urartu | Pm60 | Jiangxi Normal University, China | - | [159] |
7. Breeding Methods and Technologies
7.1. Selection Using Phenotypic Traits: Classical Breeding
7.2. Marker-Assisted Selection (MAS)
8. Quantitative Trait Loci (QTLs) for Resistance to Wheat Powdery Mildew
9. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arzani, A.; Ashraf, M. Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Comp. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Statista. Available online: https://www.statista.com/statistics/267268/production-of-wheat-worldwide-since-1990/ (accessed on 1 March 2023).
- Braun, S. Wheat Alternatives to Combat the Food Crisis. Available online at Wheat Alternatives to Combat the Food Crisis|Environment|All Topics from Climate Change to Conservation|DW|. Available online: https://www.dw.com/en/global-hunger-how-to-tackle-food-insecurity-by-weaning-off-wheat/a-62429582 (accessed on 18 July 2022).
- United Nations Department for Economic and Social Affairs. World Population Prospects 2019: Highlights; United Nations Department for Economic and Social Affairs: New York, NY, USA, 2019. [Google Scholar]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Herrera, L.A.; Crossa, J.; Huerta-Espino, J.; Vargas, M.; Mondal, S.; Velu, G.; Payne, T.S.; Braun, H.; Singh, R.P. Genetic gains for grain yield in CIMMYT’s semi-arid wheat yield trials grown in suboptimal environments. Crop Sci. 2018, 58, 1890–1898. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience 2017, 67, 386–391. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. 2012. [Google Scholar]
- Mondal, S.; Rutkoski, J.E.; Velu, G.; Singh, P.K.; Crespo-Herrera, L.A.; Guzman, C.; Bhavani, S.; Lan, C.; He, X.; Singh, R.P. Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front. Plant. Sci. 2016, 7, 991. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, P.K.; Rutkoski, J.; Hodson, D.P.; He, X.; Jørgensen, L.N.; Hovmøller, M.S.; Huerta-Espino, J. Disease impact on wheat yield potential and prospects of genetic control. Ann. Rev. Phytopath. 2016, 54, 303–322. [Google Scholar] [CrossRef]
- Mehta, Y.R. Wheat Diseases and Their Management; Springer: Cham, Switzerland, 2014; Volume 256. [Google Scholar]
- Menardo, F.; Wicker, T.; Keller, B. Reconstructing the evolutionary history of powdery mildew lineages (Blumeria graminis) at different evolutionary time scales with NGS data. Genome Biol. Evol. 2017, 9, 446–456. [Google Scholar] [CrossRef]
- Menardo, F.; Praz, C.R.; Wyder, S.; Ben-David, R.; Bourras, S.; Matsumae, H.; McNally, K.E.; Parlange, F.; Riba, A.; Roffler, S.; et al. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat. Genet. 2016, 48, 201–205. [Google Scholar] [CrossRef]
- Brancourt-Hulmel, M.; Lecomte, C. Effect of environmental variates on genotype × environment interaction of winter wheat: A comparison of biadditive factorial regression to AMMI. Crop Sci. 2003, 43, 608–617. [Google Scholar] [CrossRef]
- Parks, R.; Carbone, I.; Murphy, J.P.; Marshall, D.; Cowger, C. Virulence structure of the eastern US wheat powdery mildew population. Plant. Dis. 2008, 92, 1074–1082. [Google Scholar] [CrossRef]
- Bhullar, N.K.; Street, K.; Mackay, M.; Yahiaoui, N.; Keller, B. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc. Natl. Acad. Sci. USA 2009, 106, 9519–9524. [Google Scholar] [CrossRef] [PubMed]
- Kloppe, T.; Boshoff, W.; Pretorius, Z.; Lesch, D.; Akin, B.; Morgounov, A.; Shamanin, V.; Kuhnem, P.; Murphy, P.; Cowger, C. Virulence of Blumeria graminis f. sp. tritici in Brazil, South Africa, Turkey, Russia, and Australia. Adv. Breed. Wheat. Dis. Resist. 2022, 13, 954958. [Google Scholar] [CrossRef]
- Golzar, H.; Shankar, M.; D’Antuono, M. Responses of commercial wheat varieties and differential lines to western Australian powdery mildew (Blumeria graminis f. sp. tritici) populations. Australian. Plant Pathol. 2016, 45, 347–355. [Google Scholar] [CrossRef]
- Li, G.; Xu, X.; Bai, G.; Carver, B.F.; Hunger, R.; Bonman, J.M. Identification of novel powdery mildew resistance sources in wheat. Crop Sci. 2016, 56, 1817–1830. [Google Scholar] [CrossRef]
- Alam, M.A.; Xue, F.; Wang, C.; Ji, W. Powdery mildew resistance genes in wheat: Identification and genetic analysis. J. Mol. Biol. Res. 2011, 1, 20. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, Z.; Song, J.; Liu, C.; Zhai, S.; Li, H.; Liu, A.; Cheng, D.; Han, R.; Liu, J.; et al. Molecular and physical mapping of powdery mildew resistance genes and QTLs in wheat: A review. Agric. Sci. Tech. 2017, 18, 965. [Google Scholar]
- Sharma, M.; Kaur, S.; Saluja, M.; Chhuneja, P. Mapping and characterization of powdery mildew resistance gene in synthetic wheat. Czech J. Genet. Plant Breed. 2016, 52, 120–123. [Google Scholar] [CrossRef]
- Kang, Y.; Zhou, M.; Merry, A.; Barry, K. Mechanisms of powdery mildew resistance of wheat–a review of molecular breeding. Plant Pathol. 2020, 69, 601–617. [Google Scholar] [CrossRef]
- Yahiaoui, N.; Srichumpa, P.; Dudler, R.; Keller, B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 2004, 37, 528–538. [Google Scholar] [CrossRef]
- Srichumpa, P.; Brunner, S.; Keller, B.; Yahiaoui, N. Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 2005, 139, 885–895. [Google Scholar] [CrossRef]
- Cao, A.; Xing, L.; Wang, X.; Yang, X.; Wang, W.; Sun, Y.; Qian, C.; Ni, J.; Chen, Y.; Liu, D.; et al. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc. Natl. Acad. Sci. USA 2011, 108, 7727–7732. [Google Scholar] [CrossRef]
- Hurni, S.; Brunner, S.; Stirnweis, D.; Herren, G.; Peditto, D.; McIntosh, R.A.; Keller, B. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. 2014, 79, 904–913. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhu, S.; Zhao, R.; Jiang, Z.; Ji, Y.; Ji, J.; Qiu, D.; Li, H.; Bie, T. Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol. Plant. 2018, 11, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Hurni, S.; Ruinelli, M.; Brunner, S.; Sanchez-Martin, J.; Krukowski, P.; Peditto, D.; Buchmann, G.; Zbinden, H.; Keller, B. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol. Biol. 2018, 98, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Wang, H.; Li, Y.; Kong, Z.; Tang, D. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 2018, 218, 298–309. [Google Scholar] [CrossRef]
- Sánchez-Martín, J.; Widrig, V.; Herren, G.; Wicker, T.; Zbinden, H.; Gronnier, J.; Spörri, L.; Praz, C.R.; Heuberger, M.; Kolodziej, M.C.; et al. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nat. Plants. 2021, 7, 327–341. [Google Scholar] [CrossRef]
- Hewitt, T.; Müller, M.C.; Molnár, I.; Mascher, M.; Holušová, K.; Šimková, H.; Kunz, L.; Zhang, J.; Li, J.; Bhatt, D.; et al. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis. New Phytol. 2021, 229, 2812–2826. [Google Scholar] [CrossRef]
- Gaurav, K.; Arora, S.; Silva, P.; Sánchez-Martín, J.; Horsnell, R.; Gao, L.; Brar, G.S.; Widrig, V.; John Raupp, W.; Singh, N.; et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. 2022, 40, 422–431. [Google Scholar] [CrossRef]
- Yahiaoui, N.; Kaur, N.; Keller, B. Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J. 2009, 57, 846–856. [Google Scholar] [CrossRef]
- Friebe, B.; Heun, M.; Tuleen, N.; Zeller, F.J.; Gill, B.S. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci. 1994, 34, 621–625. [Google Scholar] [CrossRef]
- Zeller, F.J.; Hsam, S.L.K. Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat (Triticum aestivum L. em. Thell.). Theor. Appl. Genet. 1996, 93, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Graybosch, R.A.; Peterson, C.J.; Hansen, L.E.; Mattern, P.J. Relationships between protein solubility characteristics, 1BL/1RS, high molecular weight glutenin composition, and end-use quality in winter wheat germ plasm. Cer. Chem. 1990, 67, 342–349. [Google Scholar]
- Martin, D.J.; Stewart, B.G. Dough stickiness in rye-derived wheat cultivars. Euphytica 1990, 51, 77–86. [Google Scholar] [CrossRef]
- Qiu, D.; Huang, J.; Guo, G.; Hu, J.; Li, Y.; Zhang, H.; Liu, H.; Yang, L.; Zhou, Y.; Yang, B.; et al. The Pm5e gene has no negative effect on wheat agronomic performance: Evidence from newly established near-isogenic lines. Front. Plant. Sci. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Bationo, A. Constraints and New Opportunities for Achieving a Green Revolution in Sub-Saharan Africa through Integrated Soil Fertility Management; Department of Plant Sciences: Cambridge, UK, 2009. [Google Scholar]
- Tadesse, W.; Bishaw, Z.; Assefa, S. Wheat production and breeding in Sub-Saharan Africa: Challenges and opportunities in the face of climate change. Int. J. Clim. Chan. Strat. Manag. 2019, 11, 696–715. [Google Scholar] [CrossRef]
- Meyer, M.; Bacha, N.; Tesfaye, T.; Alemayehu, Y.; Abera, E.; Hundie, B.; Woldeab, G.; Girma, B.; Gemechu, A.; Negash, T.; et al. Wheat rust epidemics damage Ethiopian wheat production: A decade of field disease surveillance reveals national-scale trends in past outbreaks. PLoS ONE 2021, 16, e0245697. [Google Scholar] [CrossRef]
- Bapela, T.M. Screening Wheat (Triticum aestivum L.) landraces to Use as Donor Lines of Russian Wheat Aphid Resistance and the Application of Molecular Markers to Identify Potential High Yielding Genotypes with Minimal Linkage Drag to Undesirable Traits. Doctoral Dissertation, University of South Africa, Pretoria, South Africa, 2022. [Google Scholar]
- Shew, A.M.; Tack, J.B.; Nalley, L.L.; Chaminuka, P. Yield reduction under climate warming varies among wheat cultivars in South Africa. Nature Comm. 2020, 11, 4408. [Google Scholar] [CrossRef]
- Bapela, T.M.; Tolmay, V.L. Evaluation of Russian wheat resistance sources with the spectrum of South African Diuraphis noxia biotypes. Crop Sci. 2022, 62, 564–574. [Google Scholar] [CrossRef]
- Bapela, T.; Shimelis, H.; Tsilo, T.J.; Mathew, I. Genetic improvement of wheat for drought tolerance: Progress, challenges and opportunities. Plants 2022, 11, 1331. [Google Scholar] [CrossRef]
- Wanyera, R.; Wamalwa, M. Past, Current and Future of Wheat Diseases in Kenya. In Wheat; IntechOpen: London, UK, 2022. [Google Scholar]
- Wiese, M.V. Compendium of Wheat Diseases; American Phytopathological Society: St. Paul, MN, USA, 1987. [Google Scholar]
- Walker, A.S.; Bouguennec, A.; Confais, J.; Morgant, G.; Leroux, P. Evidence of host-range expansion from new powdery mildew (Blumeria graminis) infections of triticale (×Triticosecale) in France. Plant. Pathol. 2011, 60, 207–220. [Google Scholar] [CrossRef]
- Sánchez-Martín, J.; Bourras, S.; Keller, B.; Oliver, R. Diseases Affecting Wheat and Barley: Powdery Mildew. Integrated Disease Management of Wheat and Barley; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2018; pp. 69–93. [Google Scholar]
- Shahin, A.A.; Ashmawy, M.A.; Esmail, S.M.; El-Moghazy, S.M. Biocontrol of wheat powdery mildew disease under field conditions in EGYPT. Zagazig J. Agric. Res. 2019, 46, 2255–2270. [Google Scholar] [CrossRef]
- Pietrusińska, A.; Tratwal, A. Characteristics of powdery mildew and its importance for wheat grown in Poland. Plant Prot. Sci. 2020, 56, 141–153. [Google Scholar] [CrossRef]
- Morgounov, A.; Tufan, H.A.; Sharma, R.; Akin, B.; Bagci, A.; Braun, H.J.; Kaya, Y.; Keser, M.; Payne, T.S.; Sonder, K.; et al. Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. Europ. J. Plant Pathol. 2012, 132, 323–340. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant. Path. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Terefe, T. Wheat producers, treat fungicides with caution! Farmer’s Wkly. 2019, 2019, 42–44. [Google Scholar]
- Ashmawy, M.; El-Orabey, W.; Abu Aly, A.E.A.; Shahin, A. Losses in grain yield of some wheat cultivars infected with powdery mildew. Egypt. J. Phytopath. 2014, 42, 71–82. [Google Scholar] [CrossRef]
- Tang, X.; Cao, X.; Xu, X.; Jiang, Y.; Luo, Y.; Ma, Z.; Fan, J.; Zhou, Y. Effects of climate change on epidemics of powdery mildew in winter wheat in China. Plant Dis. 2017, 101, 1753–1760. [Google Scholar] [CrossRef]
- Wang, Z.L.; Li, L.H.; He, Z.H.; Duan, X.Y.; Zhou, Y.L.; Chen, X.M.; Lillemo, M.; Singh, R.P.; Wang, H.; Xia, X.C. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis. 2005, 89, 457–463. [Google Scholar] [CrossRef]
- Wang, X.Y.; Chen, P.D.; Zhang, S.Z. Pyramiding and marker-assisted selection for powdery mildew resistance genes in common wheat. Yi Chuan Xue Bao = Acta. Genet. Sin. 2001, 28, 640–646. [Google Scholar]
- Pietrusińska, A.; Czembor, J.H.; Czembor, P.C. Pyramiding two genes for leaf rust and powdery mildew resistance in common wheat. Cer. Res. Commun. 2011, 39, 577–588. [Google Scholar] [CrossRef]
- Koller, T.; Brunner, S.; Herren, G.; Hurni, S.; Keller, B. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. Theor. Appl. Genet. 2018, 131, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; He, Z.H.; Asad, M.A.; Lan, C.X.; Zhang, Y.; Xia, X.C.; Yan, J.; Chen, X.; Wang, C.S. Pyramiding adult-plant powdery mildew resistance QTLs in bread wheat. Crop Pastu. Sci. 2012, 63, 606–611. [Google Scholar] [CrossRef]
- Mundt, C.C. Durable resistance: A key to sustainable management of pathogens and pests. Infect. Genet. Evol. 2014, 27, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Jankovics, T.; Komáromi, J.; Fábián, A.; Jäger, K.; Vida, G.; Kiss, L. New insights into the life cycle of the wheat powdery mildew: Direct observation of ascosporic infection in Blumeria graminis f. sp. tritici. Phytopathology 2015, 105, 797–804. [Google Scholar] [CrossRef]
- Weise, M.V. Compendium of Wheat Diseases; American Phytopathological Society: St. Paul, MN, USA, 1977. [Google Scholar]
- Draz, I.; Esmail, S.; Abou-Zeid, M.; Essa, T. Powdery mildew susceptibility of spring wheat cultivars as a major constraint on grain yield. Ann. Agric. Sci. 2019, 64, 39–45. [Google Scholar] [CrossRef]
- Shi, W.; Gong, S.; Zeng, F.; Xue, M.; Yang, L.; Yu, D. Sexual reproduction and detection of mating-type of Blumeria graminis f. sp. tritici populations. Acta. Phytopath. Sin. 2016, 46, 645–652. [Google Scholar]
- Conner, R.; Kuzyk, A.; Su, H. Impact of powdery mildew on the yield of soft white spring wheat cultivars. Canad. J. Plant Sci. 2003, 83, 725–728. [Google Scholar] [CrossRef]
- Walczak, F.; Gałęzewski, M.; Jakubowska, M.; Skorupska, A.; Tratwal, A.; Wojtowicz, A.; Złotowski, J. Zespół Zakładu Metod Prognozowania i Rejestracji Agrofagów oraz Zakład Badania Gryzoni Polnych IOR w Poznaniu. 2019. Available online: http://www.ior.poznan.pl/aktualizacja/data/pliki/263_Stan_fitosanitarny_2007.pdf (accessed on 18 April 2023).
- Cunfer, B.M. Powdery Mildew, Bread Wheat Improvement and Production; Curtis, B.C., Rjajaram, S., Gomez-Macpherson, H., Eds.; FAO Plant Production and Protection Series No. 30; FAO: Rome, Italy, 2002. [Google Scholar]
- Johnson, J.W.; Baenziger, P.S.; Yamazaki, W.T.; Smith, R.T. Effects of Powdery Mildew on Yield and Quality of Isogenic Lines of ‘Chancellor’Wheat 1. Crop Sci. 1979, 19, 349–352. [Google Scholar] [CrossRef]
- Morris, C.F.; Rose, S.P. Wheat. In Cereal Grain Quality; Henry, R.J., Kettle, P.S., Eds.; Chapman and Hall: London, UK, 1996; pp. 160–224. [Google Scholar]
- Serrago, R.A.; Carretero, R.; Bancal, M.O.; Miralles, D.J. Grain weight response to foliar diseases control in wheat (Triticum aestivum L.). Field Crops Res. 2011, 120, 352–359. [Google Scholar] [CrossRef]
- Feng, W.; Li, X.; Liu, W.D.; Wang, X.Y.; Wang, C.Y.; Guo, T.C. Effects of powdery mildew infection on grain quality traits and yield of winter wheat. J. Tritic Crops 2014, 34, 1706–1712. [Google Scholar]
- Everts, K.L.; Leath, S.; Finney, P.L. Impact of powdery mildew and leaf rust on milling and baking quality of soft red winter wheat. Plant Dis. 2001, 85, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Cowger, C.; Miranda, L.; Griffey, C.; Hall, M.; Murphy, J.P.; Maxwell, J. Wheat powdery mildew. In Disease Resistance in Wheat; Sharma, I., Ed.; CABI: Wallingford, UK, 2012; pp. 84–119. [Google Scholar]
- Asad, M.A.; Bai, B.; Lan, C.; Yan, J.; Xia, X.; Zhang, Y.; He, Z. Identification of QTL for adult-plant resistance to powdery mildew in Chinese wheat landrace Pingyuan 50. Crop J. 2014, 2, 308–314. [Google Scholar] [CrossRef]
- Gao, H.Y.; He, D.X.; Niu, J.S.; Wang, C.Y.; Yang, X.W. The effect and molecular mechanism of powdery mildew on wheat grain prolamins. J. Agric. Sci. 2014, 152, 239. [Google Scholar] [CrossRef]
- Grains Research and Development Corporation (GRDC). 2016. Available online: http://www.farmingahead.com.au/wp-content/uploads/2016/10/ef1c635cf5449e3b8f52f9a76bff0d8f.pdf.pdf (accessed on 27 July 2022).
- Gao, H.; Niu, J.; Yang, X.; He, D.; Wang, C. Impacts of powdery mildew on wheat grain sugar metabolism and starch accumulation in developing grains. Starch-Stärke 2014, 66, 947–958. [Google Scholar] [CrossRef]
- Zhan, J. Population genetics of plant pathogens. In eLS; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 1–7. [Google Scholar]
- McDonald, B.A.; Linde, C. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 2002, 124, 163–180. [Google Scholar] [CrossRef]
- Linde, C.C. Population genetic analyses of plant pathogens: New challenges and opportunities. Australas. Plant Pathol. 2010, 39, 23–28. [Google Scholar] [CrossRef]
- Stukenbrock, E.H. The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology 2016, 106, 104–112. [Google Scholar] [CrossRef]
- Wiśniewska, H.; Kowalczyk, K. Resistance of cultivars and breeding lines of spring wheat to Fusarium culmorum and powdery mildew. J. Appl. Genet. 2005, 46, 35–40. [Google Scholar]
- He, Z.; Lan, C.; Chen, X.; Zou, Y.; Zhuang, Q.; Xia, X. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci. Agric. Sin. 2011, 44, 2193–2215. [Google Scholar]
- Yang, L.; Zhang, X.; Zhang, X.; Wang, J.; Luo, M.; Yang, M.; Wang, H.; Xiang, L.; Zeng, F.; Yu, D.; et al. Identification and evaluation of resistance to powdery mildew and yellow rust in a wheat mapping population. PLoS ONE 2017, 12, e0177905. [Google Scholar] [CrossRef] [PubMed]
- Zeybek, A.; Khan, M.K.; Pandey, A.; Gunel, A.; Erdogan, O.; Akkaya, M.S. Genetic structure of powdery mildew disease pathogen Blumeria graminis f. sp. hordei in the barley fields of cukurova in turkey. Fresenius Environ. Bull. 2017, 26, 906–912. [Google Scholar]
- Cowger, C.; Brown, J.K.M. Blumeria graminis (Powdery Mildew of Grasses and Cereals); Invasive Species Compendium; CABI: Wallingford, UK, 2019. [Google Scholar]
- Lackermann, K.; Conley, S.; Gaska, J.; Martinka, M.; Esker, P. Effect of location, cultivar, and diseases on grain yield of soft red winter wheat in Wisconsin. Plant Dis. 2011, 95, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Bouguennec, A.; Trottet, M.; Du Cheyron, P.; Lonnet, P. Triticale powdery mildew: Population characterization and wheat gene efficiency. Communic. Agric. Appl. Biol. Sci. 2014, 79, 106–121. [Google Scholar]
- Nordestgaard, N.V.; Thach, T.; Sarup, P.; Rodriguez-Algaba, J.; Andersen, J.R.; Hovmøller, M.S.; Jahoor, A.; Jørgensen, L.N.; Orabi, J. Multi-parental populations suitable for identifying sources of resistance to powdery mildew in winter wheat. Front. Plant Sci. 2021, 11, 570863. [Google Scholar] [CrossRef]
- Feng, Z.H.; Wang, L.Y.; Yang, Z.Q.; Zhang, Y.Y.; Li, X.; Song, L.; He, L.; Duan, J.Z.; Feng, W. Hyperspectral monitoring of powdery mildew disease severity in wheat based on machine learning. Front. Plant Sci. 2022, 13, 828454. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Oerke, E.C.; Steiner, U.; Dehne, H.W. Recent advances in sensing plant diseases for precision crop protection. Europ. J. Plant Path. 2012, 133, 197–209. [Google Scholar] [CrossRef]
- Wahabzada, M.; Mahlein, A.K.; Bauckhage, C.; Steiner, U.; Oerke, E.C.; Kersting, K. Plant phenotyping using probabilistic topic models: Uncovering the hyperspectral language of plants. Sci. Rep. 2016, 6, 22482. [Google Scholar] [CrossRef]
- Feng, W.; Wu, Y.; He, L.; Ren, X.; Wang, Y.; Hou, G.; Wang, Y.; Liu, W.; Guo, T. An optimized non-linear vegetation index for estimating leaf area index in winter wheat. Precis. Agric. 2019, 20, 1157–1176. [Google Scholar] [CrossRef]
- Liu, W.; Sun, C.; Zhao, Y.; Xu, F.; Song, Y.; Fan, J.; Zhou, Y.; Xu, X. Monitoring of Wheat Powdery Mildew under Different Nitrogen Input Levels Using Hyperspectral Remote Sensing. Remote Sens. 2021, 13, 3753. [Google Scholar] [CrossRef]
- Xuan, G.; Li, Q.; Shao, Y.; Shi, Y. Early diagnosis and pathogenesis monitoring of wheat powdery mildew caused by blumeria graminis using hyperspectral imaging. Comp. Electron. Agric. 2022, 197, 106921. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exper. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Qi, S.; Heng, Y.; Zhou, Y.; Wu, Y.; Liu, W.; He, L.; Li, X. Canopy vegetation indices from in situ hyperspectral data to assess plant water status of winter wheat under powdery mildew stress. Front. Plant Sci. 2017, 8, 1219. [Google Scholar] [CrossRef]
- Simpfendorfer, S.; Chang, S.; Lopez-Ruiz, F. Australian Government. Grains Research and Development Corporation. 2022. Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2021/07/wheat-powdery-mildew-in-nsw-and-northern-victoria-in-2020 (accessed on 15 August 2022).
- Jørgensen, L.N.; Oliver, R.P.; Heick, T.M. Occurrence and avoidance of fungicide resistance in cereal diseases. In Integrated Disease Management of Wheat and Barley; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 255–280. [Google Scholar]
- European Environmental Bureau (EEB). The Great Detox—Largest ever Ban of Toxic Chemicals Announced by EU. 2022. Available online: https://eeb.org/the-great-detox-largest-ever-ban-of-toxic-chemicals-announced-by-eu/#:~:text=The%20EU%20has%20banned%20around,group%20than%20toys%20or%20cosmetics (accessed on 23 May 2022).
- Deising, H.B.; Reimann, S.; Peil, A.; Weber, W.E. Disease management of rusts and powdery mildews. In Agricultural Applications; Kempken, F., Ed.; Springer: New York, NY, USA, 2002; pp. 243–269. [Google Scholar]
- Bhatta, M.; Regassa, T.; Wegulo, S.N.; Baenziger, P.S. Foliar fungicide effects on disease severity, yield, and agronomic characteristics of modern winter wheat genotypes. Agron. J. 2018, 110, 602–610. [Google Scholar] [CrossRef]
- Beard, C.; Thomas, G.J. Fungicides for Managing Powdery Mildew in Wheat Historical Trial Report. Department of Primary Industries and Regional Development. 2020. Available online: https://www.agric.wa.gov.au/grains-research-development/fungicides-managing-powdery-mildew-wheat-historical-trial-report (accessed on 17 August 2020).
- Pietrusińska, A.; Czembor, J.H. Pyramiding winter wheat resistance genes (Pm21 + Pm34) of powdery mildew of cereals and grasses (Blumeria graminis f. sp. tritici). Prog. Plant Prot. 2017, 57, 41–46. [Google Scholar]
- Pietrusińska, A.; Żurek, M.; Piechota, U.; Słowacki, P.; Smolińska, K. Searching for diseases resistance sources in old cultivars, landraces and wild relatives of cereals. A review. Ann. UMCS Sect. E Agric. 2018, 73, 45–60. [Google Scholar]
- Zheng, W.; Li, S.; Liu, Z.; Zhou, Q.; Feng, Y.; Chai, S. Molecular marker-assisted gene stacking for disease resistance and quality genes in the dwarf mutant of an elite common wheat cultivar Xiaoyan22. BMC Genet. 2020, 21, 45. [Google Scholar] [CrossRef]
- Purnhauser, L.; Bóna, L.; Láng, L. Occurrence of 1BL. 1RS wheat-rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary. Euphytica 2011, 179, 287–295. [Google Scholar] [CrossRef]
- Mwale, V.M.; Tang, X.; Chilembwe, E. Molecular detection of disease resistance genes to powdery mildew (Blumeria graminis f. sp. tritici) in wheat (Triticum aestivum) cultivars. Afr. J. Biotech. 2017, 16, 22–31. [Google Scholar]
- Vikas, V.K.; Kumar, S.; Archak, S.; Tyagi, R.K.; Kumar, J.; Jacob, S.; Sivasamy, M.; Jayaprakash, P.; Saharan, M.S.; Basandrai, A.K.; et al. Screening of 19,460 genotypes of wheat species for resistance to powdery mildew and identification of potential candidates using focused identification of germplasm strategy (FIGS). Crop Sci. 2020, 60, 2857–2866. [Google Scholar] [CrossRef]
- Leonova, I.N. Genome-Wide Association study of powdery mildew resistance in Russian Spring Wheat (T. aestivum L.) Varieties. Russ. J. Genet. 2019, 55, 1360–1374. [Google Scholar] [CrossRef]
- Simeone, R.; Piarulli, L.; Nigro, D.; Signorile, M.A.; Blanco, E.; Mangini, G.; Blanco, A. Mapping powdery mildew (Blumeria graminis f. sp. tritici) resistance in wild and cultivated tetraploid wheats. Internat. J. Mol. Sci. 2020, 21, 7910. [Google Scholar] [CrossRef] [PubMed]
- Jakobson, I.; Reis, D.; Tiidema, A.; Peusha, H.; Timofejeva, L.; Valárik, M.; Kladivová, M.; Šimková, H.; Doležel, J.; Järve, K. Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat–Triticum militinae introgression line. Theor. Appl. Genet. 2012, 125, 609–623. [Google Scholar] [CrossRef]
- Hsam, S.L.; Cermeño, M.C.; Friebe, B.; Zeller, F.J. Transfer of Amigo wheat powdery mildew resistance gene Pm17 from T1AL• 1RS to the T1BL• 1RS wheat-rye translocated chromosome. Heredity 1995, 74, 497–501. [Google Scholar] [CrossRef]
- Keller, M.; Keller, B.; Schachermayr, G.; Winzeler, M.; Schmid, J.E.; Stamp, P.; Messmer, M.M. Quantitative trait loci for resistance against powdery mildew in a segregating wheat× spelt population. Theor. Appl. Genet. 1999, 98, 903–912. [Google Scholar] [CrossRef]
- Robe, P.; Pavoine, M.T.; Doussinault, G. Early assessment of adult plant reaction of wheat (Triticum aestivum L) to powdery mildew (Erysiphe graminis f sp tritici) at the five-leaf seedling stage. Agronomie 1996, 16, 441–451. [Google Scholar] [CrossRef]
- Hsam, S.L.K.; Huang, X.Q.; Zeller, F.J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 6. Alleles at the Pm5 locus. Theor. Appl. Genet. 2001, 102, 127–133. [Google Scholar] [CrossRef]
- Huang, X.; Wang, L.; Xu, M.; Röder, M. Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2003, 106, 858–865. [Google Scholar] [CrossRef]
- Schneider, D.M.; Heun, M.; Fischbeck, G. Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat. Plant Breed. 1991, 107, 161–164. [Google Scholar] [CrossRef]
- Tosa, Y.; Nakamura, T.; Kusaba, M. Distribution of genes for resistance to the wheatgrass mildew fungus in Japanese wheat cultivars and of their corresponding genes in the wheat mildew fungus. Jpn. J. Genet. 1995, 70, 119–126. [Google Scholar] [CrossRef]
- Cenci, A.; D’ovidio, R.; Tanzarella, O.A.; Ceoloni, C.; Porceddu, E. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor. Appl. Genet. 1999, 98, 448–454. [Google Scholar] [CrossRef]
- Tosa, Y.; Sakai, K. The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildew fungus. Genome 1990, 33, 225–230. [Google Scholar] [CrossRef]
- Wu, X.; Bian, Q.; Gao, Y.; Ni, X.; Sun, Y.; Xuan, Y.; Cao, Y.; Li, T. Evaluation of resistance to powdery mildew and identification of resistance genes in wheat cultivars. PeerJ 2021, 9, e10425. [Google Scholar] [CrossRef] [PubMed]
- Lili, Q.; Peidu, C.; Daun, L.; Bo, Z.; Shouzhong, Z.; Baoqin, S.; Qijun, X.; Xiayu, D.; Yilin, Z. The gene Pm21-a new source for resistance to wheat powdery mildew. Zuo Wu Xue Bao 1995, 21, 257–262. [Google Scholar]
- Qi, L.; Cao, M.; Chen, P.; Li, W.; Liu, D. Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 1996, 39, 191–197. [Google Scholar] [CrossRef]
- Peusha, H.; Hsam, S.L.; Zeller, F.J. Chromosomal location of powdery mildew resistance genes in common wheat (Triticum aestivum L. em. Thell.) 3. Gene Pm22 in cultivar Virest. Euphytica 1996, 91, 149–152. [Google Scholar] [CrossRef]
- Singrün, C.H.; Hsam, S.L.K.; Hartl, L.; Zeller, F.J.; Mohler, V. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor. Appl. Genet. 2003, 106, 1420–1424. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, A.; Wang, Y.; Feng, D.; Gao, J.; Li, X.; Liu, S.; Wang, H. Pm23: A new allele of Pm4 located on chromosome 2AL in wheat. Theor. Appl. Genet. 2008, 117, 1205–1212. [Google Scholar] [CrossRef]
- Huang, X.Q.; Hsam, S.L.K.; Zeller, F.J.; Wenzel, G.; Mohler, V. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor. Appl. Genet. 2000, 101, 407–414. [Google Scholar] [CrossRef]
- Xue, F.; Wang, C.; Li, C.; Duan, X.; Zhou, Y.; Zhao, N.; Wang, Y.; Ji, W. Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor. Appl. Genet. 2012, 125, 1425–1432. [Google Scholar] [CrossRef]
- Shi, A.N.; Leath, S.; Murphy, J.P. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 1998, 88, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Piarulli, L.; Gadaleta, A.; Mangini, G.; Signorile, M.A.; Pasquini, M.; Blanco, A.; Simeone, R. Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci. 2012, 196, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Järve, K.; Peusha, H.O.; Tsymbalova, J.; Tamm, S.; Devos, K.M.; Enno, T.M. Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome 2000, 43, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Peusha, H.; Enno, T.; Priilinn, O. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas 2000, 132, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Zeller, F.J.; Kong, L.; Hartl, L.; Mohler, V.; Hsam, S.L.K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova. Euphytica 2002, 123, 187–194. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Q.; Ni, Z.; Nevo, E.; Yang, T. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 2002, 123, 21–29. [Google Scholar] [CrossRef]
- Xie, C.; Sun, Q.; Ni, Z.; Yang, T.; Nevo, E.; Fahima, T. Identification of resistance gene analogue markers closely linked to wheat powdery mildew resistance gene Pm31. Plant Breed. 2004, 123, 198–200. [Google Scholar] [CrossRef]
- Hsam, S.L.K.; Lapochkina, I.F.; Zeller, F.J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 2003, 133, 367–370. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, R.; Kong, X.; Dong, Y.; Jia, J. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 2005, 48, 585–590. [Google Scholar] [CrossRef]
- Miranda, L.M.; Murphy, J.P.; Marshall, D.; Leath, S. Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2006, 113, 1497–1504. [Google Scholar] [CrossRef]
- Miranda, L.M.; Murphy, J.P.; Marshall, D.; Cowger, C.; Leath, S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2007, 114, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Blanco, A.; Gadaleta, A.; Cenci, A.; Carluccio, A.V.; Abdelbacki, A.M.; Simeone, R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor. App. Genet. 2008, 117, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Perugini, L.D.; Murphy, J.P.; Marshall, D.; Brown-Guedira, G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor. Appl. Genet. 2008, 116, 417–425. [Google Scholar] [CrossRef]
- Luo, P.G.; Luo, H.Y.; Chang, Z.J.; Zhang, H.Y.; Zhang, M.; Ren, Z.L. Characterization and chromosomal location of Pm40 in common wheat: A new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet. 2009, 118, 1059–1064. [Google Scholar] [CrossRef]
- Li, G.; Fang, T.; Zhang, H.; Xie, C.; Li, H.; Yang, T.; Nevo, E.; Fahima, T.; Sun, Q.; Liu, Z. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 2009, 119, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Hua, W.; Liu, Z.; Zhu, J.; Xie, C.; Yang, T.; Zhou, Y.; Duan, X.; Sun, Q.; Liu, Z. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 2009, 119, 223–230. [Google Scholar] [CrossRef]
- He, R.; Chang, Z.; Yang, Z.; Yuan, Z.; Zhan, H.; Zhang, X.; Liu, J. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor. Appl. Genet. 2009, 118, 1173–1180. [Google Scholar] [CrossRef]
- Ma, H.; Kong, Z.; Fu, B.; Li, N.; Zhang, L.; Jia, H.; Ma, Z. Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor. Appl. Genet. 2011, 123, 1099–1106. [Google Scholar] [CrossRef]
- Xiao, M.; Song, F.; Jiao, J.; Wang, X.; Xu, H.; Li, H. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor. Appl. Genet. 2013, 126, 1397–1403. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Zhang, Q.; Wu, X.; Gao, H.; Cai, S.; Wu, J. Development of markers closely linked with wheat powdery mildew resistance gene Pm48. Acta Agron. Sin. 2017, 43, 307–312. [Google Scholar] [CrossRef]
- Zhan, H.; Li, G.; Zhang, X.; Li, X.; Guo, H.; Gong, W.; Jia, J.; Qiao, L.; Ren, Y.; Yang, Z.; et al. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PLoS ONE 2014, 9, e113455. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Hu, J.; Zou, J.; Qiu, D.; Qu, Y.; Li, Y.; Li, T.; Zhang, H.; Yang, L.; Liu, H.; et al. Fine mapping of the wheat powdery mildew resistance gene Pm52 using comparative genomics analysis and the Chinese Spring reference genomic sequence. Theor. Appl. Genet. 2019, 132, 1451–1461. [Google Scholar] [CrossRef]
- Hao, Y.; Parks, R.; Cowger, C.; Chen, Z.; Wang, Y.; Bland, D.; Murphy, J.P.; Guedira, M.; Brown-Guedira, G.; Johnson, J. Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor. Appl. Genet. 2015, 128, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Koo, D.H.; Xia, Q.; Li, C.; Bai, F.; Song, Y.; Friebe, B.; Gill, B.S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor. Appl. Genet. 2017, 130, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Li, G.; Cowger, C.; Carver, B.F.; Xu, X. Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat landrace PI 181356. Theor. Appl. Genet. 2018, 131, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Li, Y.; Yang, B.; Yuan, H.; Jin, C.; Zhou, L.; Pei, H.; Zhao, L.; Li, Y.; Zhou, Y.; et al. Powdery mildew disease resistance and marker-assisted screening at the Pm60 locus in wild diploid wheat Triticum urartu. Crop J. 2020, 8, 252–259. [Google Scholar] [CrossRef]
- Sun, H.; Hu, J.; Song, W.; Qiu, D.; Cui, L.; Wu, P.; Zhang, H.; Liu, H.; Yang, L.; Qu, Y.; et al. Pm61: A recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. Theor. Appl. Genet. 2018, 131, 2085–2097. [Google Scholar] [CrossRef]
- Tan, C.; Li, G.; Cowger, C.; Carver, B.F.; Xu, X. Characterization of Pm63, a powdery mildew resistance gene in Iranian landrace PI 628024. Theor. Appl. Genet. 2019, 132, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Cowger, C.; Wang, X.; Carver, B.F.; Xu, X. Characterization of Pm65, a new powdery mildew resistance gene on chromosome 2AL of a facultative wheat cultivar. Theor. Appl. Genet. 2019, 132, 2625–2632. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dong, Z.; Ma, C.; Xia, Q.; Tian, X.; Sehgal, S.; Koo, D.H.; Friebe, B.; Ma, P.; Liu, W. A spontaneous wheat-Aegilops longissima translocation carrying Pm66 confers resistance to powdery mildew. Theor. Appl. Genet. 2020, 133, 1149–1159. [Google Scholar] [CrossRef]
- He, H.; Liu, R.; Ma, P.; Du, H.; Zhang, H.; Wu, Q.; Yang, L.; Gong, S.; Liu, T.; Huo, N.; et al. Characterization of Pm68, a new powdery mildew resistance gene on chromosome 2BS of Greek durum wheat TRI 1796. Theor. Appl. Genet. 2021, 134, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, Z.Z.; Sela, H.; Govta, L.; Klymiuk, V.; Roychowdhury, R.; Chawla, H.S.; Ens, J.; Wiebe, K.; Bocharova, V.; et al. Long-read genome sequencing accelerated the cloning of Pm69 by resolving the complexity of a rapidly evolving resistance gene cluster in wheat. bioRxiv 2022, 10. [Google Scholar] [CrossRef]
- Chen, F.; Jia, H.; Zhang, X.; Qiao, L.; Li, X.; Zheng, J.; Guo, H.; Powers, C.; Yan, L.; Chang, Z. Positional cloning of PmCH1357 reveals the origin and allelic variation of the Pm2 gene for powdery mildew resistance in wheat. Crop J. 2019, 7, 771–783. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, Z.; Wang, D.; Xiao, L.; Su, F.; Mu, Y.; Zheng, J.; Li, L.; Yin, Y.; Yu, T.; et al. Characterization and identification of the powdery mildew resistance gene in wheat breeding line ShiCG15–009. BMC Plant Biol. 2023, 23, 113. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Zhang, D.; Guo, L.; Chen, J.; Chen, Y.; Wu, Q.; Xie, J.; Zhang, Y.; Sun, Q.; et al. Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theor. Appl. Genet. 2015, 128, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Ben-David, R.; Zeng, B.; Distelfeld, A.; Röder, M.S.; Dinoor, A.; Fahima, T. Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 2021, 124, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Xue, F.; Zhou, Y.; Duan, X.; Hu, J.; Li, Y.; Zhu, H.; Sun, J. Fine-mapping of the powdery mildew resistance gene mlxbd in the common wheat landrace Xiaobaidong. Plant Dis. 2020, 104, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Zhang, Z.; Zhang, Q.; Wu, X.; Wu, J.; Cai, S. Identification and mapping of a new powdery mildew resistance allele in the Chinese wheat landrace Hongyoumai. Mol. Breed. 2017, 37, 133. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, X.; Zhang, X.; Yan, L.; Gao, L.; Hao, Y.; Wang, X.; Xue, S.; Qu, Y.; Hu, T.; et al. Characterization of PmDGM conferring powdery mildew resistance in Chinese wheat landrace Duanganmang. Plant Dis. 2021, 105, 3127–3133. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.; Hu, J.; Wu, P.; Qiu, D.; Qu, Y.; Xie, J.; Wu, Q.; Zhang, H.; Yang, L.; et al. Identification of a Recessive Gene PmQ Conferring Resistance to Powdery Mildew. Plant. Dis. 2020, 1–41. [Google Scholar]
- Sun, H.; Song, W.; Sun, Y.; Chen, X.; Liu, J.; Zou, J.; Wang, X.; Zhou, Y.; Lin, X.; Li, H. Resistance of ‘Zhongmai 155’wheat to powdery mildew: Effectiveness and detection of the resistance gene. Crop Sci. 2015, 55, 1017–1025. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, H.; Song, W.; Lu, M.; Huang, J.; Wu, L.; Wang, X.; Li, H. Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theor. Appl. Genet. 2013, 126, 3081–3089. [Google Scholar] [CrossRef]
- An, D.; Han, G.; Wang, J.; Yan, H.; Zhou, Y.; Cao, L.; Jin, Y.; Zhang, X. Cytological and genetic analyses of a wheat-rye 2RL ditelosomic addition line with adult plant resistance to powdery mildew. Crop J. 2022, 10, 911–916. [Google Scholar] [CrossRef]
- Jia, J.; Devos, K.M.; Chao, S.; Miller, T.E.; Reader, S.M.; Gale, M.D. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor. Appl. Genet. 1996, 92, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, W.; Liu, C.; Zhu, S.; Gao, H.; Xu, H.; Zhang, L.; Song, J.; Song, W.; Liu, K.; et al. Diagnostic kompetitive allele-specific PCR markers of wheat broad-spectrum powdery mildew resistance genes Pm21, PmV, and Pm12 developed for high-throughput marker-assisted selection. Plant Dis. 2021, 105, 2844–2850. [Google Scholar] [CrossRef] [PubMed]
- Spielmeyer, W.; Singh, R.P.; McFadden, H.; Wellings, C.R.; Huerta-Espino, J.; Kong, X.; Appels, R.; Lagudah, E.S. Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: A disease resistance locus effective against multiple pathogens in wheat. Theor. Appl. Genet. 2008, 116, 481–490. [Google Scholar] [CrossRef]
- Lagudah, E.S.; Krattinger, S.G.; Herrera-Foessel, S.; Singh, R.P.; Huerta-Espino, J.; Spielmeyerm, W.; Brown-Guedira, G.; Selter, L.L.; Keller, B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theo. Appl. Genet. 2009, 119, 889–898. [Google Scholar] [CrossRef]
- Lillemo, M.; Asalf, B.; Singh, R.P.; Huerta-Espino, J.; Chen, X.M.; He, Z.H.; Bjørnstad, Å. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor. Appl. Genet. 2008, 116, 1155–1166. [Google Scholar] [CrossRef]
- Yang, X.; Liu, L.; Sun, D.; Zhang, L. Genetic characteristics of wheat resistance gene Lr46/Yr29/Pm39, Sr2/Yr30 and Lr68 and association analysis of main agronomic traits. Acta Bot. Boreali-Occident. Sin. 2014, 34, 454–462. [Google Scholar]
- Gao, H.D.; Zhu, F.F.; Jiang, Y.J.; Wu, J.Z.; Yan, W.; Zhang, Q.F.; Jacobi, A.; Cai, S.B. Genetic analysis and molecular mapping of a new powdery mildew resistance gene Pm46 in common wheat. Theor. Appl. Genet. 2012, 125, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.; Lyerly, J.H.; Worthington, M.L.; Parks, W.R.; Cowger, C.; Marshall, D.S.; Brown-Guedira, G.; Murphy, J.P. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor. Appl. Genet. 2015, 128, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sun, B.; Chen, J.; Cao, A.; Xing, L.; Feng, Y.; Lan, C.; Chen, P. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor. Appl. Genet. 2016, 129, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Liu, M.; Luo, J.; Fan, C.; Yi, Y.; Zhang, L.; Yuan, Z.; Ning, S.; Zheng, Y.; Liu, D. Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front. Plant Sci. 2018, 9, 1040. [Google Scholar] [CrossRef] [PubMed]
- Wiersma, A.T.; Pulman, J.A.; Brown, L.K.; Cowger, C.; Olson, E.L. Identification of Pm58 from Aegilops tauschii. Theor. Appl. Genet. 2017, 130, 1123–1133. [Google Scholar] [CrossRef]
- Zhang, R.; Fan, Y.; Kong, L.; Wang, Z.; Wu, J.; Xing, L.; Cao, A.; Feng, Y. Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor. Appl. Genet. 2018, 131, 2613–2620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhu, K.; Dong, L.; Liang, Y.; Li, G.; Fang, T.; Guo, G.; Wu, Q.; Xie, J.; Chen, Y.; et al. Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. Crop J. 2019, 7, 761–770. [Google Scholar] [CrossRef]
- Zhang, R.; Xiong, C.; Mu, H.; Yao, R.; Meng, X.; Kong, L.; Xing, L.; Wu, J.; Feng, Y.; Cao, A. Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J. 2021, 9, 882–888. [Google Scholar] [CrossRef]
- Fu, B.; Chen, Y.; Li, N.; Ma, H.; Kong, Z.; Zhang, L.; Jia, H.; Ma, Z. pmX: A recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace Xiaohongpi. Theor. Appl. Genet. 2013, 126, 913–921. [Google Scholar] [CrossRef]
- Ma, P.; Xu, H.; Zhang, H.; Li, L.; Xu, Y.; Zhang, X.; An, D. The gene PmWFJ is a new member of the complex Pm2 locus conferring unique powdery mildew resistance in wheat breeding line Wanfengjian 34. Mol. Breed. 2015, 35, 210. [Google Scholar] [CrossRef]
- Ponce-Molina, L.J.; Huerta-Espino, J.; Singh, R.P.; Basnet, B.R.; Lagudah, E.; Aguilar-Rincón, V.H.; Alvarado, G.; Lobato-Ortiz, R.; García-Zavala, J.; Lan, C. Characterization of adult plant resistance to leaf rust and stripe rust in Indian wheat cultivar ‘New Pusa 876’. Crop Sci. 2018, 58, 630–638. [Google Scholar] [CrossRef]
- Hiebert, C.W.; Thomas, J.B.; McCallum, B.D.; Humphreys, D.G.; DePauw, R.M.; Hayden, M.J.; Mago, R.; Schnippenkoetter, W.; Spielmeyer, W. An introgression on wheat chromosome 4DL in RL6077 (Thatcher* 6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor. Appl. Genet. 2010, 121, 1083–1091. [Google Scholar] [CrossRef]
- Dyck, P.L. Genetics of leaf rust reaction in three introductions of common wheat. Canad. J. Genet. Cytol. 1977, 19, 711–716. [Google Scholar] [CrossRef]
- Drijepondt, S.C.; Pretorius, Z.A.; Van Lill, D.; Rijkenberg, F.H.J. Effect of Lr34 resistance on leaf rust development, grain yield and baking quality in wheat. Plant Breed. 1990, 105, 62–68. [Google Scholar] [CrossRef]
- Spielmeyer, W.; McIntosh, R.A.; Kolmer, J.; Lagudah, E.S. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor. Appl. Genet. 2005, 111, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Saini, R.G. Undescribed wheat gene for partial leaf rust and stripe rust resistance from Thatcher derivatives RL6058 and 90RN249 carrying Lr34. J. Appl. Genet. 2009, 50, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Lillemo, M.; Joshi, A.K.; Prasad, R.; Chand, R.; Singh, R.P. QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theor. Appl. Genet. 2013, 126, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Herrera-Foessel, S.A.; Huerta-Espino, J.; Lan, C.X.; Basnet, B.R.; Bhavani, S.; Lagudah, E.S. Pleiotropic gene Lr46/Yr29/Pm39/Ltn2 confers slow rusting, adult plant resistance to wheat stem rust fungus. In Proceedings of the Borlaug Global Rust Initiative, 2013 Technical Workshop, New Delhi, India, 19–22 August 2013. [Google Scholar]
- William, M.; Singh, R.P.; Huerta-Espino, J.; Islas, S.O.; Hoisington, D. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 2003, 93, 153–159. [Google Scholar] [CrossRef]
- Rosewarne, G.M.; Singh, R.P.; Huerta-Espino, J.; William, H.M.; Bouchet, S.; Cloutier, S.; McFadden, H.; Lagudah, E.S. Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor. Appl. Genet. 2006, 112, 500–508. [Google Scholar] [CrossRef]
- Herrera-Foessel, S.A.; Lagudah, E.S.; Huerta-Espino, J.; Hayden, M.J.; Bariana, H.S.; Singh, D.; Singh, R.P. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor. Appl. Genet. 2011, 122, 239–249. [Google Scholar] [CrossRef]
- Herrera-Foessel, S.A.; Singh, R.P.; Lillemo, M.; Huerta-Espino, J.; Bhavani, S.; Singh, S.; Lan, C.; Calvo-Salazar, V.; Lagudah, E.S. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor. Appl. Genet. 2014, 127, 781–789. [Google Scholar] [CrossRef]
- Chhetri, M.; Bansal, U.; Toor, A.; Lagudah, E.; Bariana, H. Genomic regions conferring resistance to rust diseases of wheat in a W195/BTSS mapping population. Euphytica 2016, 209, 637–649. [Google Scholar] [CrossRef]
- Pathania, N.; Basandrai, A.K.; Tyagi, P.D. Genetics of resistance in wheat to powdery mildew caused by Erysiphe graminis tritici. J. Mycol. Plant Pathol. 1997, 27, 163–169. [Google Scholar]
- Rauf, Y.; Lan, C.; Randhawa, M.; Singh, R.P.; Huerta-Espino, J.; Anderson, J.A. Quantitative trait loci mapping reveals the complexity of adult plant resistance to leaf rust in spring wheat ‘Copio’. Crop Sci. 2022, 62, 1037–1050. [Google Scholar] [CrossRef]
- Aravindh, R.; Sivasamy, M.; Ganesamurthy, K.; Jayaprakash, P.; Gopalakrishnan, C.; Geetha, M.; Nisha, R.; Shajitha, P.; Peter, J.; Sindhu, P.A.; et al. Marker assisted stacking/pyramiding of stem rust, leaf rust and powdery mildew disease resistance genes (Sr2/Lr27/Yr30, Sr24/Lr24 and Sr36/Pm6) for durable resistance in wheat (Triticum aestivum L.). Elect. J. Plant Breed. 2020, 11, 907–915. [Google Scholar]
- Bhandari, H.R.; Bhanu, A.N.; Srivastava, K.; Singh, M.N.; Shreya, H.A. Assessment of genetic diversity in crop plants. An overview. Adv. Plants Agric. Res. 2017, 7, 00255. [Google Scholar]
- Xu, X.; Jing, F.; Fan, J.; Liu, Z.; Qiang, L.; Zhou, Y. Identification of the resistance gene to powdery mildew in Chinese wheat landrace Baiyouyantiao. J. Integr. Agric. 2018, 17, 37–45. [Google Scholar] [CrossRef]
- Gokidi, Y.; Bhanu, A.N.; Chandra, K.; Singh, M.N.; Hemantaranjan, A. Allele Mining—An Approach to Discover Allelic Variation in Crops. J. Plant Sci. Res. 2017, 33, 167–180. [Google Scholar]
- Renkow, M.; Byerlee, D. The impacts of CGIAR research: A review of recent evidence. Food Pol. 2010, 35, 391–402. [Google Scholar] [CrossRef]
- Dinesh, D.; Aggarwal, P.; Khatri-Chhetri, A.; Rodríguez, A.M.L.; Mungai, C.; Sebastian, L.; Zougmore, R.B. The rise in Climate-Smart Agriculture strategies, policies, partnerships and investments across the globe. Agric. Deve. 2017, 30, 4–9. [Google Scholar]
- Longin, C.F.H.; Reif, J.C. Redesigning the exploitation of wheat genetic resources. Tren. Plant Sci. 2014, 19, 631–636. [Google Scholar] [CrossRef]
- Volk, G.M.; Byrne, P.F.; Coyne, C.J.; Flint-Garcia, S.; Reeves, P.A.; Richards, C. Integrating Genomic and Phenomic Approaches to Support Plant Genetic Resources Conservation and Use. Plants 2021, 10, 2260. [Google Scholar] [CrossRef]
- Agricultural Research Council (ARC). Annual Report 2020–2021. Available online: https://www.arc.agric.za/Documents/Annual%20Reports/AR2021-low%20res-OCT%202021.pdf (accessed on 10 October 2022).
- Sensako Product List. Wheat Disease Resistance. 2022. Available online: https://sensako.co.za/Products/ProductDetail/76 (accessed on 31 October 2022).
- Ren, Y.; Hou, W.; Lan, C.; Basnet, B.R.; Singh, R.P.; Zhu, W.; Cheng, X.; Cui, D.; Chen, F. QTL analysis and nested association mapping for adult plant resistance to powdery mildew in two bread wheat populations. Front. Plant Sci. 2017, 8, 1212. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Han, G.; Gu, T.; Jin, Y.; Shi, Z.; Xing, L.; Yan, H.; Wang, J.; Hao, C.; Zhao, M.; et al. Identification of the major QTL QPm. cas-7D for adult plant resistance to wheat powdery mildew. Front. Plant Sci. 2022, 13, 92. [Google Scholar]
- Blake, V.C.; Woodhouse, M.R.; Lazo, G.R.; Odell, S.G.; Wight, C.P.; Tinker, N.A.; Wang, Y.; Gu, Y.Q.; Birkett, C.L.; Jannink, J.L.; et al. Graingenes: Centralized small grain resources and digital platform for geneticists and breeders. Database 2019, 2019, baz065. [Google Scholar] [PubMed]
- Singh, K.; Batra, R.; Sharma, S.; Saripalli, G.; Gautam, T.; Singh, R.; Pal, S.; Malik, P.; Kumar, M.; Jan, I.; et al. WheatQTLdb: A QTL database for wheat. Mol. Genet. Gen. 2021, 296, 1051–1056. [Google Scholar] [CrossRef]
- Singh, K.; Saini, D.K.; Saripalli, G.; Batra, R.; Gautam, T.; Singh, R.; Pal, S.; Kumar, M.; Jan, I.; Singh, S.; et al. WheatQTLdb V2. 0: A supplement to the database for wheat QTL. Mol. Breed. 2022, 42, 56. [Google Scholar] [CrossRef]
- Lodhi, S.S.; Maryam, S.; Rafique, K.; Shafique, A.; Yousaf, Z.A.; Talha, A.M.; Gul, A.; Amir, R. Overview of the prospective strategies for conservation of genomic diversity in wheat landraces. In Climate Change and Food Security with Emphasis on Wheat; Academic Press: Cambridge, MA, USA, 2020; pp. 293–309. [Google Scholar]
- Nadeem, M.A.; Yeken, M.Z.; Tekin, M.; Mustafa, Z.; Hatipoğlu, R.; Aktaş, H.; Alsaleh, A.; Cabi, E.; Habyarimana, E.; Zencirci, N.; et al. Contribution of Landraces in Wheat Breeding. In Wheat Landraces; Springer: Cham, Switzerland, 2021; pp. 215–258. [Google Scholar]
- Tsegaye, D.; Dessalegn, T.; Dessalegn, Y.; Share, G. Analysis of genetic diversity in some durum wheat (Triticum durum Desf) genotypes grown in Ethiopia. Afr. J. Biotech. 2012, 11, 9606–9611. [Google Scholar]
- Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef]
- Cseh, A.; Poczai, P.; Kiss, T.; Balla, K.; Berki, Z.; Horváth, Á.; Kuti, C.; Karsai, I. Exploring the legacy of Central European historical winter wheat landraces. Sci. Rep. 2021, 11, 23915. [Google Scholar] [CrossRef]
- Huang, X.Q.; Hsam, S.L.K.; Zeller, F.J. Chromosomal location of powdery mildew resistance genes in Chinese wheat (Triticum aestivum L. em. Thell.) landraces Xiaobaidong and Fuzhuang 30. J. Genet. Amplified Breed. 2000, 54, 311–317. [Google Scholar]
- Qie, Y.; Wang, J.; Li, Y.; Xu, F.; Xu, H.; Han, Z.; Liu, L.; Song, Y. Candidate powdery mildew resistance gene in wheat landrace cultivar Hongyoumai discovered using SLAF and BSR-seq. BMC Plant Biol. 2022, 22, 83. [Google Scholar]
- Xu, X.; Liu, W.; Liu, Z.; Fan, J.; Zhou, Y. Mapping powdery mildew resistance gene pmYBL on chromosome 7B of Chinese Wheat (Triticum aestivum L.) Landrace Youbailan. Plant Dis. 2020, 104, 2411–2417. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Carver, B.F.; Cowger, C.; Bai, G.; Xu, X. Pm223899, a new recessive powdery mildew resistance gene identified in Afghanistan landrace PI 223899. Theor. Appl. Genet. 2018, 131, 2775–2783. [Google Scholar] [CrossRef]
- Lu, P.; Guo, L.; Wang, Z.; Li, B.; Li, J.; Li, Y.; Qiu, D.; Shi, W.; Yang, L.; Wang, N.; et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun. 2020, 11, 680. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yi, Y.; Ma, P.; Qie, Y.; Fu, X.; Xu, Y.; Zhang, X.; An, D. Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor. Appl. Genet. 2015, 128, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Xie, C.; Ni, Z.; Yang, T.; Nevo, E.; Fahima, T.; Liu, Z.; Sun, Q. Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 2008, 159, 385–390. [Google Scholar] [CrossRef]
- Zhu, Z.D.; Kong, X.Y.; Zhou, R.H.; Jia, J.Z. Identification and microsatellite markers of a resistance gene to powdery mildew in common wheat introgressed from Triticum durum. Acta Botan. Sinica-Eng. 2004, 46, 867–872. [Google Scholar]
- Yahiaoui, N.; Brunner, S.; Keller, B. Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 2006, 47, 85–98. [Google Scholar] [CrossRef]
- Miedaner, T.; Rapp, M.; Flath, K.; Longin, C.F.H.; Würschum, T. Genetic architecture of yellow and stem rust resistance in a durum wheat diversity panel. Euphytica 2019, 215, 71. [Google Scholar] [CrossRef]
- Bennett, F.G.A. Resistance to powdery mildew in wheat—A review of its use in agriculture and breeding programs. Plant Path. 1984, 33, 279–300. [Google Scholar] [CrossRef]
- Zhu, Z.D.; Zhou, R.H.; Kong, X.Y.; Dong, Y.C.; Jia, J.Z. Microsatellite markers linked to two genes conferring resistance to powdery mildew in common wheat introgressed from Triticum carthlicum accession PS5. Genome 2005, 48, 585–590. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, R.A.; Luig, N.H.; Baker, E.P. Genetic and cytogenetic studies of stem rust, leaf rust, and powdery mildew resistances in Hope and related wheat cultivars. Austral. J. Biol. Sci. 1967, 20, 1181–1192. [Google Scholar] [CrossRef]
- The, T.T.; McIntosh, R.A.; Bennett, F.G.A. Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4 and Mle. Aust. J. Biol. Sci. 1979, 32, 115–125. [Google Scholar] [CrossRef]
- Briggle, L.W. Transfer of resistance to Erysiphe graminis f. sp. tritici from Khapli Emmer and Yuma Durum to Hexaploid Wheat 1. Crop Sci. 1966, 6, 459–461. [Google Scholar] [CrossRef]
- Reader, S.M.; Miller, T.E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 1991, 53, 57–60. [Google Scholar] [CrossRef]
- Rong, J.K.; Millet, E.; Manisterski, J.; Feldman, M. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 2000, 115, 121–126. [Google Scholar] [CrossRef]
- Klymiuk, V.; Fatiukha, A.; Huang, L.; Wei, Z.; Kis-Papo, T.; Saranga, Y.; Krugman, T.; Fahima, T. Durum wheat as a bridge between wild emmer wheat genetic resources and bread wheat. In Applications of Genetic and Genomic Research in Cereals; Woodhead Publishing: Sawston, UK, 2019; pp. 201–230. [Google Scholar]
- Li, J.; Wan, H.S.; Yang, W.Y. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J. Syst. Evol. 2014, 52, 735–742. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, D.; Lan, X.; Zheng, Y.; Yan, Z. A synthetic wheat with 56 chromosomes derived from Triticum turgidum and Aegilops tauschii. J. Appl. Genet. 2008, 49, 41–44. [Google Scholar] [CrossRef]
- National Research Council. Triticale: A Promising Addition to the World’s Cereal Grains; National Academy Press: Washington, DC, USA, 1989. [Google Scholar]
- Vietmeyer, N.D. Triticale: A Promising Addition to the World’s Cereal Grains; National Academy Press: Washington, DC, USA, 1989. [Google Scholar]
- Ammar, K.; Mergoum, M.; Rajaram, S. The history and evolution of triticale. Triticale improvement and production. In Triticale Improvement and Production; Mergoum, M., Gomez-Macpherson, H., Eds.; FAO Plant Production and Protection Paper; FAO: Rome, Italy, 2004; Volume 179, pp. 1–9. [Google Scholar]
- McFadden, E.S. The artificial synthesis of Triticum spelta. Rec. Genet. Soc. Am. 1944, 13, 26–27. [Google Scholar]
- Pflüger, L.A.; D’ovidio, R.; Margiotta, B.; Pena, R.; Mujeeb-Kazi, A.; Lafiandra, D. Characterisation of high-and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theor. Appl. Genet. 2001, 103, 1293. [Google Scholar] [CrossRef]
- van Ginkel, M.; Ogbonnaya, F. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field. Crops Res. 2007, 104, 86–94. [Google Scholar] [CrossRef]
- Hao, M.; Luo, J.; Zhang, L.; Yuan, Z.; Yang, Y.; Wu, M.; Chen, W.; Zheng, Y.; Zhang, H.; Liu, D. Production of hexaploid triticale by a synthetic hexaploid wheat-rye hybrid method. Euphytica 2013, 193, 347–357. [Google Scholar] [CrossRef]
- Yang, W.; Liu, D.; Li, J.; Zhang, L.; Wei, H.; Hu, X.; Zheng, Y.; He, Z.; Zou, Y. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J. Genet. Genom. 2009, 36, 539–546. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Quan, W.; Jia, X.; Fu, Y.; Zhang, H.; Liu, X.; Chen, C.; Ji, W. Identification and mapping of PmSE5785, a new recessive powdery mildew resistance locus, in synthetic hexaploid wheat. Euphytica 2016, 207, 619–626. [Google Scholar] [CrossRef]
- Mohler, V.; Bauer, C.; Schweizer, G.; Kempf, H.; Hartl, L. Pm50: A new powdery mildew resistance gene in common wheat derived from cultivated emmer. J. Appl. Genet. 2013, 54, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wei, H.T.; Hu, X.R.; Li, C.S.; Tang, Y.L.; Liu, D.C.; Yang, W.Y. Identification of a high-yield introgression locus in Chuanmai 42 inherited from synthetic hexaploid wheat. Acta Agron. Sin. 2011, 37, 255–261. [Google Scholar] [CrossRef]
- Li, A.; Liu, D.; Yang, W.; Kishii, M.; Mao, L. Synthetic hexaploid wheat: Yesterday, today, and tomorrow. Engineer 2018, 4, 552–558. [Google Scholar] [CrossRef]
- Chuanmai 104, Bred by Sichuan Academy of Agricultural Sciences, Reached the Grain Yield of 729.8 kg/mu, Breaking the Record of Wheat Yield per mu in Southwestern China. 2023. Available online: http://www.chinawestagr.com/homepage/showcontent.asp?id=40323 (accessed on 23 March 2023). (In Chinese).
- Liu, Z.; Wang, Q.; Wan, H.; Yang, F.; Wei, H.; Xu, Z.; Ji, H.; Xia, X.; Li, J.; Yang, W. QTL mapping for adult-plant resistance to powdery mildew in Chinese elite common wheat Chuanmai 104. Cereal Res. Commun. 2021, 49, 99–108. [Google Scholar] [CrossRef]
- Yang, M.; Li, G.; Wan, H.; Li, L.; Li, J.; Yang, W.; Pu, Z.; Yang, Z.; Yang, E. Identification of QTLs for stripe rust resistance in a recombinant inbred line population. Int. J. Mol. Sci. 2019, 20, 3410. [Google Scholar] [CrossRef]
- Li, G.Q.; Li, Z.F.; Yang, W.Y.; Zhang, Y.; He, Z.H.; Xu, S.C.; Singh, R.P.; Qu, Y.Y.; Xia, X.C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai42 and its allelism with Yr24 and Yr26. Theor. Appl. Genet. 2006, 112, 1434–1440. [Google Scholar] [CrossRef]
- Bentley, A.R.; Turner, A.S.; Gosman, N.; Leigh, F.J.; Maccaferri, M.; Dreisigacker, S.; Greenland, A.; Laurie, D.A. Frequency of photoperiod-insensitive Ppd-A1a alleles in tetraploid, hexaploid and synthetic hexaploid wheat germplasm. Plant Breed. 2011, 130, 10–15. [Google Scholar] [CrossRef]
- Cossani, C.M.; Reynolds, M.P. Heat stress adaptation in elite lines derived from synthetic hexaploid wheat. Crop Sci. 2015, 55, 2719–2735. [Google Scholar] [CrossRef]
- Rafique, K.; Rauf, C.A.; Gul, A.; Bux, H.; Memon, R.A.; Ali, A.; Farrakh, S. Evaluation of d-genome synthetic hexaploid wheats and advanced derivatives for powdery mildew resistance. Pak. J. Bot. 2017, 49, 735–743. [Google Scholar]
- Chung, P.-Y.; Liao, C.-T. Identification of superior parental lines for biparental crossing via genomic prediction. PLoS ONE 2020, 15, e0243159. [Google Scholar] [CrossRef] [PubMed]
- Stadlmeier, M.; Hartl, L.; Mohler, V. Usefulness of a Multiparent Advanced Generation Intercross Population with a greatly reduced mating design for genetic studies in winter wheat. Front. Plant Sci. 2018, 9, 1825. [Google Scholar] [CrossRef]
- Stadlmeier, M.; Jørgensen, L.N.; Corsi, B.; Cockram, J.; Hartl, L.; Mohler, V. Genetic dissection of resistance to the three fungal plant pathogens Blumeria graminis, Zymoseptoria tritici, and Pyrenophora tritici-repentis using a multiparental winter wheat population. G3 Gen. Genomes Genet. 2019, 9, 1745–1757. [Google Scholar] [CrossRef]
- Bernardo, R. Genomewide selection of parental inbreds: Classes of loci and virtual biparental populations. Crop Sci. 2014, 54, 2586–2595. [Google Scholar] [CrossRef]
- Zhang, P.; Lan, C.; Asad, M.A.; Gebrewahid, T.W.; Xia, X.; He, Z.; Li, Z.; Liu, D. QTL mapping of adult-plant resistance to leaf rust in the Chinese landraces Pingyuan 50/Mingxian 169 using the wheat 55K SNP array. Mol. Breed. 2019, 39, 98. [Google Scholar] [CrossRef]
- Lan, C.; Ni, X.; Yan, J.; Zhang, Y.; Xia, X.; Che, X.; He, Z. Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Mol. Breed. 2010, 25, 615–622. [Google Scholar] [CrossRef]
- Qu, C.; Guo, Y.; Kong, F.; Zhao, Y.; Li, H.; Li, S. Molecular mapping of two quantitative trait loci for adult-plant resistance to powdery mildew in common wheat (Triticum aestivum L.). Crop Prot. 2018, 114, 137–142. [Google Scholar] [CrossRef]
- Plavšin, I.; Gunjăca, J.; Šimek, R.; Novoselovi´c, D. Capturing GEI patterns for quality traits in biparental wheat populations. Agronomy 2021, 11, 1022. [Google Scholar] [CrossRef]
- Li, L.; Yang, X.; Wang, Z.; Ren, M.; An, C.; Zhu, S.; Xu, R. Genetic mapping of powdery mildew resistance genes in wheat landrace Guizi 1 via genotyping by sequencing. Mol. Biol. Rep. 2022, 49, 4461–4468. [Google Scholar] [CrossRef]
- Fei, X.U.E.; Wen-Wen, Z.H.A.I.; Xia-Yu, D.U.A.N.; Yi-Lin, Z.H.O.U.; Wan-Quan, J.I. Microsatellite mapping of a powdery mildew resistance gene in wheat landrace Xiaobaidong. Acta Agron. Sin. 2009, 350, 1806–1811. [Google Scholar]
- Zhao, N.; Xue, F.; Wang, C.; Han, J.; Ji, W.; Zheng, L. SSR analysis of powdery mildew resistance gene in Chinese wheat landrace Baihulu. J. Triticeae. Crops 2010, 30, 411–414. [Google Scholar]
- Xu, X.; Li, Q.; Ma, Z.; Fan, J.; Zhou, Y. Molecular mapping of powdery mildew resistance gene PmSGD in Chinese wheat landrace Shangeda using RNA-seq with bulk segregant analysis. Mol. Breed. 2018, 38, 23. [Google Scholar] [CrossRef]
- Xue, S.; Lu, M.; Hu, S.; Xu, H.; Ma, Y.; Lu, N.; Bai, S.; Gu, A.; Wan, H.; Li, S. Characterization of PmHHXM, a new broad-spectrum powdery mildew resistance gene in Chinese wheat landrace Honghuaxiaomai. Plant Dis. 2021, 105, 2089–2096. [Google Scholar] [CrossRef]
- Lu, N.; Lu, M.; Liu, P.; Xu, H.; Qiu, X.; Hu, S.; Wu, Y.; Bai, S.; Wu, J.; Xue, S. Fine mapping a broad-Spectrum powdery mildew resistance gene in Chinese landrace Datoumai, PmDTM, and its relationship with Pm24. Plant Dis. 2020, 104, 1709–1714. [Google Scholar] [CrossRef]
- Li, X.J.; Xu, X.; Yang, X.M.; Li, X.Q.; Liu, W.H.; Gao, A.N.; Li, L.H. Genetic diversity of the wheat landrace Youzimai from different geographic regions investigated with morphological traits, seedling resistance to powdery mildew, gliadin and microsatellite markers. Cereal Res. Commun. 2012, 40, 95–106. [Google Scholar] [CrossRef]
- Murphy, J.P.; Leath, S.; Huynh, D.; Navarro, R.A.; Shi, A. Registration of NC96BGTA4, NC96BGTA5, and NC96BGTA6 wheat germplasm. Crop Sci. 1999, 39, 883. [Google Scholar] [CrossRef]
- Starling, T.; Roane, C.W.; Camper, H.M. Registration of ‘Saluda’ wheat. Crop Sci. 1986, 26, 200. [Google Scholar] [CrossRef]
- Nhemachena, C.R.; Kirsten, J. A historical assessment of sources and uses of wheat varietal innovations in South Africa. S. Afr. J. Sci. 2017, 113, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.S.; Suenaga, K.; He, Z.H.; Wang, Z.L.; Liu, H.Y.; Wang, D.S.; Singh, R.P.; Sourdille, P.; Xia, X.C. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathology 2006, 96, 784–789. [Google Scholar] [CrossRef]
- Bhullar, N.K.; Zhang, Z.; Wicker, T.; Keller, B. Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: A large scale allele mining project. BMC Plant Biol. 2010, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Shi, F.; Liu, W.; Fu, X.; Gu, T.; Han, G.; Shi, Z.; Sheng, Y.; Xu, H.; Li, L.; et al. Identification of resistant germplasm and detection of genes for resistance to powdery mildew and leaf rust from 2,978 wheat accessions. Plant. Dis. 2021, 105, 3900–3908. [Google Scholar] [CrossRef]
- Hinterberger, V.; Douchkov, D.; Lück, S.; Kale, S.; Mascher, M.; Stein, N.; Reif, J.C.; Schulthess, A.W. Mining for new sources of resistance to powdery mildew in genetic resources of winter wheat. Front. Plant Sci. 2022, 13, 836723. [Google Scholar] [CrossRef] [PubMed]
- Leber, R.; Heuberger, M.; Widrig, V.; Jung, E.; Paux, E.; Roulin, A.C.; Keller, B.; Sanchez-Martin, J. A diverse panel of 755 bread wheat accessions harbors untapped genetic diversity in landraces and reveals novel genetic regions conferring powdery mildew resistance. bioRxiv 2023. [Google Scholar] [CrossRef]
- Wan, H.; Yang, F.; Li, J.; Wang, Q.; Liu, Z.; Tang, Y.; Yang, W. Genetic improvement and application practices of synthetic hexaploid wheat. Genes 2023, 14, 283. [Google Scholar] [CrossRef]
- Leng, P.F.; Lübberstedt, T.; Xu, M.L. Genomics-assisted breeding–a revolutionary strategy for crop improvement. J. Integr. Agric. 2017, 16, 2674–2685. [Google Scholar] [CrossRef]
- Jiang, G.L. Plant marker-assisted breeding and conventional breeding: Challenges and perspectives. Adv. Crop Sci. Technol. 2013, 1, e106. [Google Scholar] [CrossRef]
- Pietrusińska, A.; Czembor, P.C.; Czembor, J.H. Lr39 + Pm21: A new effective combination of resistance genes for leaf rust and powdery mildew in wheat. Czech J. Genet. Plant Breed. 2013, 49, 109–115. [Google Scholar] [CrossRef]
- Kumaran, V.V.; Murugasamy, S.; Paramasivan, J.; Prasad, P.; Kumar, S.; Bhardwaj, S.C.; Murugan, G.; Rebekah, N.; Paneer, S.; Peter, J. Marker assisted pyramiding of stem rust, leaf rust and powdery mildew resistance genes for durable resistance in wheat (Triticum aestivum L.). J. Cer. Res. 2021, 13, 38–48. [Google Scholar]
- Li, G.; Xu, X.; Tan, C.; Carver, B.F.; Bai, G.; Wang, X.; Bonman, J.M.; Wu, Y.; Hunger, R.; Cowger, C. Identification of powdery mildew resistance loci in wheat by integrating genome-wide association study (GWAS) and linkage mapping. Crop J. 2019, 7, 294–306. [Google Scholar] [CrossRef]
- Bhullar, N.K.; Mackay, M.; Keller, B. Genetic diversity of the Pm3 powdery mildew resistance alleles in wheat gene bank accessions as assessed by molecular markers. Diversity 2010, 2, 768–786. [Google Scholar] [CrossRef]
- Liu, N.; Bai, G.; Lin, M.; Xu, X.; Zheng, W. Genome-wide association analysis of powdery mildew resistance in US winter wheat. Sci. Rep. 2017, 7, 11743. [Google Scholar] [CrossRef] [PubMed]
- Alemu, A.; Brazauskas, G.; Gaikpa, D.S.; Henriksson, T.; Islamov, B.; Jørgensen, L.N.; Koppel, M.; Koppel, R.; Liatukas, Ž.; Svensson, J.T.; et al. Genome-wide association analysis and genomic prediction for adult-plant resistance to Septoria Tritici blotch and powdery mildew in winter wheat. Front. Genet. 2021, 12, 627. [Google Scholar] [CrossRef]
- Elkot, A.F.A.; Chhuneja, P.; Kaur, S.; Saluja, M.; Keller, B.; Singh, K. Marker assisted transfer of two powdery mildew resistance genes PmTb7A. 1 and PmTb7A. 2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L.). PLoS ONE 2015, 10, e0128297. [Google Scholar] [CrossRef]
- Robbins, M. Backcrossing, Backcross (BC) Populations, and Backcross Breeding; The Ohio State University: Columbus, OH, USA, 2012. [Google Scholar]
- Miedaner, T.; Korzun, V. Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 2012, 102, 560–566. [Google Scholar] [CrossRef]
- He, H.; Guo, R.; Gao, A.; Chen, Z.; Liu, R.; Liu, T.; Kang, X.; Zhu, S. Large-scale mutational analysis of wheat powdery mildew resistance gene Pm21. Front. Plant Sci. 2022, 2828. [Google Scholar] [CrossRef]
- Bie, T.; Zhao, R.; Zhu, S.; Chen, S.; Cen, B.; Zhang, B.; Gao, D.; Jiang, Z.; Chen, T.; Wang, L.; et al. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat. Mol. Breed. 2015, 35, 1–8. [Google Scholar] [CrossRef]
- He, H.; Zhu, S.; Jiang, Z.; Ji, Y.; Wang, F.; Zhao, R.; Bie, T. Comparative mapping of powdery mildew resistance gene Pm21 and functional characterization of resistance-related genes in wheat. Theor. Appl. Genet. 2016, 129, 819–829. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, S.; Li, S.; Wang, J.; Chen, H.; Wang, K.; Lin, Z.; Wei, Y.; Du, L.; Yan, Y. Improvement of three commercial spring wheat varieties for powdery mildew resistance by marker-assisted selection. Crop Prot. 2019, 125, 104889. [Google Scholar] [CrossRef]
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Wu, Y.; Liu, C.; Li, W.; St Amand, P.; Bernardo, A.; Wang, D.; Dong, L.; Yuan, X.; Zhang, H.; et al. High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat. Theor. Appl. Genet. 2021, 134, 2857–2873. [Google Scholar] [CrossRef]
- Tehseen, M.M.; Kehel, Z.; Sansaloni, C.P.; Lopes, M.D.S.; Amri, A.; Kurtulus, E.; Nazari, K. Comparison of genomic prediction methods for yellow, stem, and leaf rust resistance in wheat landraces from Afghanistan. Plants 2021, 10, 558. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.Y.; Janss, L.L.; Andersen, J.R.; Orabi, J.; Jensen, J.D.; Jahoor, A.; Jensen, J. Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Sci. Rep. 2020, 10, 3347. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de Los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic selection in plant breeding: Methods, models, and perspectives. Tren. Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef]
- Desiderio, F.; Bourras, S.; Mazzucotelli, E.; Rubiales, D.; Keller, B.; Cattivelli, L.; Valè, G. Characterization of the resistance to powdery mildew and leaf rust carried by the bread wheat cultivar Victo. Int. J. Mol. Sci. 2021, 22, 3109. [Google Scholar] [CrossRef]
- Roberts, J.J.; Caldwell, R.M. General resistance (slow mildewing) to Erysiphe graminis f. sp. tritici in ‘Knox’ wheat. Phytopathology 1970, 60, 1310. [Google Scholar]
- Griffey, C.A.; Das, M.K.; Stromberg, E.L. Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis. 1993, 77, 618–622. [Google Scholar] [CrossRef]
- Kearsey, M.J. The principles of QTL analysis (a minimal mathematics approach). J. Exp. Bot. 1998, 49, 1619–1623. [Google Scholar] [CrossRef]
- Jia, A.; Ren, Y.; Gao, F.; Yin, G.; Liu, J.; Guo, L.; Zheng, J.; He, Z.; Xia, X. Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B. Theor. Appl. Genet. 2018, 131, 1063–1071. [Google Scholar] [CrossRef]
- Mohler, V.; Stadlmeier, M. Dynamic QTL for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.). J. Appl. Genet. 2019, 60, 291–300. [Google Scholar] [CrossRef]
- Muranty, H.; Pavoine, M.T.; Jaudeau, B.; Radek, W.; Doussinault, G.; Barloy, D. Two stable QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 are expressed at different times along the growing season. Mol. Breed. 2009, 23, 445–461. [Google Scholar] [CrossRef]
- Asad, M.A.; Bai, B.; Lan, C.X.; Yan, J.; Xia, X.C.; Zhang, Y.; He, Z.H. Molecular mapping of quantitative trait loci for adult-plant resistance to powdery mildew in Italian wheat cultivar Libellula. Crop Past. Sci. 2012, 63, 539–546. [Google Scholar] [CrossRef]
- Liu, S.; Griffey, C.A.; Maroof, M.S. Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Sci. 2001, 41, 1268–1275. [Google Scholar] [CrossRef]
- Shaner, G. Evaluation of slow-mildewing resistance of Knox wheat in the field. Phytopathology 1973, 63, 867–872. [Google Scholar] [CrossRef]
- Lan, C.; Liang, S.; Wang, Z.; Yan, J.; Zhang, Y.; Xia, X.; He, Z. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64. Phytopathology 2009, 99, 1121–1126. [Google Scholar] [CrossRef]
- Lu, Y.M.; Lan, C.X.; Liang, S.S.; Zhou, X.; Liu, D.; Zhou, G.; Lu, Q.; Jing, J.; Wang, M.; Xia, X.C.; et al. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor. Appl. Genet. 2009, 119, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Saidou, M.; Changyou, W.A.N.G.; Alam, M.A.; Chunhuan, C.H.E.N.; Wanquan, J.I. Genetic analysis of powdery mildew resistance gene using SSR markers in common wheat originated from wild emmer (Triticum dicoccoides Thell). Turk. J. Field Crops 2016, 21, 10–15. [Google Scholar] [CrossRef]
- Tucker, D.M.; Griffey, C.A.; Liu, S.I.X.I.N.; Brown-Guedira, G.; Marshall, D.S.; Maroof, M.S. Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations. Euphytica 2007, 155, 1–13. [Google Scholar] [CrossRef]
- Huang, Q.H.; Jing, R.L.; Wu, X.Y.; Cao, L.P.; Chang, X.P.; Zhang, X.Z.; Huang, T.R. QTL mapping for adult-plant resistance to powdery mildew in common wheat. Sci. Agric. Sin. 2008, 41, 2528–2536. [Google Scholar]
- Bougot, Y.; Lemoine, J.; Pavoine, M.T.; Guyomar’ch, H.; Gautier, V.; Muranty, H.; Barloy, D. A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breed. 2006, 12, 550–556. [Google Scholar] [CrossRef]
- Lillemo, M.; Bjørnstad, Å.; Skinnes, H. Molecular mapping of partial resistance to powdery mildew in winter wheat cultivar Folke. Euphytica 2012, 185, 47–59. [Google Scholar] [CrossRef]
- ZHANG, K.P.; Liang, Z.H.A.O.; Yan, H.A.I.; Guang-Feng, C.H.E.N.; Ji-Chun, T.I.A.N. QTL mapping for adult-plant resistance to powdery mildew, lodging resistance, and internode length below spike in wheat. Acta Agron. Sin. 2008, 34, 1350–1357. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, Z.; Jia, A.; Wang, F.; Wang, J.; Zhang, Y.; Fu, C.; Fu, L.; Bai, G.; Xia, X.; et al. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica 2020, 216, 3. [Google Scholar] [CrossRef]
Reported Genes | Germplasm Source | References |
---|---|---|
Race-specific resistance | ||
Pm2 | A. squarrosa | [117] |
Pm3a-pm3j | T. aestivum L. | [24] |
Pm4 | T.aestivum L. | [31] |
Pm4b, 4c | T. aestivum L. (RE714) | [118] |
Pm5 | T aestivum L. | [119] |
Pm5a | T. aestivum L. | [119] |
Pm5b | T. aestuvum L. | [120] |
Pm5c | T. sphaerococcum | [120] |
Pm5d | T. aestivum L. | [120] |
Pm5e | T. aestivum | [121] |
Pm8 | Secale cereale | [117] |
Pm9 | T. aestivum L. | [122] |
Pm10 | T. aestivum L. | [123] |
Pm11 | T. aestivum L. | [123] |
Pm13 | Aegilops longissima | [124] |
Pm14 | T. aestivum L. | [123] |
Pm15 | T. aestivum L. | [125] |
Pm16 | T. aestivum L. | [126] |
Pm17 | Secale cereale | [117] |
Pm18 | T. aestivum L. | [123] |
Pm19 | A. squarrosa | [117] |
Pm20 | Secale cereale | [35] |
Pm21 | Haynaldia villosa | [127,128] |
Pm22 | T. aestivum L. | [129,130] |
Pm23/Pm4c | T. aestivum L. | [131] |
Pm24/24b | T. aestivum L. | [132,133] |
Pm25 | T. monococcum | [134] |
Pm26 | T. turgidum | [135] |
Pm27 | T. timopheevii | [136] |
Pm28 | T. aestivum L. | [137] |
Pm29 | T. aestivum L. | [138] |
Pm30 | T. turgidum | [139] |
Pm31 | T. turgidum | [140] |
Pm32 | Ae. spelltoides | [141] |
Pm33 | T. turgidum | [142] |
Pm34 | Ae. tauschii | [143] |
Pm35 | Ae. tauschii | [144] |
Pm36 | T. turgidum | [145] |
Pm37 | T. timopheevii | [146] |
Pm40 | Elytrigia intermedium | [147] |
Pm41 | Triticum turgidum | [148] |
Pm42 | T. turgidum | [149] |
Pm43 | Thinopyrum intermedium | [150] |
Pm45 | T. aestivum L. | [151] |
Pm47 | T. aestivum L. | [152] |
Pm48 | Ae. tauschii | [153] |
Pm51 | Thinopyrum ponticum | [154] |
Pm52 | T. aestivum L. | [155] |
Pm54 | T. aestivum L. | [156] |
Pm57 | Ae. searsii | [157] |
Pm59 | T. aestivum L. | [158] |
Pm60 | T. urartu | [159] |
Pm61 | T. aestivum L. | [160] |
Pm63 | T. aestivum L. | [161] |
Pm65 | T. aestivum L. | [162] |
Pm66 | Ae. longissima | [163] |
Pm68 | T. turgidum | [164] |
Pm69 | T. turgidum | [165] |
PmCH1357 | T. aestivum L | [166] |
PmCG15-009 | T. aestivum L. | [167] |
MG5323 | T. turgidum | [135] |
MlHLT | T. aestivum L. | [168] |
PmG3M | T. turgidum | [169] |
MlXBD | T. aestivum L. | [170] |
pmHYM | T. aestivum L. | [171] |
MIRE | T. aestivum L. | [118] |
pmDGM | T. aestivum L. | [172] |
pmQ | T. aestivum L. | [173] |
PmZ155 | T. aestivum L. | [174] |
MlLX99 | T. aestivum L. | [175] |
Race-non-specific | ||
Pm6 | T. aestivum L. | [111] |
Pm7 | Secale cereale | [176] |
Pm12 | Ae. speltoides | [177,178] |
Pm38 | T.aestivum L. | [179,180] |
Pm39 | T aestivum L. | [181,182] |
Pm46 | T.aestivum L. | [183] |
Pm53 | Ae. speltoides | [184] |
Pm55 | Dasypyrum villosum | [185] |
Pm56 | Secale cereale | [186] |
Pm58 | Ae. tauschii | [187] |
Pm62 | Dasypyrum villosum | [188] |
Pm64 | T. turgidum | [189] |
Pm67 | Dasypyrum villosum | [190] |
pmX | T. aestivum L. | [191] |
PmWFJ | T. aestivum L. | [192] |
Gene Bank | Institution or Country | Year of Establishment | Genebank Capacity | No. of Wheat Accessions | References/Website |
---|---|---|---|---|---|
The Consultative Group on International Agricultural Research (CGIAR, 15 centers) Genebank Platform | France | 1971 | ~770,000 accessions | - | CGIAR: Science for humanity’s greatest challenges |
Centre for Maize and Wheat Improvement (CIMMYT) | Mexico | 1966 | ~200,000 accessions | ~80,000 | https://www.cgiar.org/research/center/cimmyt/ |
International Center for Agricultural Research in the Dry Areas (ICARDA) | Beirut, Lebanon | 1977 | ~150,000 accessions | - | ICARDA Annual report, 2021 |
USDA—National Small Grains Collection (NSGC) or National Plant Germplasm System (NPGS) | Aberdeen, Idaho, USA | 1988 | ~143,893 accessions | - | https://www.ars.usda.gov/pacific-west-area/aberdeen-id/small-grains-and-potato-germplasm-research/docs/national-small-grains-collection/ and USDA-ARS-NPGS |
Plant Gene Resources of Canada (PGRC) | Canada | 1970 | ~112,000 accessions | - | https://pgrc.agr.gc.ca/holdings-stocks_e.html |
Grains Research and Development Corporation (GRDC) | Australia | 1990 | - | - | https://grdc.com.au/ |
Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben | Germany | 1992 | ~150,000 accessions | ~22,000 | https://www.ipk-gatersleben.de/en/research/genebank |
Genesys: Institute for Cereal Crops Improvement (ICCI) | Israel | 1970 | ~17,006 accessions | - | https://en-lifesci.tau.ac.il/icci |
Pannar | South Africa | 1958 | |||
Agricultural Research Council–Small Grain (ARC-SG) | South Africa | 1976 | ~20,000 accessions | 17,551 | https://www.arc.agric.za/Documents/Annual%20Reports/AR2021-low%20res-OCT%202021.pdf |
QTL (s) | Chromosome | Donor | Reference |
---|---|---|---|
QPm.caas-1A | 1AL | Bainong 64 | [63,321] |
QPm.sfr-1A | 1AL | Oberkulmer | [118] |
QPm.caas-1AS | 1AS | Fukuho-komugi | [285] |
QPm.vt-1B | 1B | Massey | [319,324] |
Qaprpm.cgb-1B | 1B | Hanxuan 10 | [325] |
QPm.heau-1BL | 1BL | Francolin#1 | [218] |
Lr46/Yr29/Pm39 | 1BL | Saar | [181] |
QPmAPR.lfl-1BL | 1BL | Atlantis | [316] |
QPm.vt-1BL | 1BL | USG 3209 | [324] |
QPm.caas-1BL.1 | 1BL | Zhou8425B | [315] |
QPm.sfr-1B | 1BS | Forno | [118] |
QPm.heau-1DL | 1DL | Francolin#1 | [218] |
QPm.sfr-1D | 1DL | Forno | [118] |
QPm.icg-1D | 1DS | Kinelskaya 60 | [114] |
QPm.inra-1D.1 | 1DS | RE9001 | [326] |
QPm.vt-2A | 2A | Massey | [319,324] |
QPm.vt-2AL | 2AL | USG 3209 | [324] |
QPM.sdau-2A | 2A | Lumai 21 (LM21) | [273] |
QPm.sfr-2A | 2AS | Oberkulmer | [118] |
QPm.vt-2B | 2B | Massey | [319,324] |
QPm.inra.2B | 2B | RE9001 | [326] |
Qaprpm.cgb-2B | 2B | Hanxuan 10 | [325] |
QPm.sdau-2B | 2B | Shannong “SN0431” | [273] |
QPm.caas2BL | 2BL | Lumai 21 | [63,321] |
QPmAPR.lfl-2BL | 2BL | Line 6037 | [316] |
QPm.vt-2BL | 2BL | USG 3209 | [324] |
QPm.caas-2B | 2BL | Fukuho-komugi | [285] |
QPm.uga-2BL | 2BL | 26R61 | [156] |
QPm.inra-2B | 2BL | RE9001 | [326] |
QPm.caas-2BS | 2BS | Lumai 21 | [63,321] |
QPm.caas-2BS.2 | 2BS | Pingyuan 50 | [78] |
QPm.umb-2BS | 2BS | Folke | [327] |
QPm.umb-2DL | 2DL | Folke | [327] |
QPm.caas-2DL | 2DL | Lumai 21 | [64,321] |
QPm.umb-2DL | 2DL | Folke | [327] |
QPm.sfr-2D | 2DL | Oberkulmer | [118] |
QPm.caas-2DS | 2DS | Libellula | [322] |
QPm.inra-2D-a | 2DS | RE9001 | [218] |
QPm.inra-2D-b | 2DS | RE9001 | [118] |
QPm.caas-3BL | 3BL | Mingxian 169 | [78] |
Qaprpm.cgb-3A | 3B | Hanxuan 10 | [325] |
QPm.nuls-3AS | 3AS | Saar | [181] |
QPm.caas-3BS | 3BS | Pingyuan 50 | [78] |
QPm.caas-3BS | 3BS | Zhou8425B | [315] |
QPm.sfr-3D | 3DS | Oberkulmer | [118] |
QPm.tut-4A | 4A | Line 8.1 | [116] |
QPm.uga-4A | 4A | AGS 2000 | [156] |
QPm.sfr-4A.1 | 4AL | Forno | [118] |
QPm.sfr-4A.2 | 4AL | Forno | [118] |
QPm.caas-4BL.1 | 4B | Libellula | [322] |
QPm.heau-4BL | 4BL | Francolin#1 | [218] |
QPm.sfr-4B | 4BL | Forno | [118] |
QPm.caas-4BL.2 | 4BL | Zhou8425B | [315] |
QPm.saas-4AS | 4BS | Chuanmai104 (CM104 | [261] |
QTL qApr4D | 4D | Huapei 3 | [328] |
QPm.caas-4DL | 4DL | Bainong 64 | [63,321] |
QPm.sfr-4D | 4DL | Forno | [118] |
QPm.caas-5AL | 5AL | Pingyuan 50 | [78] |
QPm.nuls-5A | 5AL | Saar | [181] |
QPm.umb-5AL | 5AL | Folke | [327] |
QPm.sfr-5A.2 | 5AL | Oberkulmer | [118] |
QPm.sfr-5A.3 | 5AL | Oberkulmer | [118] |
QPm.icg-5A | 5AS | Kinelskaya 60 | [114] |
QPm.heau-5BL | 5BL | Francolin#1 | [218] |
QPm.sfr-5B | 5BL | Oberkulmer | [118] |
QPm.umb-5BS | 5BS | Folke | [327] |
QPm.nuls-5B | 5BS | Saar | [181] |
QPmyz.caas-5DS | 5BS | Yangmai 16 | [329] |
QPm.inra-5D | 5D | RE714 | [317] |
QPm.inra6A2 | 6A | RE714 | [317] |
QPm.icg-6A | 6AL | Kinelskaya 60 | [114] |
Qaprpm.cgb-6B | 6B | Hanxuan 10 | [325] |
QPm.uga-6BL | 6BL | AGS 2000 | [156] |
QPm.caas-6BL.1 | 6BL | Huixianhong | [318] |
QPm.caas-6BL.2 | 6BL | Huixianhong | [318] |
QPmyz.caas-6BL | 6BL | Zhongmai 895 | [329] |
QPm.caas-6BS | 6BS | Bainong 64 | [321] |
QPm.sfr-6B | 6BS | Forno | [118] |
QPm.umb-6BS | 6BS | Folke | [327] |
QPm.caas-6BS | 6BS | Bainong 64 | [321] |
QPm.caas-7A | 7A | Bainong 64 | [321] |
Qaprpm.cgb-7A | 7A | Hanxuan 10 | [325] |
QPm.sfr-7B.1 | 7BL | Forno | [118] |
QPm.sfr-7B.2 | 7BL | Forno | [118] |
QPm.nuls-7BL | 7BL | Saar | [181] |
QPmyz.caas-7BS | 7BS | Zhongmai 895 | [329] |
QPm.caas-7DS | 7D | Libellula | [318] |
Qaprpm.cgb-7D | 7D | Hanxuan 10 | [325] |
Lr34/Yr18/Pm38 | 7DS | Saar | [181] |
QPm.caas - 7DS | 7DS | Chinese Spring | [315] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bapela, T.; Shimelis, H.; Terefe, T.; Bourras, S.; Sánchez-Martín, J.; Douchkov, D.; Desiderio, F.; Tsilo, T.J. Breeding Wheat for Powdery Mildew Resistance: Genetic Resources and Methodologies—A Review. Agronomy 2023, 13, 1173. https://doi.org/10.3390/agronomy13041173
Bapela T, Shimelis H, Terefe T, Bourras S, Sánchez-Martín J, Douchkov D, Desiderio F, Tsilo TJ. Breeding Wheat for Powdery Mildew Resistance: Genetic Resources and Methodologies—A Review. Agronomy. 2023; 13(4):1173. https://doi.org/10.3390/agronomy13041173
Chicago/Turabian StyleBapela, Theresa, Hussein Shimelis, Tarekegn Terefe, Salim Bourras, Javier Sánchez-Martín, Dimitar Douchkov, Francesca Desiderio, and Toi John Tsilo. 2023. "Breeding Wheat for Powdery Mildew Resistance: Genetic Resources and Methodologies—A Review" Agronomy 13, no. 4: 1173. https://doi.org/10.3390/agronomy13041173
APA StyleBapela, T., Shimelis, H., Terefe, T., Bourras, S., Sánchez-Martín, J., Douchkov, D., Desiderio, F., & Tsilo, T. J. (2023). Breeding Wheat for Powdery Mildew Resistance: Genetic Resources and Methodologies—A Review. Agronomy, 13(4), 1173. https://doi.org/10.3390/agronomy13041173