Effect of Seawater Irrigation on Arthrocnemum macrostachyum Growing in Extensive Green Roof Systems under Semi-Arid Mediterranean Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Setup
2.2. Irrigation Treatments
2.3. Meteorological Conditions
2.4. Measurements
2.5. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Leachates’ Electrical Conductivity
3.2. Plant Height
3.3. Plants’ Ground Cover
3.4. Plant-Growth Index
3.5. Shoots’ Relative Water Content
3.6. Overall Effects of Irrigation Treatments (Pooled Data)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nissanka, S.; Malalgoda, C.; Amaratunga, D.; Haigh, R. A Review of Climate Change Impact on the Built Environment in Coastal Regions. In Proceedings of the 2nd International Symposium on Disaster Resilience and Sustainable Development, Lecture Notes in Civil Engineering 283; Pal, I., Shaw, R., Ichinose, T., Od, Y.T., Eds.; Springer: Singapore, 2023; pp. 147–165. [Google Scholar] [CrossRef]
- EU. Europe’s Seas and Coasts. European Environment Agency. 2020. Available online: https://www.eea.europa.eu/themes/water/europes-seas-and-coasts (accessed on 21 January 2023).
- Depietri, Y.; McPhearson, T. Integrating the Grey, Green, and Blue in Cities: Nature-Based Solutions for Climate Change Adaptation and Risk Reduction. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas, Theory and Practice of Urban Sustainability Transitions; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 91–109. [Google Scholar] [CrossRef]
- Enzi, V.; Cameron, B.; Dezsényi, P.; Gedge, D.; Mann, G.; Pitha, U. Nature-Based Solutions and Buildings—The Power of Surfaces to Help Cities Adapt to Climate Change and to Deliver Biodiversity. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas, Theory and Practice of Urban Sustainability Transitions; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 159–183. [Google Scholar] [CrossRef]
- EC. Towards an EU Research and Innovation Policy Agenda for Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re-Naturing Cities’; Publications Office of the European Union: Luxembourg, 2015.
- Pauleit, S.; Zölch, T.; Hansen, R.; Randrup, T.B.; Konijnendijk van den Bosch, C. Nature-Based Solutions and Climate Change—Four Shades of Green. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas, Theory and Practice of Urban Sustainability Transitions; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 29–49. [Google Scholar] [CrossRef]
- National Gazette. Όροι, προϋποθέσεις και διαδικασία κατασκευής φυτεμένων επιφανειών σε δώματα, στέγες και υπαίθριους χώρους κτιρίων (Terms, Conditions and Procedure for the Construction of Planted Surfaces on Terraces, Roofs and Outdoor Areas of Buildings). 14/B/11.01.2012. Available online: https://www.et.gr/ (accessed on 21 January 2023).
- Savarani, S. A Review of Green Roof Laws & Policies, Domestic and International Examples; Guarini Center: New York, NY, USA, 2019. [Google Scholar]
- Liberalesso, T.; Cruz, C.O.; Silva, C.M.; Manso, M. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy 2020, 96, 104693. [Google Scholar] [CrossRef]
- Ntoulas, N.; Nektarios, P.A.; Kotopoulis, G.; Ilia, P.; Ttooulou, T. Quality assessment of three warm-season turfgrasses growing in different substrate depths on shallow green roof systems. Urban For. Urban Green. 2017, 26, 163–168. [Google Scholar] [CrossRef]
- Ntoulas, N.; Nektarios, P.A. Paspalum vaginatum NDVI when grown on shallow green roof systems and under moisture deficit conditions. Crop Sci. 2017, 57, S147–S160. [Google Scholar] [CrossRef]
- Dunnett, N.; Kingsbury, N. Planting Green Roofs and Living Walls; Timber Press: Portland, OR, USA, 2004; p. 254. [Google Scholar]
- Wolf, D.; Lundholm, J.T. Water uptake in green roof microcosms: Effects of species and water availability. Ecol. Eng. 2008, 33, 179–186. [Google Scholar] [CrossRef]
- Dazy, J.; Drogue, C.; Charmanidis, P.; Darlet, C. The influence of marine inflows on the chemical composition of the groundwater in small islands: The example of the Cyclades (Greece). Environ. Geol. 1997, 31, 133–141. [Google Scholar] [CrossRef]
- Raimondo, F.; Trifilὸ, P.; Lo Gullo, M.A.; Andri, S.; Savi, T.; Nardini, A. Plant performance on Mediterranean green roofs: Interaction of species-specific hydraulic strategies and substrate water relations. AoB Plants 2015, 7, plv007. [Google Scholar] [CrossRef] [PubMed]
- MacIvor, J.S.; Ranalli, M.A.; Lundholm, J.T. Performance of dryland and wetland plant species on extensive green roofs. Ann. Bot. 2011, 107, 671–679. [Google Scholar] [CrossRef]
- Bedford, B.L.; Leopold, D.J.; Gibbs, J.P. Wetland Ecosystems. In Encyclopedia of Biodiversity; Levin, S.A., Ed.; Academic Press: Cambridge, MA, USA, 2001; pp. 781–804. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.T.; Zafeiriou, S.; Londra, P.A. Plant growth of Atriplex portulacoides affected by irrigation amount and substrate type in an extensive green roof system. Ecol. Eng. 2021, 165, 106223. [Google Scholar] [CrossRef]
- Hermides, D.; Kyriazis, D.; Makri, P.; Ermidou, A. Geochemical evolution of the Thriassion Plain groundwaters, Attica, Greece. Environ. Monit. Assess. 2020, 192, 561. [Google Scholar] [CrossRef]
- Geetha, S.; Dharmendirakumar, M.; Sunil, J. An Integrated approach for the characterization of groundwater quality using multivariate statistical techniques and spatial analysis. Bull. Chem. Soc. Ethiop. 2022, 36, 241–260. [Google Scholar] [CrossRef]
- Mengjing, X.; Ying, M.; Zhaohua, L.; Guoli, X.; Dingyu, P. Responds of soil enzfyme activities of degraded coastal saline wetlands to irrigation with treated paper mill effluent. Acta Ecol. Sin. 2012, 32, 6599–6608. [Google Scholar] [CrossRef]
- Ranjbar, G.; Pirasteh-Anosheh, H.; Dehghanie, F.; Keshtkar, S.; Race, M. Feasibility of growing Salicornia species in a coastal environment through planting date and density management in a direct seawater irrigation system. Environ. Sci. Pollut. Res. 2022, 29, 47800–47809. [Google Scholar] [CrossRef] [PubMed]
- Hanin, M.; Ebel, C.; Ngom, M.; Laplaze, L.; Masmoudi, K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci. 2016, 7, 1787. [Google Scholar] [CrossRef] [PubMed]
- Grigore, M.-N. (Ed.) Definition and Classification of Halophytes as an Ecological Group of Plants. In Handbook of Halophytes; Springer: Cham, Switzerland, 2021; pp. 3–50. [Google Scholar]
- Hameed, A.; Khan, M.A. Halophytes: Biology and Economic Potentials. Karachi Univ. J. Sci. 2011, 39, 40–44. [Google Scholar]
- Waisel, Y. Biology of Halophytes. In Physiological Ecology, a Series of Monographs, Texts, and Treatises; Kozlowski, T.T., Ed.; Academic Press Inc.: London, UK, 1972. [Google Scholar]
- Breckel, S.W. Is Sustainable Agriculture with Seawater Irrigation Realistic? In Salinity ans Water Stress, Improving Crop Efficiency, Tasks for Vegetation Science-44; Ashraf, M., Ozturk, M., Athar, H.R., Eds.; Springer: Dordrecht, Germany, 2009; pp. 187–196. [Google Scholar] [CrossRef]
- The Plant List, Version 1.1. 2013. Available online: http://www.theplantlist.org/ (accessed on 12 March 2023).
- Salt-Tolerant Plants eHALOPH V4.65 (06-12-22) a Database of Salt-Tolerant Plants. Available online: https://ehaloph.uc.pt/ (accessed on 12 March 2023).
- Vicente, M.J.; Conesa, E.; Álvarez-Rogel, J.; Franco, J.A.; Martínez-Sánchez, J.J. Relationships between salt type and seed germination in three plant species growing in salt marsh soils of semi-arid Mediterranean environments. Arid. Land Res. Manag. 2009, 23, 103–114. [Google Scholar] [CrossRef]
- Flora Europaea. Flora Europaea, Volume 1: Psilotaceae to Platanaceae, 2nd ed.; Tutin, T.G., Burges, N.A., Chater, A.O., Edmondson, J.R., Heywood, V.H., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Redondo-Gómez, S.; Mateos-Naranjo, E.; Figueroa, M.E.; Davy, A.J. Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biol. 2010, 12, 79–87. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.; Mitsios, I.; Fragkakis, I.; Nektarios, P.; Ntoulas, N.; Londra, P.; Papafotiou, M. The growth of Arthrocnemum macrostachyum and Halimione portulacoides in an extensive green roof system under two watering regimes. Agric. Agric. Sci. Procedia 2015, 4, 242–249. [Google Scholar] [CrossRef]
- FLL. Guideline for the Planning, Execution and Upkeep of Green Roof Sites; FLL: Bonn, Germany, 2008. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO, Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology, 3rd ed.; John Wiley and Sons: New York, NY, USA, 2005; p. 656. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper, 29 Rev. 1. Reprinted 1984, 1994; FAO: Rome, Italy, 1985; p. 174. [Google Scholar]
- Sigel, A.; Sigel, H.; Sigel, R.K.O. The Alkali Metal Ions: Their Role for Life; Springer: Cham, Switzerland, 2016; p. 628. [Google Scholar]
- IERSD-NOA. Daily Historical Climatic Data at Thissio (Athens) Since 1901; Institute of Environmental Research and Sustainable Development of the National Observatory of Athens: Penteli, Greece, 2022; Available online: https://data.climpact.gr/el/dataset/e2ae9f71-048f-4565-b24b-f8f15e4c2cf5/resource/611443dc-ea82-45b1-8e0c-0ea2b3504ac6/download/hcd_noa_3.csv (accessed on 26 December 2022).
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- González, L.; González-Vilar, M. Determination of Relative Water Content. In Handbook of Plant Ecophysiology Techniques; Reigosa Roger, M.J., Ed.; Kluwer Academic Publishers: Dordrecht, Germany, 2001; pp. 207–212. [Google Scholar]
- Ntoulas, N.; Varsamos, I. Performance of Two Seashore Paspalum (Paspalum vaginatum Sw.) Varieties Growing in Shallow Green Roof Substrate Depths and Irrigated with Seawater. Agronomy 2021, 11, 250. [Google Scholar] [CrossRef]
- Handreck, K.A.; Black, N.D. Growing Media for Ornamental Plants and Turf; UNSWP: Randwick, NSW, Australia, 1994; p. 448. [Google Scholar]
- Trotta, A.; Redondo-Gómez, S.; Pagliano, C.; Figueroa Clemente, M.E.; Rascio, N.; La Rocca, N.; Antonacci, A.; Andreucci, F.; Barbato, R. Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. J. Plant Physiol. 2012, 162, 111–116. [Google Scholar] [CrossRef]
- Rohit, J.; Mangu, V.R.; Bedre, R.; Sanchez, L.; Pilcher, W.; Zandkarimi, H.; Baisakh, N. Salt Adaptation Mechanisms of Halophytes: Improvement of Salt Tolerance in Crop Plants. In Elucidation of Abiotic Stress Signaling in Plants, Functional Genomics Perspectives, Volume 1; Pandley, G.K., Ed.; Springer: New York, NY, USA, 2015; pp. 243–279. [Google Scholar] [CrossRef]
- Sadek, L.A.; El-Darier, S.M. Cyclic vegetational change and pattern in a bcommunity of Arthrocnemum macrostachyum in Mediterranean coastal desert of Egypt. J. Arid Environ. 1995, 31, 67–76. [Google Scholar] [CrossRef]
- Guesdon, G.; de Santiago-Martín, A.; Galvez-Cloutier, R. Phytodesalinization potential of Typha angustifolia, Juncus maritimus, and Eleocharis palustris for removal of de-icing salts from runoff water. Environ. Sci. Pollut. Res. 2016, 23, 19634–19644. [Google Scholar] [CrossRef]
- Grigore, M.-N.; Villanueva, M.; Boscaiu, M.; Vicente, O. Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach. Not. Sci. Biol. 2012, 4, 23–29. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- Santos, J.; Al-Azzawi, M.; Aronson, J.; Flowers, T.J. eHALOPH a Database of Salt-Tolerant Plants: Helping put Halophytes to Work. Plant Cell Physiol. 2016, 57, e10. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Ungar, I.A.; Showalter, A.M. Salt Stimulation and Tolerance in an Intertidal Stem-Succulent Halophyte. J. Plant Nutr. 2005, 28, 1365–1374. [Google Scholar] [CrossRef]
- Bajji, M.; Kinet, J.-M.; Lutts, S. Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Sci. 1998, 137, 131–142. [Google Scholar]
- Harrouni, M.C.; Daoud, S.; Koyro, H.W. Effect of seawater irrigation on biomass production and ion composition of seven halophytic species in Morocco. In Cash Crop Halophytes: Recent Studies. Tasks for Vegetation Science, Volume 38; Lieth, H., Mochtchenko, M., Eds.; Springer: Dordrecht, Germany, 2003. [Google Scholar] [CrossRef]
- Aronson, J.; Pasternak, D.; Danon, A. Introduction and first evaluation of 120 halophytes under seawater irrigation. In Arid Lands: Today and Tomorrow; Whitehead, E.E., Hutchinson, C.F., Timmermann, B.N., Varady, R.G., Eds.; Westview: Boulder, CO, USA, 1988; pp. 737–746. [Google Scholar]
- Obón, C.; Rivera, D.; Verde, A.; Alcaraz, F. Ethnopharmacology and Medicinal Uses of Extreme Halophytes. In Handbook of Halophytes; Grigore, M.-N., Ed.; Springer: Cham, Switzerland, 2021; pp. 2707–2736. [Google Scholar]
- Ventura, Y.; Wuddineh, W.A.; Myrzabayeva, M.; Alikulov, Z.; Khozin-Goldberg, I.; Shpigel, M.; Samocha, T.M.; Sagi, M. Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci. Hortic. 2011, 128, 189–196. [Google Scholar] [CrossRef]
- Flowers, T.J.; Hajibagheri, M.A.; Clipson, N.J.W. Halophytes. Q. Rev. Biol. 1986, 61, 313–337. [Google Scholar] [CrossRef]
- Grigore, M.-N.; Vicente, O. Wild Halophytes: Tools for Understanding Salt Tolerance Mechanisms of Plants and for Adapting Agriculture to Climate Change. Plants 2023, 12, 221. [Google Scholar] [CrossRef] [PubMed]
- Webb, P. Introduction to Oceanography. Online OER Textbook. 2017. Available online: https://webboceanography.pressbooks.com (accessed on 21 January 2023).
- Blum, A. Genomics for drought resistance—Getting down to earth. Funct. Plant Biol. 2014, 41, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Sisay, T.A.; Nurbekova, Z.; Oshanova, D.; Dubey, A.K.; Khatri, K.; Mudgal, V.; Mudgal, A.; Neori, A.; Shpigel, M.; Srivastava, R.K.; et al. Effect of Salinity and Nitrogen Fertilization Levels on Growth Parameters of Sarcocornia fruticosa, Salicornia brachiata, and Arthrocnemum macrostachyum. Agronomy 2022, 12, 1749. [Google Scholar] [CrossRef]
- Chaves, M.M.; Pereira, J.S.; Maroco, J.; Rodrigues, M.L.; Ricardo, C.P.P.; Oserio, M.L.; Carvalho, I.; Faria, T.; Pinheiro, C. How do plants cope with water stress in the field? Photosynthesis and growth. Ann. Bot. 2002, 89, 907–916. [Google Scholar] [CrossRef]
- Blum, A.; Tuberosa, R. Dehydration survival of crop plants and its measurement. J. Exp. Bot. 2018, 69, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Ben Amor, N.; Jiménez, A.; Boudabbous, M.; Sevilla, F.; Abdelly, C. Chloroplast Implication in the Tolerance to Salinity of the Halophyte Cakile maritima. Russ. J. Plant Physiol. 2020, 67, 507–514. [Google Scholar] [CrossRef]
- Papafotiou, M.; Pergialioti, N.; Tassoula, L.; Massas, I.; Kargas, G. Growth of native aromatic xerophytes in an extensive Mediterranean green roof as affected by substrate type and depth and irrigation frequency. HortScience 2013, 48, 1327–1333. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.T.; Tsarouchas, P.; Londra, P.A.; Kamoutsis, A.P. The Effect of Irrigation Treatment on the Growth of Lavender Species in an Extensive Green Roof System. Water 2020, 12, 863. [Google Scholar] [CrossRef]
Parameter | Units Measured | Value |
---|---|---|
pH (CaCl2) | 7.3 | |
Electrical conductivity (water, 1:10, m:v), | dS m−1 | 0.19 |
Dry bulk density | kg L−1 | 0.98 |
Bulk density at maximum water-holding capacity | kg L−1 | 1.36 |
Total pore volume | % | 56.7 |
Maximum water-holding capacity | % (v/v) | 40.7 |
Air-filled porosity | % (v/v) | 16.0 |
Water permeability | cm·s−1 | 0.007 |
Organic matter content | % (w/w) | 7.5 |
Phosphorus, P2O5 (CAL) | mg L−1 | 167.4 |
Potassium, K2O (CAL) | mg L−1 | 663.8 |
Magnesium, Mg (CaCl2) | mg L−1 | 165.7 |
Nitrate + Ammonium (CaCl2) | mg L−1 | 1.5 |
Particle-size analysis: | ||
>12.5 mm | % (w/w) | 0.3 |
12.5–9.5 mm | % (w/w) | 5.9 |
9.5–6.3 mm | % (w/w) | 8.4 |
6.3–3.2 mm | % (w/w) | 18.7 |
3.2–2.0 mm | % (w/w) | 24.7 |
2.0–1.0 mm | % (w/w) | 19.5 |
1.0–0.25 mm | % (w/w) | 12.1 |
0.25–0.05 mm | % (w/w) | 4.3 |
0.05–0.002 mm | % (w/w) | 4.7 |
<0.002 mm | % (w/w) | 1.2 |
Parameter | Units Measured | Tap Water | Seawater |
---|---|---|---|
pH | 7.8 | 8.2 | |
Electrical conductivity (25 °C) | dS m−1 | 0.3 | 57.6 |
Total hardness (CaCO3) | mg L−1 | 137 | 6615 |
Carbonate (CO32−) | mg L−1 | 0 | 32.4 |
Bicarbonate (HCO3−) | mg L−1 | 134.2 | 136 |
Sulphate (SO42−) | mg L−1 | 24 | 2350 |
Chloride (Cl−) | mg L−1 | 9.2 | 22,100 |
Calcium (Ca2+) | mg L−1 | 46 | 415 |
Magnesium (Mg2+) | mg L−1 | 5.6 | 1284 |
Potassium (Κ+) | mg L−1 | 1.0 | 399 |
Sodium (Na+) | mg L−1 | 6.6 | 10,900 |
Iron (Fe) | μg L−1 | 12.8 | 304 |
Irrigation Treatments | ECL 1 | H | GC | GI | RWC |
---|---|---|---|---|---|
(dS m−1) | (cm) | (cm2) | (cm) | (%) | |
tap water every 4 d | 2.41 d | 35.92 a | 1232.34 a | 37.58 a | 83.25 a |
tap water every 8 d | 2.14 d | 33.33 a | 1086.16 b | 37.08 a | 78.87 ab |
seawater every 4 d | 106.23 a | 34.81 a | 996.84 cd | 36.77 ab | 79.05 ab |
seawater every 8 d | 94.30 b | 30.76 a | 938.96 d | 33.81 c | 77.89 c |
seawater alternated with tap water every 4 days | 69.44 c | 33.19 a | 1107.37 b | 36.77 ab | 79.89 b |
seawater alternated with tap water every 8 days | 62.22 c | 35.24 a | 1020.21 c | 35.61 b | 77.98 c |
significance | *** | ns | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paraskevopoulou, A.T.; Ntoulas, N.; Bourtsoukli, D.; Bertsouklis, K. Effect of Seawater Irrigation on Arthrocnemum macrostachyum Growing in Extensive Green Roof Systems under Semi-Arid Mediterranean Climatic Conditions. Agronomy 2023, 13, 1198. https://doi.org/10.3390/agronomy13051198
Paraskevopoulou AT, Ntoulas N, Bourtsoukli D, Bertsouklis K. Effect of Seawater Irrigation on Arthrocnemum macrostachyum Growing in Extensive Green Roof Systems under Semi-Arid Mediterranean Climatic Conditions. Agronomy. 2023; 13(5):1198. https://doi.org/10.3390/agronomy13051198
Chicago/Turabian StyleParaskevopoulou, Angeliki T., Nikolaos Ntoulas, Dionysia Bourtsoukli, and Konstantinos Bertsouklis. 2023. "Effect of Seawater Irrigation on Arthrocnemum macrostachyum Growing in Extensive Green Roof Systems under Semi-Arid Mediterranean Climatic Conditions" Agronomy 13, no. 5: 1198. https://doi.org/10.3390/agronomy13051198
APA StyleParaskevopoulou, A. T., Ntoulas, N., Bourtsoukli, D., & Bertsouklis, K. (2023). Effect of Seawater Irrigation on Arthrocnemum macrostachyum Growing in Extensive Green Roof Systems under Semi-Arid Mediterranean Climatic Conditions. Agronomy, 13(5), 1198. https://doi.org/10.3390/agronomy13051198