Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Experimental Design and Yield Data Collection
2.2. Methods
2.2.1. UAV Data Acquisition and Processing
2.2.2. Derivation of VIs
2.2.3. ML Implementation
LR
KNN
RF
SVR
DNN
2.2.4. Model Performance Measures
2.2.5. Suitable Variable Selection
3. Results
3.1. Relationship between Agronomic Treatments and Yield
3.2. Relationship between VIs and Yield
3.3. Impact of the Number of Variables on ML Performance
3.4. ML Performance Evaluation in Yield Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef]
- McConnell, M. Feedgrains Sector at a Glance; USDA Economic Research Service US Department of Agriculture: Washington, DC, USA, 2022. [Google Scholar]
- World Health Organization. The State of Food Security and Nutrition in the World 2021: Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; Food & Agriculture Organization: Rome, Italy, 2021; Volume 2021. [Google Scholar]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Kamath, P.; Patil, P.; Shrilatha, S.; Sowmya, S. Crop yield forecasting using data mining. Glob. Transit. Proc. 2021, 2, 402–407. [Google Scholar] [CrossRef]
- Surya, P.; Aroquiaraj, I.L. Crop yield prediction in agriculture using data mining predictive analytic techniques. Int. J. Res. Anal. Rev. 2018, 5, 783–787. [Google Scholar]
- Bala, A. Machine Learning Approaches for Crop Yield Prediction-Review. Int. J. Comput. Eng. Technol. 2020, 11, 23–27. [Google Scholar]
- Sagar, B.; Cauvery, N. Agriculture data analytics in crop yield estimation: A critical review. Indones. J. Electr. Eng. Comput. Sci. 2018, 12, 1087–1093. [Google Scholar] [CrossRef]
- Wójtowicz, M.; Wójtowicz, A.; Piekarczyk, J. Application of remote sensing methods in agriculture. Commun. Biometry Crop Sci. 2016, 11, 31–50. [Google Scholar]
- Ali, A.M.; Abouelghar, M.; Belal, A.A.; Saleh, N.; Yones, M.; Selim, A.I.; Amin, M.E.S.; Elwesemy, A.; Kucher, D.E.; Maginan, S.; et al. Crop Yield Prediction Using Multi Sensors Remote Sensing (Review Article). Egypt. J. Remote Sens. Space Sci. 2022, 25, 711–716. [Google Scholar] [CrossRef]
- Yang, C. A high-resolution airborne four-camera imaging system for agricultural remote sensing. Comput. Electron. Agric. 2012, 88, 13–24. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Wang, T.; Xu, X.; Wang, C.; Li, Z.; Li, D. From smart farming towards unmanned farms: A new mode of agricultural production. Agriculture 2021, 11, 145. [Google Scholar] [CrossRef]
- Ji, Z.; Pan, Y.; Zhu, X.; Zhang, D.; Dai, J. Prediction of Corn Yield in the USA Corn Belt Using Satellite Data and Machine Learning: From an Evapotranspiration Perspective. Agriculture 2022, 12, 1263. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Rokhmana, C.A. The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environ. Sci. 2015, 24, 245–253. [Google Scholar] [CrossRef]
- Bian, C.; Shi, H.; Wu, S.; Zhang, K.; Wei, M.; Zhao, Y.; Sun, Y.; Zhuang, H.; Zhang, X.; Chen, S. Prediction of field-scale wheat yield using machine learning method and multi-spectral UAV data. Remote Sens. 2022, 14, 1474. [Google Scholar] [CrossRef]
- Hussain, N.; Sarfraz, S.; Javed, S. A Systematic Review on Crop-Yield Prediction through Unmanned Aerial Vehicles. In Proceedings of the 2021 16th International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 22–23 December 2021; pp. 1–9. [Google Scholar]
- Huang, Y.; Thomson, S.J.; Hoffmann, W.C.; Lan, Y.; Fritz, B.K. Development and prospect of unmanned aerial vehicle technologies for agricultural production management. Int. J. Agric. Biol. Eng. 2013, 6, 1–10. [Google Scholar]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z.; Kang, Y.; Özdoğan, M. Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach. Remote Sens. Environ. 2021, 259, 112408. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Khaki, S.; Archontoulis, S.V. Corn yield prediction with ensemble CNN-DNN. Front. Plant Sci. 2021, 12, 709008. [Google Scholar] [CrossRef]
- Buthelezi, S.; Mutanga, O.; Sibanda, M.; Odindi, J.; Clulow, A.D.; Chimonyo, V.G.; Mabhaudhi, T. Assessing the prospects of remote sensing maize leaf area index using UAV-derived multi-spectral data in smallholder farms across the growing season. Remote Sens. 2023, 15, 1597. [Google Scholar] [CrossRef]
- Pipatsitee, P.; Tisarum, R.; Taota, K.; Samphumphuang, T.; Eiumnoh, A.; Singh, H.P.; Cha-Um, S. Effectiveness of vegetation indices and UAV-multispectral imageries in assessing the response of hybrid maize (Zea mays L.) to water deficit stress under field environment. Environ. Monit Assess 2022, 195, 128. [Google Scholar] [CrossRef] [PubMed]
- Mupangwa, W.; Chipindu, L.; Nyagumbo, I.; Mkuhlani, S.; Sisito, G. Evaluating machine learning algorithms for predicting maize yield under conservation agriculture in Eastern and Southern Africa. SN Appl. Sci. 2020, 2, 952. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Martinez-Feria, R.A.; Hu, G.; Archontoulis, S.V. Maize yield and nitrate loss prediction with machine learning algorithms. Environ. Res. Lett. 2019, 14, 124026. [Google Scholar] [CrossRef]
- Danilevicz, M.F.; Bayer, P.E.; Boussaid, F.; Bennamoun, M.; Edwards, D. Maize yield prediction at an early developmental stage using multispectral images and genotype data for preliminary hybrid selection. Remote Sens. 2021, 13, 3976. [Google Scholar] [CrossRef]
- Dhaka, V.; Vikas, L. Wheat yield prediction using artificial neural network and crop prediction techniques (a survey). IJRASET 2014, 2, 330–341. [Google Scholar]
- Tanabe, R.; Matsui, T.; Tanaka, T.S.T. Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery. Field Crops Res. 2023, 291, 108786. [Google Scholar] [CrossRef]
- Bascon, M.V.; Nakata, T.; Shibata, S.; Takata, I.; Kobayashi, N.; Kato, Y.; Inoue, S.; Doi, K.; Murase, J.; Nishiuchi, S. Estimating Yield-Related Traits Using UAV-Derived Multispectral Images to Improve Rice Grain Yield Prediction. Agriculture 2022, 12, 1141. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer—A case study of small farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.; Xu, X.; He, J.; Ge, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Tian, L.; Wang, C.; Li, H.; Sun, H. Yield prediction model of rice and wheat crops based on ecological distance algorithm. Environ. Technol. Innov. 2020, 20, 101132. [Google Scholar] [CrossRef]
- da Silva, E.E.; Baio, F.H.R.; Teodoro, L.P.R.; da Silva Junior, C.A.; Borges, R.S.; Teodoro, P.E. UAV-multispectral and vegetation indices in soybean grain yield prediction based on in situ observation. Remote Sens. Appl. Soc. Environ. 2020, 18, 100318. [Google Scholar] [CrossRef]
- Siegfried, J.; Adams, C.B.; Rajan, N.; Hague, S.; Schnell, R.; Hardin, R. Combining a cotton ‘Boll Area Index’ with in-season unmanned aerial multispectral and thermal imagery for yield estimation. Field Crops Res. 2023, 291, 108765. [Google Scholar] [CrossRef]
- Ashapure, A.; Jung, J.; Chang, A.; Oh, S.; Yeom, J.; Maeda, M.; Maeda, A.; Dube, N.; Landivar, J.; Hague, S.; et al. Developing a machine learning based cotton yield estimation framework using multi-temporal UAS data. ISPRS J. Photogramm. Remote Sens. 2020, 169, 180–194. [Google Scholar] [CrossRef]
- He, L.; Fang, W.; Zhao, G.; Wu, Z.; Fu, L.; Li, R.; Majeed, Y.; Dhupia, J. Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods. Comput. Electron. Agric. 2022, 195, 106812. [Google Scholar] [CrossRef]
- de Oliveira, R.P.; Barbosa Júnior, M.R.; Pinto, A.A.; Oliveira, J.L.P.; Zerbato, C.; Furlani, C.E.A. Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning. Agronomy 2022, 12, 1992. [Google Scholar] [CrossRef]
- Akbarian, S.; Xu, C.; Wang, W.; Ginns, S.; Lim, S. Sugarcane yields prediction at the row level using a novel cross-validation approach to multi-year multispectral images. Comput. Electron. Agric. 2022, 198, 107024. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 2007; Volume 1. [Google Scholar]
- Mjolsness, E.; DeCoste, D. Machine learning for science: State of the art and future prospects. Science 2001, 293, 2051–2055. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.; Chatterjee, S.; Oommen, T.; Guha, A. Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102006. [Google Scholar] [CrossRef]
- Kumar, C.; Chatterjee, S.; Oommen, T.; Guha, A.; Mukherjee, A. Multi-sensor datasets-based optimal integration of spectral, textural, and morphological characteristics of rocks for lithological classification using machine learning models. Geocarto Int. 2022, 37, 6004–6032. [Google Scholar] [CrossRef]
- Kumar, C.; Walton, G.; Santi, P.; Luza, C. An Ensemble Approach of Feature Selection and Machine Learning Models for Regional Landslide Susceptibility Mapping in the Arid Mountainous Terrain of Southern Peru. Remote Sens. 2023, 15, 1376. [Google Scholar] [CrossRef]
- Bhatt, P.; Maclean, A.; Dickinson, Y.; Kumar, C. Fine-Scale Mapping of Natural Ecological Communities Using Machine Learning Approaches. Remote Sens. 2022, 14, 563. [Google Scholar] [CrossRef]
- Santana, D.C.; Teodoro, L.P.R.; Baio, F.H.R.; Santos, R.G.d.; Coradi, P.C.; Biduski, B.; da Silva Junior, C.A.; Teodoro, P.E.; Shiratsuchi, L.S. Classification of soybean genotypes for industrial traits using UAV multispectral imagery and machine learning. Remote Sens. Appl. Soc. Environ. 2023, 29, 100919. [Google Scholar] [CrossRef]
- Rashid, M.; Bari, B.S.; Yusup, Y.; Kamaruddin, M.A.; Khan, N. A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction. IEEE Access 2021, 9, 63406–63439. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Huber, I.; Archontoulis, S.V. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 2021, 11, 1606. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Croci, M.; Impollonia, G.; Meroni, M.; Amaducci, S. Dynamic Maize Yield Predictions Using Machine Learning on Multi-Source Data. Remote Sens. 2022, 15, 100. [Google Scholar] [CrossRef]
- Matsumura, K.; Gaitan, C.F.; Sugimoto, K.; Cannon, A.J.; Hsieh, W.W. Maize yield forecasting by linear regression and artificial neural networks in Jilin, China. J. Agric. Sci. 2015, 153, 399–410. [Google Scholar] [CrossRef]
- Kim, N.; Lee, Y.-W. Machine learning approaches to corn yield estimation using satellite images and climate data: A case of Iowa State. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 34, 383–390. [Google Scholar] [CrossRef]
- Shen, Y.; Mercatoris, B.; Cao, Z.; Kwan, P.; Guo, L.; Yao, H.; Cheng, Q. Improving Wheat Yield Prediction Accuracy Using LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery. Agriculture 2022, 12, 892. [Google Scholar] [CrossRef]
- Liebman, A.M.; Grossman, J.; Brown, M.; Wells, M.S.; Reberg-Horton, S.; Shi, W. Legume cover crops and tillage impact nitrogen dynamics in organic corn production. Agron. J. 2018, 110, 1046–1057. [Google Scholar] [CrossRef]
- DeLaune, P.; Mubvumba, P. Winter cover crop production and water use in Southern Great Plains cotton. Agron. J. 2020, 112, 1943–1951. [Google Scholar] [CrossRef]
- Syuhada, A.B.; Shamshuddin, J.; Fauziah, C.; Rosenani, A.; Arifin, A. Biochar as soil amendment: Impact on chemical properties and corn nutrient uptake in a Podzol. Can. J. Soil Sci. 2016, 96, 400–412. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.A.; Karlen, D.L. Corn and soil response to biochar application and stover harvest. Field Crops Res. 2016, 187, 96–106. [Google Scholar] [CrossRef]
- Prakash, N.B.; Dhumgond, P.; Shruthi; Chikkaramappa, T.; Ashrit, S. Performance of slag-based gypsum on maize yield and available soil nutrients over commercial gypsum under acidic and neutral soil. Commun. Soil Sci. Plant Anal. 2020, 51, 1780–1798. [Google Scholar] [CrossRef]
- Bossolani, J.W.; Crusciol, C.A.C.; Merloti, L.F.; Moretti, L.G.; Costa, N.R.; Tsai, S.M.; Kuramae, E.E. Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system. Geoderma 2020, 375, 114476. [Google Scholar] [CrossRef]
- Ballester, C.; Brinkhoff, J.; Quayle, W.C.; Hornbuckle, J. Monitoring the Effects of Water Stress in Cotton Using the Green Red Vegetation Index and Red Edge Ratio. Remote Sens. 2019, 11, 873. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Res. 2014, 157, 111–123. [Google Scholar] [CrossRef]
- Venancio, L.P.; Mantovani, E.C.; do Amaral, C.H.; Neale, C.M.U.; Gonçalves, I.Z.; Filgueiras, R.; Eugenio, F.C. Potential of using spectral vegetation indices for corn green biomass estimation based on their relationship with the photosynthetic vegetation sub-pixel fraction. Agric. Water Manag. 2020, 236, 106155. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Xie, R.; Li, S. Integrating satellite-derived climatic and vegetation indices to predict smallholder maize yield using deep learning. Agric. For. Meteorol. 2021, 311, 108666. [Google Scholar] [CrossRef]
- San Bautista, A.; Fita, D.; Franch, B.; Castiñeira-Ibáñez, S.; Arizo, P.; Sánchez-Torres, M.J.; Becker-Reshef, I.; Uris, A.; Rubio, C. Crop Monitoring Strategy Based on Remote Sensing Data (Sentinel-2 and Planet), Study Case in a Rice Field after Applying Glycinebetaine. Agronomy 2022, 12, 708. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, W.; Gao, D.; Zhao, R.; An, L.; Li, M.; Sun, H.; Song, D. UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages. Comput. Electron. Agric. 2022, 196, 106775. [Google Scholar] [CrossRef]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; R Core Team. Package ‘caret’. R J. 2020, 223, 1–224. [Google Scholar]
- Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Wong, T.-T.; Yeh, P.-Y. Reliable accuracy estimates from k-fold cross validation. IEEE Trans. Knowl. Data Eng. 2019, 32, 1586–1594. [Google Scholar] [CrossRef]
- Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2011, 21, 137–146. [Google Scholar] [CrossRef]
- Wong, T.-T.; Yang, N.-Y. Dependency analysis of accuracy estimates in k-fold cross validation. IEEE Trans. Knowl. Data Eng. 2017, 29, 2417–2427. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 2019, 72, 558–569. [Google Scholar] [CrossRef]
- Jani, A.D.; Grossman, J.; Smyth, T.J.; Hu, S. Winter legume cover-crop root decomposition and N release dynamics under disking and roller-crimping termination approaches. Renew. Agric. Food Syst. 2016, 31, 214–229. [Google Scholar] [CrossRef]
- Parr, M.; Grossman, J.; Reberg-Horton, S.; Brinton, C.; Crozier, C. Nitrogen delivery from legume cover crops in no-till organic corn production. Agron. J. 2011, 103, 1578–1590. [Google Scholar] [CrossRef]
- Bruun, E.W.; Ambus, P.; Egsgaard, H.; Hauggaard-Nielsen, H. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol. Biochem. 2012, 46, 73–79. [Google Scholar] [CrossRef]
- Nelissen, V.; Rütting, T.; Huygens, D.; Staelens, J.; Ruysschaert, G.; Boeckx, P. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol. Biochem. 2012, 55, 20–27. [Google Scholar] [CrossRef]
- Kaur, H.; Williard, K.W.; Schoonover, J.E.; Singh, G. Impact of Flue Gas Desulfurization Gypsum Applications to Corn-Soybean Plots on Surface Runoff Water Quality. Water Air Soil Pollut. 2022, 233, 72. [Google Scholar] [CrossRef]
- Dhillon, J.; Aula, L.; Eickhoff, E.; Raun, W. Predicting in-season maize (Zea mays L.) yield potential using crop sensors and climatological data. Sci. Rep. 2020, 10, 11479. [Google Scholar] [CrossRef]
- Mwinuka, P.R.; Mourice, S.K.; Mbungu, W.B.; Mbilinyi, B.P.; Tumbo, S.D.; Schmitter, P. UAV-based multispectral vegetation indices for assessing the interactive effects of water and nitrogen in irrigated horticultural crops production under tropical sub-humid conditions: A case of African eggplant. Agric. Water Manag. 2022, 266, 107516. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Crop yield prediction using multitemporal UAV data and spatio-temporal deep learning models. Remote Sens. 2020, 12, 4000. [Google Scholar] [CrossRef]
- Zhou, X.; Kono, Y.; Win, A.; Matsui, T.; Tanaka, T.S.T. Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches. Plant Prod. Sci. 2020, 24, 137–151. [Google Scholar] [CrossRef]
- Colaço, A.; Richetti, J.; Bramley, R.; Lawes, R. How will the next-generation of sensor-based decision systems look in the context of intelligent agriculture? A case-study. Field Crops Res. 2021, 270, 108205. [Google Scholar] [CrossRef]
- Oglesby, C.; Fox, A.A.; Singh, G.; Dhillon, J. Predicting In-Season Corn Grain Yield Using Optical Sensors. Agronomy 2022, 12, 2402. [Google Scholar] [CrossRef]
- Sumner, Z.; Varco, J.J.; Dhillon, J.S.; Fox, A.A.; Czarnecki, J.; Henry, W.B. Ground versus aerial canopy reflectance of corn: Red-edge and non-red edge vegetation indices. Agron. J. 2021, 113, 2782–2797. [Google Scholar] [CrossRef]
Treatments | Specification | Description |
---|---|---|
AWP | Seeding date = 6 November 2020 Seeding rate = 67 kg/ha Harvesting data = 29 April 2021 | AWP is a legume cover crop that can improve soil health, thus enhancing the soil’s physical, chemical, and biological properties. It improves nutrient cycling, increases nitrogen, sequesters carbon, and enhances soil aggregation, water infiltration, storage capacity, and use efficiency [54,55]. |
Biochar | Quantity = 15 t/ha Application date = 12 November 2020 | Biochar is a soil amendment. It is made from sugarcane bagasse (sugarcane stalk residue after juice extraction). It increases soil organic carbon, soil pH, and microbial activity, improving soil structure, soil porosity, soil water holding capacity, cation exchange capacity, nutrient cycling, and plant growth and yields [56,57]. |
Gypsum | Quantity = 2 t/ha Application date = 20 November 2020 | Gypsum (Calcium sulfate) is a soil amendment. It improves soil fertility by increasing sulfur, phosphorus, calcium, magnesium, manganese, and enhances plant nitrogen use efficiency [58,59]. |
Fallow | Left bare during the winter period from November 2020 to April 2021. | This is the common practice in the Delta, Mississippi between harvest and planting. The soil is exposed to erosion with essential nutrients susceptible to losses through leaching or runoff. |
VIs | Equation | References |
---|---|---|
CARI | [60] | |
CCCI | [61] | |
CIRE | [31] | |
CVI | [62] | |
EVI2 | [17] | |
GCVI | [63] | |
GNDVI | [34] | |
IV1 | [34] | |
IV2 | [34] | |
IV3 | [34] | |
LNRE | [34] | |
MSAVI2 | [34] | |
MTVI | [5] | |
MTVI2 | [5] | |
NAVI | [62] | |
NCMI | [64] | |
NDRE | [34] | |
NDVI | [34] | |
NGRDI | [65] | |
OSAVI | [66] | |
RDVI | [32] | |
RECI | [65] | |
SAVI | [34] | |
SCCCI | [34] | |
TCARI | ) | [5] |
TVI | [5] |
Degrees of Freedom | Sum of Squares | Mean of the Sum Squares | F-Value | Pr(>F) | |
---|---|---|---|---|---|
Treatment | 3 | 9.18 | 3.06 | 0.98 | 0.41 |
Residuals | 60 | 187.52 | 3.13 |
Vegetative (V6) | Reproductive (R5) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AWP | ||||||||||
Rede | NIR | CVI | CARI | NIR | SCCCI | NCMI | IV3 | GNDVI | ||
Yield | 0.40 | 0.32 | 0.02 | 0.14 | Yield | −0.17 | −0.08 | −0.25 | 0.11 | −0.31 |
Rede | 1.00 | 0.60 | 0.28 | 0.73 | NIR | 1.00 | −0.10 | 0.65 | 0.05 | 0.71 |
NIR | 1.00 | 0.61 | 0.69 | SCCI | 1.00 | 0.19 | −0.23 | −0.19 | ||
CVI | 1.00 | 0.69 | NCMI | 1.00 | −0.44 | 0.74 | ||||
IV3 | 1.00 | −0.34 | ||||||||
Biochar | ||||||||||
Green | NGRDI | CCCI | Rede | TCARI | SCCCI | |||||
Yield | 0.45 | −0.33 | −0.63 | Yield | −0.60 | −0.42 | −0.31 | |||
Green | 1.00 | −0.61 | −0.16 | Rede | 1.00 | 0.74 | 0.49 | |||
NGRDI | 1.00 | −0.03 | TCARI | 1.00 | 0.60 | |||||
Gypsum | ||||||||||
Green | RECI | CCCI | Green | NGRDI | IV3 | CVI | ||||
Yield | 0.53 | −0.59 | −0.57 | Yield | 0.69 | 0.40 | 0.53 | −0.50 | ||
Green | 1.00 | −0.67 | −0.43 | Green | 1.00 | 0.33 | 0.71 | −0.65 | ||
RECI | 1.00 | 0.39 | NGRDI | 1.00 | −0.18 | −0.73 | ||||
IV3 | 1.00 | −0.22 | ||||||||
Fallow | ||||||||||
Rede | CARI | Green | SCCCI | NDRE | CVI | CARI | ||||
Yield | −0.47 | −0.87 | Yield | 0.36 | 0.41 | −0.11 | −0.69 | 0.47 | ||
Rede | 1.00 | 0.65 | Green | 1.00 | −0.32 | 0.19 | −0.13 | −0.23 | ||
SCCI | 1.00 | −0.04 | −0.13 | 0.39 | ||||||
NDRE | 1.00 | 0.41 | −0.47 | |||||||
CVI | 1.00 | −0.72 | ||||||||
All treatments | ||||||||||
Green | MTVI2 | CCCI | CVI | GCVI | Green | IV3 | ||||
Yield | 0.51 | −0.36 | −0.28 | Yield | −0.40 | −0.39 | 0.35 | 0.20 | ||
Green | 1.00 | −0.67 | −0.22 | CVI | 1.00 | 0.41 | −0.24 | 0.27 | ||
MTVI2 | 1.00 | 0.16 | GCVI | 1.00 | −0.39 | −0.23 | ||||
Green | 1.00 | 049 |
Number of Suitable Variables | ||||||||
---|---|---|---|---|---|---|---|---|
One | Two | Three | Four | |||||
AWP | ||||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
LR | 0.62 | 1.12 | 0.55 | 1.21 | 0.53 | 1.18 | 0.52 | 1.32 |
RF | 0.68 | 1.02 | 0.66 | 1.09 | 0.62 | 1.09 | 0.57 | 1.12 |
KNN | 0.69 | 1.05 | 0.65 | 1.13 | 0.61 | 1.23 | 0.58 | 1.85 |
SVR | 0.65 | 1.17 | 0.58 | 1.39 | 0.53 | 1.41 | 0.64 | 2.45 |
DNN | 0.58 | 1.57 | 0.67 | 1.62 | 0.64 | 1.67 | 0.62 | 1.83 |
Biochar | ||||||||
LR | 0.59 | 1.44 | 0.55 | 1.59 | 0.54 | 1.70 | ||
RF | 0.63 | 1.27 | 0.61 | 1.35 | 0.62 | 1.42 | ||
KNN | 0.64 | 1.70 | 0.66 | 1.20 | 0.68 | 1.29 | ||
SVR | 0.62 | 1.48 | 0.67 | 1.19 | 0.56 | 1.41 | ||
DNN | 0.57 | 1.74 | 0.71 | 1.08 | 0.67 | 1.29 | ||
Gypsum | ||||||||
LR | 0.59 | 1.56 | 0.58 | 1.66 | 0.57 | 1.79 | ||
RF | 0.51 | 1.90 | 0.56 | 1.74 | 0.58 | 1.64 | ||
KNN | 0.60 | 1.73 | 0.61 | 1.49 | 0.65 | 1.75 | ||
SVR | 0.62 | 1.87 | 0.58 | 1.65 | 0.57 | 1.52 | ||
DNN | 0.55 | 3.21 | 0.51 | 2.80 | 0.54 | 2.26 | ||
Fallow | ||||||||
LR | 0.84 | 0.96 | 0.81 | 1.00 | ||||
RF | 0.74 | 1.03 | 0.73 | 1.09 | ||||
KNN | 0.84 | 1.25 | 0.79 | 1.60 | ||||
SVR | 0.84 | 0.69 | 0.78 | 1.15 | ||||
DNN | 0.78 | 0.99 | 0.68 | 1.74 | ||||
All treatments (i.e., combined AWP, biochar, gypsum, and fallow) | ||||||||
LR | 0.32 | 1.52 | 0.31 | 1.54 | 0.28 | 1.60 | ||
RF | 0.16 | 1.80 | 0.19 | 1.69 | 0.17 | 1.68 | ||
KNN | 0.30 | 1.62 | 0.31 | 1.54 | 0.28 | 1.55 | ||
SVR | 0.33 | 1.52 | 0.36 | 1.48 | 0.29 | 1.57 | ||
DNN | 0.16 | 2.72 | 0.18 | 2.29 | 0.17 | 1.99 |
Number of Suitable Variables | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
One | Two | Three | Four | Five | ||||||
AWP | ||||||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
LR | 0.49 | 1.15 | 0.48 | 1.31 | 0.51 | 1.39 | 0.53 | 1.62 | 0.55 | 1.83 |
RF | 0.50 | 1.38 | 0.51 | 1.39 | 0.51 | 1.33 | 0.50 | 1.18 | 0.45 | 1.17 |
KNN | 0.64 | 1.13 | 0.59 | 1.13 | 0.52 | 1.31 | 0.54 | 1.12 | 0.54 | 1.19 |
SVR | 0.66 | 1.68 | 0.59 | 1.46 | 0.51 | 1.42 | 0.45 | 1.20 | 0.47 | 1.77 |
DNN | 0.55 | 2.03 | 0.55 | 2.15 | 0.49 | 1.68 | 0.49 | 1.28 | 0.54 | 1.17 |
Biochar | ||||||||||
LR | 0.64 | 1.52 | 0.58 | 1.67 | 0.58 | 1.99 | ||||
RF | 0.66 | 1.55 | 0.61 | 1.67 | 0.61 | 1.73 | ||||
KNN | 0.61 | 1.60 | 0.56 | 1.68 | 0.64 | 1.65 | ||||
SVR | 0.60 | 1.57 | 0.60 | 1.60 | 0.64 | 1.87 | ||||
DNN | 0.74 | 1.27 | 0.55 | 2.84 | 0.50 | 3.04 | ||||
Gypsum | ||||||||||
LR | 0.74 | 1.39 | 0.68 | 1.57 | 0.57 | 1.78 | 0.49 | 1.74 | ||
RF | 0.71 | 1.17 | 0.72 | 1.25 | 0.68 | 1.33 | 0.63 | 1.39 | ||
KNN | 0.80 | 1.35 | 0.69 | 1.76 | 0.71 | 1.63 | 0.69 | 1.58 | ||
SVR | 0.74 | 1.08 | 0.66 | 1.21 | 0.70 | 1.45 | 0.69 | 1.48 | ||
DNN | 0.71 | 1.37 | 0.63 | 1.52 | 0.69 | 1.64 | 0.60 | 1.58 | ||
Fallow | ||||||||||
LR | 0.72 | 1.59 | 0.67 | 1.67 | 0.72 | 1.51 | 0.77 | 1.26 | 0.77 | 1.34 |
RF | 0.75 | 1.30 | 0.75 | 1.34 | 0.77 | 1.30 | 0.84 | 1.22 | 0.80 | 1.31 |
KNN | 0.76 | 1.23 | 0.75 | 1.26 | 0.77 | 1.29 | 0.81 | 1.41 | 0.77 | 1.39 |
SVR | 0.83 | 1.05 | 0.83 | 1.08 | 0.80 | 1.28 | 0.82 | 1.23 | 0.80 | 1.28 |
DNN | 0.72 | 1.72 | 0.59 | 2.31 | 0.59 | 3.19 | 0.72 | 1.69 | 0.69 | 1.72 |
All treatments | ||||||||||
LR | 0.23 | 1.64 | 0.25 | 1.60 | 0.25 | 1.58 | 0.25 | 1.58 | ||
RF | 0.27 | 1.60 | 0.28 | 1.56 | 0.31 | 1.52 | 0.31 | 1.52 | ||
KNN | 0.36 | 1.45 | 0.38 | 1.45 | 0.40 | 1.40 | 0.40 | 1.40 | ||
SVR | 0.36 | 1.45 | 0.41 | 1.43 | 0.40 | 1.41 | 0.40 | 1.41 | ||
DNN | 0.15 | 1.88 | 0.17 | 2.25 | 0.18 | 2.28 | 0.18 | 2.28 |
LR | RF | KNN | SVR | DNN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
Austrian Winter Peas | ||||||||||
V6 | 0.62 | 1.12 | 0.68 | 1.02 | 0.69 | 1.05 | 0.65 | 1.17 | 0.67 | 1.62 |
R5 | 0.55 | 1.83 | 0.51 | 1.33 | 0.64 | 1.13 | 0.66 | 1.68 | 0.54 | 1.17 |
Biochar | ||||||||||
V6 | 0.59 | 1.44 | 0.63 | 1.27 | 0.68 | 1.29 | 0.67 | 1.19 | 0.71 | 1.08 |
R5 | 0.64 | 1.52 | 0.66 | 1.55 | 0.64 | 1.65 | 0.64 | 1.87 | 0.74 | 1.27 |
Gypsum | ||||||||||
V6 | 0.59 | 1.56 | 0.58 | 1.64 | 0.65 | 1.75 | 0.62 | 1.87 | 0.54 | 2.26 |
R5 | 0.74 | 1.39 | 0.72 | 1.25 | 0.80 | 1.35 | 0.74 | 1.08 | 0.71 | 1.37 |
Fallow | ||||||||||
V6 | 0.84 | 0.96 | 0.74 | 1.03 | 0.84 | 1.25 | 0.84 | 0.69 | 0.78 | 0.99 |
R5 | 0.77 | 1.26 | 0.84 | 1.22 | 0.77 | 1.29 | 0.83 | 1.05 | 0.72 | 1.69 |
All treatments | ||||||||||
V6 | 0.32 | 1.52 | 0.19 | 1.68 | 0.31 | 1.54 | 0.36 | 1.48 | 0.18 | 1.99 |
R5 | 0.25 | 1.58 | 0.31 | 1.52 | 0.40 | 1.40 | 0.41 | 1.41 | 0.18 | 1.88 |
Best-Performing ML Model (V6 and R5) | Optimal Hyperparameter Value (V6 and R5) | Grid Search Space (V6 and R5) | ||
---|---|---|---|---|
AWP | KNN | K = 5 | K = 13 | K = 1, 3, 5, 7, 9, 11, 13, 15 |
Gypsum | KNN | K = 5 | K = 3 | |
Biochar | DNN | Layer1, layer2, layer3 = 7 | Layer1, layer2, layer3 = 11 | Layer1, layer2, and layer3 = 1 to 15. |
Fallow | SVR | C = 10 Sigma = 0.412 | C = 30 Sigma = 0.711 | C = 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100. Sigma (V6) = 0.412, 0.917, 3.185. Sigma (R5) = 0.189, 0.711, 8.714. |
All treatments | SVR | C = 1 Sigma = 0.148 | C = 5 Sigma = 0.387 | C = 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100. Sigma (V6) = 0.148, 1.855, 111.72. Sigma (R5) = 0.120, 0.387, 1.878. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, C.; Mubvumba, P.; Huang, Y.; Dhillon, J.; Reddy, K. Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models. Agronomy 2023, 13, 1277. https://doi.org/10.3390/agronomy13051277
Kumar C, Mubvumba P, Huang Y, Dhillon J, Reddy K. Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models. Agronomy. 2023; 13(5):1277. https://doi.org/10.3390/agronomy13051277
Chicago/Turabian StyleKumar, Chandan, Partson Mubvumba, Yanbo Huang, Jagman Dhillon, and Krishna Reddy. 2023. "Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models" Agronomy 13, no. 5: 1277. https://doi.org/10.3390/agronomy13051277
APA StyleKumar, C., Mubvumba, P., Huang, Y., Dhillon, J., & Reddy, K. (2023). Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models. Agronomy, 13(5), 1277. https://doi.org/10.3390/agronomy13051277