Water Availability and Status of Wastewater Treatment and Agriculture Reuse in China: A Review
Abstract
:1. Introduction
2. Water Availability and Use in China
3. Status of Wastewater Treatment and Reuse in China
3.1. Wastewater Reuse in Agricultural System
3.2. Farmland Irrigation Water Quality Standards
4. Ecological and Economic Advantages of Treated Wastewater Reuse in China
5. Potential Health Risk of Wastewater Application in Irrigation System
6. Conclusion and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup-Andersen, P.; Merino, G.; Hemre, G.-I.; Williams, M. Feeding 9 billion by 2050—Putting fish back on the menu. Food Secur. 2015, 7, 261–274. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Mupfiga, S.; Olagbegi, B.R.; Katiyatiya, C.L.; Molotsi, A.H.; Abiodun, B.J.; Dzama, K.; Mapiye, C. Impact of water scarcity on dryland sheep meat production and quality: Key recovery and resilience strategies. J. Arid. Environ. 2021, 190, 104511. [Google Scholar] [CrossRef]
- Hofman, I. Politics or profits along the “Silk Road”: What drives Chinese farms in Tajikistan and helps them thrive? Eurasian Geogr. Econ. 2016, 57, 457–481. [Google Scholar] [CrossRef]
- Jain, S.K.; Singh, V.P. (Eds.) Chapter 7—Environmental and social considerations. In Developments in Water Science; Elsevier: Amsterdam, The Netherlands, 2003; pp. 395–458. [Google Scholar]
- Padowski, J.C. Freshwater: The importance of freshwater for domestic use. In Encyclopedia of the World’s Biomes; Goldstein, M.I., DellaSala, D.A., Eds.; Elsevier: Oxford, UK, 2020; pp. 12–21. [Google Scholar]
- McIntyre, P.B.; Liermann, C.A.R.; Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl. Acad. Sci. USA 2016, 113, 12880–12885. [Google Scholar] [CrossRef]
- Balasubramanian, A. The World’s Water; University of Mysore: Mysore, India, 2015. [Google Scholar]
- Petelet-Giraud, E.; Cary, L.; Cary, P.; Bertrand, G.; Giglio-Jacquemot, A.; Hirata, R.; Aquilina, L.; Alves, L.M.; Martins, V.; Melo, A.M.; et al. Multi-layered water resources, management, and uses under the impacts of global changes in a southern coastal metropolis: When will it be already too late? Crossed analysis in Recife, NE Brazil. Sci. Total Environ. 2018, 618, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Hou, F.; Le, H.P. The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Sci. Total Environ. 2021, 754, 142222. [Google Scholar] [CrossRef]
- Shelef, O.; Fernández-Bayo, J.D.; Sher, Y.; Ancona, V.; Slinn, H.; Achmon, Y. 2—Elucidating local food production to identify the principles and challenges of sustainable agriculture. In Sustainable Food Systems from Agriculture to Industry; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 47–81. [Google Scholar]
- Nair, K.P. Chapter four—Utilizing crop wild relatives to combat global warming. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 175–258. [Google Scholar]
- Hopmans, J.W.; Qureshi, A.; Kisekka, I.; Munns, R.; Grattan, S.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.; et al. Critical knowledge gaps and research priorities in global soil salinity. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Yasuor, H.; Yermiyahu, U.; Ben-Gal, A. Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study. Agric. Water Manag. 2020, 242, 106362. [Google Scholar] [CrossRef]
- Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T.; et al. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 2020, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, V.; Ali, I.; Marjub, M.M.; Rene, E.R.; Soto, A.M.F. Wastewater in the food industry: Treatment technologies and reuse potential. Chemosphere 2022, 293, 133553. [Google Scholar] [CrossRef]
- Ranade, V.V.; Bhandari, V.M. Chapter 1—Industrial wastewater treatment, recycling, and reuse: An overview. In Industrial Wastewater Treatment, Recycling and Reuse; Ranade, V.V., Bhandari, V.M., Eds.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 1–80. [Google Scholar]
- Hussain, I.; Raschid, L.; Hanjra, M.A.; Marikar, F.; Van Der Hoek, W. Wastewater Use in Agriculture: Review of Impacts and Methodological Issues in Valuing Impacts; International Water Management Institute: Colombo, Sri Lanka, 2002. [Google Scholar]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Chapter 7—The water footprint of industry. In Assessing and Measuring Environmental Impact and Sustainability; Klemeš, J.J., Ed.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 221–254. [Google Scholar]
- Balkhair, K.S.; El-Nakhlawi, F.S.; Ismail, S.M.; Al-Solimani, S.G. Treated wastewater use and its effect on water conservation, vegetative yeild, yield components and water use efficiency of some vegetable crops grown under two different irrigation systems in western region, saudi arabia. Eur. Sci. J. ESJ 2013, 9. [Google Scholar] [CrossRef]
- Drechsel, P.; Danso, G.; Qadir, M. Wastewater use in agriculture: Challenges in assessing costs and benefits. Wastewater Econ. Asset Urban. World 2015, 139–152. [Google Scholar] [CrossRef]
- Singh, A. A review of wastewater irrigation: Environmental implications. Resour. Conserv. Recycl. 2021, 168, 105454. [Google Scholar] [CrossRef]
- Mukhametov, A.; Kondrashev, S.; Zvyagin, G.; Spitsov, D. Treated livestock wastewater influence on soil quality and possibilities of crop irrigation. Saudi J. Biol. Sci. 2022, 29, 2766–2771. [Google Scholar] [CrossRef]
- Colella, M.; Ripa, M.; Cocozza, A.; Panfilo, C.; Ulgiati, S. Challenges and opportunities for more efficient water use and circular wastewater management. The case of Campania Region, Italy. J. Environ. Manag. 2021, 297, 113171. [Google Scholar] [CrossRef]
- Salgot, M.; Folch, M. Wastewater treatment and water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 64–74. [Google Scholar] [CrossRef]
- Muenratch, P.; Nguyen, T.P.L.; Shrestha, S.; Chatterjee, J.S.; Virdis, S.G. Governance and policy responses to anthropogenic and climate pressures on groundwater resources in the Greater Mekong Subregion urbanizing cities. Groundw. Sustain. Dev. 2022, 18, 100791. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, W.; Zhang, W.; Fan, Y.; Jiao, W. Wastewater reclamation and reuse in China: Opportunities and challenges. J. Environ. Sci. 2015, 39, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Dou, J. Current status of reclaimed water in China: An overview. J. Water Reuse Desalination 2018, 8, jwrd2018070. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’angelo, J.; D’odorico, P. Global agricultural economic water scarcity. Sci. Adv. 2020, 6, eaaz6031. [Google Scholar] [CrossRef]
- Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A.G. Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy. Environ. Pollut. 2022, 296, 118755. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, V.; Fayne, J.; Bolten, J. A comparative study of available water in the major river basins of the world. J. Hydrol. 2018, 567, 510–532. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Zhang, J.; Game, A.T.; Chang, Y.; Li, S. Spatiotemporal variability of summer precipitation and precipitation extremes and associated large-scale mechanisms in Central Asia during 1979–2018. J. Hydrol. X 2020, 8, 100061. [Google Scholar] [CrossRef]
- Fan, W.; Yang, X.; Wang, Y.; Huo, M. Loopholes in the current reclaimed water quality standards for clogging control during aquifer storage and recovery in China. Water Cycle 2020, 1, 13–18. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, H.; Qi, Y.; Pei, H.; Shen, Y. Balancing water and food by optimizing the planting structure in the Beijing–Tianjin–Hebei region, China. Agric. Water Manag. 2022, 262, 107326. [Google Scholar] [CrossRef]
- Ćetković, J.; Knežević, M.; Lakić, S.; Žarković, M.; Vujadinović, R.; Živković, A.; Cvijović, J. Financial and economic investment evaluation of wastewater treatment plant. Water 2022, 14, 122. [Google Scholar] [CrossRef]
- Qin, J.; Ding, Y.-J.; Zhao, Q.-D.; Wang, S.-P.; Chang, Y.-P. Assessments on surface water resources and their vulnerability and adaptability in China. Adv. Clim. Chang. Res. 2020, 11, 381–391. [Google Scholar] [CrossRef]
- Tortajada, C. Contributions of recycled wastewater to clean water and sanitation sustainable development goals. NPJ Clean Water 2020, 3, 22. [Google Scholar] [CrossRef]
- Barbagallo, S.; Cirelli, G.L.; Indelicato, S. Wastewater reuse in Italy. Water Sci. Technol. 2001, 43, 43–50. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.; Yang, L.; Chen, N.; Nam, W.-H.; Niyogi, D. Urbanization-induced drought modification: Example over the Yangtze River Basin, China. Urban Clim. 2022, 44, 101231. [Google Scholar] [CrossRef]
- Fakhimi, A.H.; Khani, A.H.; Sardroud, J.M. 2—Smart-city infrastructure components. In Solving Urban Infrastructure Problems Using Smart City Technologies; Vacca, J.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 17–54. [Google Scholar]
- Guo, R. Chapter 4—Natural and environmental resources. In Understanding the Chinese Economies; Guo, R., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 47–66. [Google Scholar]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- Olivieri, A.W.; Pecson, B.; Crook, J.; Hultquist, R. Chapter Two—California water reuse—Past, present and future perspectives. In Advances in Chemical Pollution, Environmental Management and Protection; Verlicchi, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 65–111. [Google Scholar]
- Zhang, J.; Shao, Y.; Wang, H.; Liu, G.; Qi, L.; Xu, X.; Liu, S. Current operation state of wastewater treatment plants in urban China. Environ. Res. 2021, 195, 110843. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Younas, M.; Shafique, S.; Hafeez, A.; Javed, F.; Rehman, F. An overview of hydrogen production: Current status, potential, and challenges. Fuel 2022, 316, 123317. [Google Scholar] [CrossRef]
- Qu, J.; Wang, H.; Wang, K.; Yu, G.; Ke, B.; Yu, H.-Q.; Ren, H.; Zheng, X.; Li, J.; Li, W.-W.; et al. Municipal wastewater treatment in China: Development history and future perspectives. Front. Environ. Sci. Eng. 2019, 13, 88. [Google Scholar] [CrossRef]
- Chen, F.; Yao, Q. The development of rural domestic wastewater treatment in China. Adv. Mater. Res. 2015, 1073–1076, 829–832. [Google Scholar] [CrossRef]
- Madan, S.; Madan, R.; Hussain, A. Advancement in biological wastewater treatment using hybrid moving bed biofilm reactor (MBBR): A review. Appl. Water Sci. 2022, 12, 141. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Q.; Wu, G.; Hu, H.-Y. Centralized water reuse system with multiple applications in urban areas: Lessons from China’s experience. Resour. Conserv. Recycl. 2017, 117, 125–136. [Google Scholar] [CrossRef]
- Iglesias, R.; Ortega, E.; Batanero, G.; Quintas, L. Water reuse in Spain: Data overview and costs estimation of suitable treatment trains. Desalination 2010, 263, 1–10. [Google Scholar] [CrossRef]
- Tuyishimire, A.; Liu, Y.; Yin, J.; Kou, L.; Lin, S.; Lin, J.; Kubwimana, J.J.; Moharrami, K.; Isimbi, C.H. Drivers of the increasing water footprint in Africa: The food consumption perspective. Sci. Total Environ. 2022, 809, 152196. [Google Scholar] [CrossRef]
- Zhang, T.; Tan, Q.; Zhang, T.; Yang, J.; Wang, S. A nexus approach engaging water rights transfer for addressing water scarcity in energy and food production under uncertainty. J. Environ. Manag. 2022, 316, 115163. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhao, Y.; Song, J. Analysis of the regional differences in agricultural water poverty in China: Based on a new agricultural water poverty index. Agric. Water Manag. 2022, 270, 107745. [Google Scholar] [CrossRef]
- Pérez-Fargallo, A.; Bienvenido-Huertas, D.; Contreras-Espinoza, S.; Marín-Restrepo, L. Domestic hot water consumption prediction models suited for dwellings in central-southern parts of Chile. J. Build. Eng. 2022, 49, 104024. [Google Scholar] [CrossRef]
- Bohra, V.; Ahamad, K.U.; Kela, A.; Vaghela, G.; Sharma, A.; Deka, B.J. Chapter 2—Energy and resources recovery from wastewater treatment systems. In Clean Energy and Resource Recovery; An, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 17–36. [Google Scholar]
- Montwedi, M.; Munyaradzi, M.; Pinoy, L.; Dutta, A.; Ikumi, D.S.; Motoasca, E.; Van der Bruggen, B. Resource recovery from and management of wastewater in rural South Africa: Possibilities and practices. J. Water Process Eng. 2021, 40, 101978. [Google Scholar] [CrossRef]
- Zarei, M. Wastewater resources management for energy recovery from circular economy perspective. Water-Energy Nexus 2020, 3, 170–185. [Google Scholar] [CrossRef]
- Fouda-Mbanga, B.G.; Prabakaran, E.; Pillay, K. Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents including latent fingerprint detection: A review. Biotechnol. Rep. 2021, 30, e00609. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Lyu, S.; Wu, L.; Wen, X.; Wang, J.; Chen, W. Effects of reclaimed wastewater irrigation on soil-crop systems in China: A review. Sci. Total Environ. 2022, 813, 152531. [Google Scholar] [CrossRef]
- Marecos do Monte, M.H.F.; Angelakis, A.N.; Asano, T. Necessity and basis for establishment of European guidelines for reclaimed wastewater in the Mediterranean region. Water Sci. Technol. 1996, 33, 303–316. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vladut, V.; Biris, S.-S. Emerging contaminants in wastewater. Acta Tech. Corviniensis-Bull. Eng. 2019, 13. [Google Scholar]
- Liu, X.; He, Z. Decreased formation of disinfection by-products during electrochemical leachate oxidation and their post-removal by electro-adsorption. Sci. Total Environ. 2020, 730, 139171. [Google Scholar] [CrossRef] [PubMed]
- Parida, V.K.; Saidulu, D.; Majumder, A.; Srivastava, A.; Gupta, B.; Gupta, A.K. Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives. J. Environ. Chem. Eng. 2021, 9, 105966. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y. Reverse osmosis concentrate: An essential link for closing loop of municipal wastewater reclamation towards urban sustainability. Chem. Eng. J. 2021, 421, 127773. [Google Scholar] [CrossRef]
- Qadir, M.; Scott, C.A. Trade-offs of wastewater irrigation. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Buechler, S.; Devi, G.; Keraita, B. Wastewater use for urban and peri-urban agriculture. Cities Farming Future Urban Agric. Green Product. Cities 2006, 243–273. [Google Scholar] [CrossRef]
- Dickin, S.K.; Schuster-Wallace, C.J.; Qadir, M.; Pizzacalla, K. A review of health risks and pathways for exposure to Wastewater use in agriculture. Environ. Health Perspect. 2016, 124, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, M.F.; Restrepo, I. Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef]
- Aaseth, J.; Alexander, J.; Alehagen, U.; Tinkov, A.; Skalny, A.; Larsson, A.; Crisponi, G.; Nurchi, V.M. The aging kidney-as influenced by heavy metal exposure and selenium supplementation. Biomolecules 2021, 11, 1078. [Google Scholar] [CrossRef]
- Jenkins, M.; Ahmed, S.; Barnes, A.N. A systematic review of waterborne and water-related disease in animal populations of Florida from 1999–2019. PLoS ONE 2021, 16, e0255025. [Google Scholar] [CrossRef]
Province/City | Total Water Resources (100 million m3) | Surface Water Resources (100 million m3) | Groundwater Resources (100 million m3) | Overlapped Measurement between Surface Water Resources and Groundwater Resources (100 million m3) | Per Capita Water Resources (m3/Person) |
---|---|---|---|---|---|
Beijing | 25.8 | 8.2 | 22.3 | 4.7 | 117.8 |
Tianjin | 13.3 | 8.6 | 5.8 | 1.1 | 96.0 |
Hebei | 146.3 | 55.7 | 130.3 | 39.7 | 196.2 |
Shanxi | 115.2 | 72.2 | 85.9 | 42.9 | 329.8 |
Inner Mongolia | 503.9 | 354.2 | 243.9 | 94.2 | 2091.7 |
Liaoning | 397.1 | 357.7 | 115.2 | 75.8 | 930.8 |
Jilin | 586.2 | 504.8 | 169.4 | 88.0 | 2418.8 |
Heilongjiang | 1419.9 | 1221.5 | 406.5 | 208.1 | 4419.2 |
Shanghai | 58.6 | 49.9 | 11.6 | 2.9 | 235.9 |
Jiangsu | 543.4 | 486.6 | 137.8 | 81.0 | 641.3 |
Zhejiang | 1026.6 | 1008.8 | 224.4 | 206.6 | 1598.7 |
Anhui | 1280.4 | 1193.7 | 228.6 | 141.9 | 2099.5 |
Fujian | 760.3 | 759.0 | 243.5 | 242.2 | 1832.5 |
Jiangxi | 1685.6 | 1666.7 | 386.0 | 367.1 | 3731.3 |
Shandong | 375.3 | 259.8 | 201.8 | 86.3 | 370.3 |
Henan | 408.6 | 294.8 | 185.8 | 72.0 | 411.9 |
Hubei | 1754.7 | 1735.0 | 381.6 | 361.9 | 3006.7 |
Hunan | 2118.9 | 2111.2 | 466.1 | 458.4 | 3189.9 |
Guangdong | 1626.0 | 1616.3 | 399.0 | 389.4 | 1294.9 |
Guangxi | 2114.8 | 2113.7 | 445.4 | 444.3 | 4229.2 |
Hainan | 263.6 | 260.6 | 74.6 | 71.6 | 2626.8 |
Chongqing | 766.9 | 766.9 | 128.7 | 128.7 | 2397.7 |
Sichuan | 2337.3 | 3236.2 | 649.1 | 648.0 | 3871.9 |
Guizhou | 1329.6 | 1328.6 | 281.0 | 281.0 | 3448.2 |
Yunnan | 1799.2 | 1799.2 | 619.8 | 619.8 | 3813.5 |
Tibet | 4597.3 | 4597.3 | 1045.7 | 1045.7 | 126,473.2 |
Shaanxi | 419.6 | 385.6 | 146.7 | 112.7 | 1062.4 |
Gansu | 408.0 | 396.0 | 158.2 | 146.2 | 1628.7 |
Qinghai | 1011.9 | 989.5 | 437.3 | 414.9 | 17,107.4 |
Ningxia | 11.0 | 9.0 | 17.8 | 15.8 | 153.0 |
Xinjiang | 801.0 | 759.6 | 503.5 | 462.1 | 3111.3 |
Reuse Category | Managers (%) | Producers (%) | Researchers (%) | Public (%) |
---|---|---|---|---|
Potentially potable reuse | 3.5 | 2.27 | 2.32 | 2.87 |
Body contact | 3.9 | 3.32 | 2.64 | - |
Non-body contact and non-potable reuses | 4.6 | 4.95 | 4.86 | 3.37 |
Average | 4 | 3.51 | 3.27 | 3.12 |
Province/City | Name | Treatment Process | Daily Treatment Capacity (104 Tons/Day) |
---|---|---|---|
Beijing | Gaobeidian sewage treatment plant | Activated sludge process | 100.00 |
Tianjin | Jizhuangzi sewage treatment plant | A2/O | 45.00 |
Tianjin | Xianyang Road sewage treatment plant | A/O | 45.00 |
Hebei | Qiaodong sewage treatment plant (Shijiazhuang City) | A2/O | 50.00 |
Liaoning | Xiannvhe sewage treatment plant (Shenyang City) | Biological aerated filter | 40.00 |
Shanghai | Bailonggang sewage treatment plant | Chemical precipitation | 200.00 |
Jiangsu | Jingxinzhou sewage treatment plant (Nanjing City) | A2/O | 64.00 |
Zhejiang | Shaoxing Water Treatment Development Co., Ltd. | A/O | 90.00 |
Jiangxi | Qingshan lake sewage treatment plant | Phase 1: Oxidation Ditch Process: phase 2: CASS | 46.00 |
Henan | Wangxinzhuang sewage treatment plant | A2/O | 40.00 |
Hubei | Hanxi sewage treatment plant (Wuhan City) | A/O | 40.00 |
Guangdong | Liede sewage treatment plant | A2/O | 120.00 |
Guangxi | Greentown Water Co., Ltd. | Improved SBR | 48.00 |
Chongqing | Jiguanshi sewage treatment plant | A2/O | 80.00 |
Sichuan | The First sewage treatment plant of Chengdu Drainage Co., Ltd. | A/O | 40.00 |
Xinjiang | Hedongweiliya Water Corporation of Urumchi City | AB | 40.00 |
Crop Type | |||
---|---|---|---|
Indexes | Paddy Crops | Dryland Crops | Vegetables |
pH | 5.5–8.5 | ||
TDS (mg/L) | ≤1000, ≤2000 c | ≤1000, ≤2000 c | ≤1000 |
Temperature (°C) | 35 | ||
Suspended solids (mg/L) | 80 | 100 | 60 a, 15 b |
DO (mg/L) | - | ≥0.5 | ≥0.5 |
BOD5 (mg/L) | 60 | 100 | 40 a, 15 b |
CODCr (mg/L) | 150 | 200 | 100 a, 60 b |
Anionic surfactant (mg/L) | 5 | 8 | 5 |
Chloride (mg/L) | 350 | ||
Sulfide (mg/L) | 1 | ||
Total salt content (mg/L) | 1000 (non-saline-alkali land area), 2000 (saline-alkali land area) | ||
Pb (mg/L) | 0.2 | ||
Fe (mg/L) | ≤1.5 | ||
Mn (mg/L) | ≤0.3 | ||
Cd (mg/L) | 0.01 | ||
Chromium (hexavalent) (mg/L) | 0.1 | ||
Total mercury (mg/L) | 0.001 | ||
Total arsenic (mg/L) | 0.05 | 0.1 | 0.05 |
Cr (mg/L) | ≤0.1 | ||
Fecal coliform (MPN/L) | 40,000 | 40,000 | 20,000 a, 10,000 b |
Ascaris lumbricoides eggs (pcs/10 L) | 20 | 20 a, 10 b |
Cost Category | Value | Benefit Category | Value |
---|---|---|---|
(Million USD) | (Million USD) | ||
Remunerated investment | 7.77 | Wastewater reuse revenue | 97.84 |
Power consumption | 24.03 | Water resources saving | 138.15 |
Chemical components | 12.99 | Water replacement savings | 3.29 |
Upkeep | 3.37 | Wastewater discharge reduction | 4.88 |
Workforce | 7.22 | Environmental perfection | 29.5 |
Pipeline construction | 87.91 | Public health effects | −48.78 |
Empty Cell | Groundwater pollution | −0.08 | |
Empty Cell | Groundwater recharge | 28.78 | |
Total cost | 143.31 | Total benefit | 245.75 |
Disease | Cause |
---|---|
Typhoid fever | Salmonella typhi |
Paratyphoid fever 2 | Salmonella paratyphi |
Gastroenteritis 1 | Salmonella typhimurium |
Cholera 2 | Vibrio cholerae |
Bacillary dysentery 2 | Shigella dysenteriae |
Amebiasis 2 | Entamoeba histolytica |
Giardiasis 1 | Giardia duodenalis |
Cryptosporidiosis 1 | Cryptosporidium |
Cyclosporiasis 2 | Cyclospora cayetanensis |
Infectious hepatitis 1 | Hepatitis A |
Gastroenteritis 2 | Enterovirus, parvovirus, rotavirus |
Infantile paralysis | Poliovirus |
Leptospirosis 1 | Leptospira icterohaemorrhagiae |
Ear infections | Pseudomonas aeruginosa |
Scabies | Sarcoptes scabiei |
Trachoma | Chlamydia trachomatis |
Schistosomiasis 2 | Schistosoma |
Malaria | Plasmodium |
Yellow fever | Flavivirus |
Dengue | Flavivirus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kama, R.; Song, J.; Liu, Y.; Hamani, A.K.M.; Zhao, S.; Li, Z. Water Availability and Status of Wastewater Treatment and Agriculture Reuse in China: A Review. Agronomy 2023, 13, 1187. https://doi.org/10.3390/agronomy13051187
Kama R, Song J, Liu Y, Hamani AKM, Zhao S, Li Z. Water Availability and Status of Wastewater Treatment and Agriculture Reuse in China: A Review. Agronomy. 2023; 13(5):1187. https://doi.org/10.3390/agronomy13051187
Chicago/Turabian StyleKama, Rakhwe, Jibin Song, Yuan Liu, Abdoul Kader Mounkaila Hamani, Shouqiang Zhao, and Zhongyang Li. 2023. "Water Availability and Status of Wastewater Treatment and Agriculture Reuse in China: A Review" Agronomy 13, no. 5: 1187. https://doi.org/10.3390/agronomy13051187
APA StyleKama, R., Song, J., Liu, Y., Hamani, A. K. M., Zhao, S., & Li, Z. (2023). Water Availability and Status of Wastewater Treatment and Agriculture Reuse in China: A Review. Agronomy, 13(5), 1187. https://doi.org/10.3390/agronomy13051187