Spring-Planted Cover Crop Impact on Weed Suppression, Productivity, and Feed Quality of Forage Crops in Northern Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Field Management
2.3. Climate Conditions of Survey Area
2.4. Data Recording
2.5. Statistical Analysis
3. Results and Discussion
3.1. Field Germination of Seeds and Plant Density before Harvesting
3.2. Weed Suppression
3.3. Green Mass Yields
3.4. Chemical Composition of the Hay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Eerd, L.; Chahal, I.; Peng, Y.; Awrey, J. Influence of cover crops at the four spheres: A review of ecosystem services, potential barriers, and future directions for North America. Sci. Total Environ. 2023, 858, 159990. [Google Scholar] [CrossRef] [PubMed]
- Mirsky, S.B.; MRyan, R.; Teasdale, J.R.; Curran, W.S.; Reberg-Horton, C.S.; Spargo, J.T.; Wells, M.S.; Keene, C.L.; Moyer, J.W. Overcoming weed management challenges in cover crop-based organic rotational no-till soybean production in the eastern United States. Weed Technol. 2013, 27, 193–203. [Google Scholar] [CrossRef]
- Baitelenova, A.; Kurbanbayev, A.; Stybayev, G.; Mukhanov, N.; Amantaev, B. Photosynthetic potential and productivity of annual mixed crops in northern Kazakhstan. Bulg. J. Agric. Sci. 2021, 27, 85–94. [Google Scholar]
- Holman, J.D.; Arnet, K.; Dille, J.; Maxwell, S.; Obour, A.; Roberts, T.; Roozeboom, K.; Schlegel, A. Can cover or forage crops replace fallow in the semiarid central Great Plains? Crop Sci. 2018, 58, 932–944. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Oliveira, M.J. Comparison of the critical period for weed control in wide- and narrow-row corn. Weed Sci. 2004, 52, 802–807. [Google Scholar] [CrossRef]
- Ghadamkheir, M.; Vladimirovich, K.P.; Orujov, E.; Bayat, M.; Madumarov, M.M.; Avdotyin, V.; Zargar, M. Influence of sulfur fertilization on infection of wheat Take-all disease caused by the fungus Gaeumannomyces graminis var. tritici. Res. Crop. 2020, 21, 627–633. [Google Scholar]
- Obour, A.K.; Dille, J.; Holman, J.; Simon, L.M.; Sancewich, B.; Kumar, V. Spring-planted cover crop effects on weed suppression, crop yield, and net returns in no-tillage dryland crop production. Crop Sci. 2022, 62, 1981–1996. [Google Scholar] [CrossRef]
- Wittwer, R.A.; Dorn, B.; Jossi, W.; Van Der Heijden, M.G.A. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 2017, 7, 41911. [Google Scholar] [CrossRef]
- Brennan, E.B.; Smith, R.F. Winter cover crop growth and weed suppression on the Central Coast of California. Weed Technol. 2005, 19, 1017–1024. [Google Scholar] [CrossRef]
- Kunz, C.; Sturm, D.J.; Sökefeld, M.; Gerhards, R. Weed suppression and early sugar beet development under different cover crop mulches. Plant Prot. Sci. 2016, 52, 187–193. [Google Scholar] [CrossRef]
- Bayat, M.; Zargar, M.; Chudinova, E.; Astarkhanova, T.; Pakina, E. In Vitro Evaluation of Antibacterial and Antifungal Activity of Biogenic Silver and Copper Nanoparticles: The First Report of Applying Biogenic Nanoparticles against Pilidium concavum and Pestalotia sp. Fungi. Molecules 2021, 26, 5402. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res. 2014, 117, 17–27. [Google Scholar] [CrossRef]
- Chalise, K.S.; Singh, S.; Wegner, B.R.; Kumar, S.; Pérez-Gutiérrez, J.D.; Osborne, S.L.; Nleya, T.; Guzman, J.; Rohila, J.S. Cover crops and returning residue impact on soil organic carbon, bulk density, penetration resistance, water retention, infiltration, and soybean yield. Agron. J. 2019, 111, 99–108. [Google Scholar] [CrossRef]
- Aronsson, H.; Hansen, E.M.; Thomsen, I.K.; Liu, J.; Øgaard, A.F.; Känkänen, H.; Ulén, B.J.J.O. The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland. J. Soil Water Conserv. 2016, 71, 41–55. [Google Scholar] [CrossRef]
- Kälber, T.; Meier, J.S.; Kreuzer, M.; Leiber, F. Flowering catch crops used as forage plants for dairy cows: Influence on fatty acids and tocopherols in milk. J. Dairy Sci. 2011, 94, 1477–1489. [Google Scholar] [CrossRef]
- Sagalbekov, U.M.; Seitmaganbetova, G.T.; Ordabaev, S.T. The technology of creating a grass stand. Natl. Assoc. Sci. 2017, 6–411, 5–7. [Google Scholar]
- Knezevic, S.Z.; Evans, S.P.; Blankenship, E.E.; Van Acker, R.C.; Lindquist, J.L.; Evans, S.P.; Blankenship, E.E. The critical period for weed control: The concept and data analysis. Weed Sci. 2002, 50, 773–786. [Google Scholar] [CrossRef]
- Michałowski, T.; Asuero, A.G.; Wybraniec, S. The Titration in the Kjeldahl Method of Nitrogen Determination: Base or Acid as Titrant? J. Chem. Educ. 2013, 90, 191–197. [Google Scholar] [CrossRef]
- Holman, J.D.; Obour, A.K.; Assefa, Y. Productivity and profitability with fallow replacement forage, grain, and cover crops in W-S-F rotation. Crop Sci. 2021, 62, 913–927. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Vigil, M.F. Wheat yield and yield stability of eight dryland crop rotations. Agron. J. 2018, 110, 594–601. [Google Scholar] [CrossRef]
- Weil, R.; Kremen, A. Thinking across and beyond disciplines to make cover crops pay. J. Sci. Food Agric. 2007, 87, 551–557. [Google Scholar] [CrossRef]
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds. Distribution and Biology; Krieger Publishing Company: Malabar, FL, USA, 1991; 609p. [Google Scholar]
- O’Reilly, K.A.; Robinson, D.E.; Vyn, R.J.; Van Eerd, L.L. Weed populations, sweet corn yield, and economics following fall cover crops. Weed Technol. 2011, 25, 374–384. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Dille, J.A.; Assefa, Y.; Radicetti, E.; Ayeni, A.; Knezevic, S.Z. Impact of cover crop management on level of weed suppression: A meta-analysis. Crop Sci. 2019, 59, 833–842. [Google Scholar] [CrossRef]
- Petrosino, J.S.; Dille, J.A.; Holman, J.D.; Roozeboom, K.L. Kochia suppression with cover crops in southwestern Kansas. Crop Forage Turfgrass Manag. 2015, 1, 1–8. [Google Scholar] [CrossRef]
- Todd, F.G.; Stermitz, F.R.; Schultheis, P.; Knight, A.P.; Traub-Dargatz, J. Tropane alkaloids and toxicity of Convolvulus arvensis. Phytochemistry 1995, 39, 301–303. [Google Scholar] [CrossRef]
- Masilionyte, L.; Maiksteniene, S.; Kriauciuniene, Z.; Jablonskyte-Rasce, D.; Zou, L.; Sarauskis, E. Effect of cover crops in smothering weeds and volunteer plants in alternative farming systems. Crop Prot. 2017, 91, 74–81. [Google Scholar] [CrossRef]
- Vujić, S.; Krstić, D.; Mačkić, K.; Čabilovski, R.; Radanović, Z.; Zhan, A.; Ćupina, B. Effect of winter cover crops on water soil storage, total forage production, and quality of silage corn. Eur. J. Agron. 2021, 130, 126366. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. Cover crop impacts on soil physical properties: A review. Soil Sci. Soc. Am. J. 2020, 84, 1527–1576. [Google Scholar] [CrossRef]
- Toom, M.; Tamm, S.; Talgre, L.; Tamm, I.; Tamm, Ü.; Narits, L.; Hiiesalu, I.; Mäe, A.; Lauringson, E. The effect of cover crops on the yield of spring barley in Estonia. Agriculture 2019, 9, 172. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Udawatta, R.P.; Gantzer, C.J.; Phillips, N.C.; Cui, S.; Gao, Y. Improving soil physical properties through the use of cover crops: A review. Agrosystems Geosci. Environ. 2020, 3, e20105. [Google Scholar] [CrossRef]
- Nasiyev, B.; Zhanatalapov, N.; Yessenguzhina, A.; Yeleshev, R. The use of Sudan grass for the production of green fodder, hay, and haylage in Western Kazakhstan. Ecol. Environ. Conserv. 2019, 25, 767–774. [Google Scholar]
- Ziki, S.J.L.; Zeidan, E.M.I.; El-Banna, A.Y.A.; Omar, A.E.A. Influence of cutting date and nitrogen fertilizer levels on growth, forage yield, and quality of Sudan grass in a semiarid environment. Int. J. Agron. 2019, 2019, 6972639. [Google Scholar] [CrossRef]
- Vasin, V.G.; Tcybulskii, A.V.; Vasin, A.V.; Kiseleva, L.V.; Kozhevnikova, O.P.; Saniev, R.N.; Adamov, A.A. Productivity, quality, and amino acid composition of Sudan grass and sunflower mixtures grown with soybean and/or spring vetch for haylage-silage use. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 1230–1241. [Google Scholar]
- Hartwig, N.L.; Ammon, H.U. Cover crops and living mulches. Weed Sci. 2020, 50, 688–699. [Google Scholar] [CrossRef]
- Drewnoski, M.; Parsons, J.; Blanco, H.; Redfearn, D.; Hales, K.; MacDonald, J. Forages and pastures symposium: Cover crops in livestock production: Whole-system approach. Can cover crops pull double duty: Conservation and profitable forage production in the Midwestern United States? J. Anim. Sci. 2018, 96, 3503–3512. [Google Scholar] [CrossRef]
- Cupina, B.; Vujic, S.; Krstic, D.; Radanovic, Z.; Cabilovski, R.; Manojlovic, M.; Latkovic, D. Winter cover crops as green manure in a temperate region: The effect on nitrogen budget and yield of silage maize. Crop Pasture Sci. 2017, 68, 1060–1069. [Google Scholar] [CrossRef]
- Adigun, J.; Osipitan, A.O.; Lagoke, S.T.; Adeyemi, R.O.; Afolami, S.O. The growth and yield performance of cowpea (Vigna unguiculata (L.) Walp) are influenced by row-spacing and weed interference in southwest Nigeria. J. Agric. Sci. 2014, 6, 188–198. [Google Scholar] [CrossRef]
- Amadou, I.; Gounga, M.E.; Le, G.W. Millets: Nutritional composition, some health benefits, and processing-A review. Emir. J. Food Agric. 2013, 25, 501–508. [Google Scholar] [CrossRef]
Sowing Characteristics | Sudan Grass | Common Millet | Japanese Millet | Pea | Oats | Barley |
---|---|---|---|---|---|---|
Sowing date | 15–18 May | 15–20 May | 15–22 May | 18–22 May | 15–20 May | 18–20 May |
Depth of sowing (cm) | 6–7 | 6–7 | 6–7 | 5–6 | 6–7 | 6–7 |
Sowing rate (kg) | 38 | 21.4 | 11 | 180 | 120 | 130 |
Plant density (plant m2) | 120 | 110 | 120 | 80 | 280 | 300 |
Layers, cm | Organic Matter, % | Nitrogen, mg/kg | Phosphorus, mg/kg | Potassium, mg/kg | Sulfur, mg/kg | pH |
---|---|---|---|---|---|---|
0–20 | 2.78 | 8.87 | 24.86 | 614.61 | 4.19 | 7.4 |
20–40 | 2.35 | 8.09 | 11.70 | 429.83 | 6.06 | 7.5 |
Variables | Plant Density in Full Shoots Stage | Seed Germination | Plant Density before Harvest | |||
---|---|---|---|---|---|---|
Plants m2 | +/− Control | % | +/− Control | Plants m2 | +/− Control | |
Without cover crop | ||||||
Sudan grass (control) | 69 ± 4.1 d | - | 69.1 ± 3.2 ab | - | 60 ± 3.4 c | - |
Common millet | 101 ± 5.2 c | 32 | 50.6 ± 3.9 d | −18.5 | 82 ± 5.5 b | 22 |
Japanese millet | 145 ± 8.6 a | 76 | 72.5 ± 2.8 a | 3.4 | 104 ± 6.7 a | 43 |
Pea + barley | 127 ± 6.6 b | - | 63.5 ± 3.1 c | - | 68 ± 3.3 c | - |
Pea + Sudan grass + barley | 106 ± 7.5 c | −21 | 52.9 ± 4.4 d | −10.6 | 63 ± 3.6 c | 13 |
Pea + Sudan grass | 136 ± 5.8 ab | 9 | 68.1 ± 3.7 b | 4.6 | 65 ± 4.1 c | -4 |
p-value | 0.0211 | - | 0.028 | - | 0.008 | - |
Coefficient of variation (%) | 8.05 | - | 5.89 | 4.64 | 8.91 | - |
With cover crop | ||||||
Sudan grass (control) | 90 ± 4.0 cd | - | 60.0 ± 2.5 c | - | 53 ± 2.2 c | - |
Common millet | 97 ± 3.8 c | 7 | 68.5 ± 1.8 b | 8.5 | 66 ± 2.8 b | 13 |
Japanese millet | 96 ± 2.8 c | 0 | 60.0 ± 1.9 c | 0 | 67 ± 3.0 b | 4 |
Pea + barley | 120 ± 6.6 ab | - | 60.0 ± 3.2 c | - | 102 ± 4.8 a | - |
Pea + Sudan grass + barley | 125 ± 5.7 ab | 5 | 72.0 ± 3.7 a | 12 | 98 ± 4.0 a | − 4 |
Pea + Sudan grass | 133 ± 7.7 a | 13 | 44.4 ± 0.9 d | −15.6 | 72 ± 2.7 | −30 |
p-value | 0.0025 | - | 0.020 | - | 0.0105 | - |
Coefficient of variation (%) | 9.09 | - | 3.55 | - | 6.81 | - |
Variables | Total Weed Density | Wild Oat | Field Bindweed | |||
---|---|---|---|---|---|---|
Plants m2 | +/− Control | Plants m2 | +/− Control | Plants m2 | +/− Control | |
Without cover crop | ||||||
Sudan grass (control) | 28 ± 1.2 c | - | 16 ± 1.0 d | - | 12 ± 1.1 b | - |
Common millet | 39 ± 0.9 b | 11.0 | 24 ± 0.6 b | 8.0 | 15 ± 2.2 a | 3.0 |
Japanese millet | 45 ± 2.2 a | 17.0 | 31 ± 1.6 a | 15.0 | 14 ± 0.9 a | 2.0 |
Pea + barley | 24 ± 0.8 cd | −5 | 13 ± 0.3 de | -3.0 | 11 ± 0.5 b | −1.0 |
Pea + Sudan grass + barley | 18 ± 1.4 d | −10.0 | 18 ± 2.6 c | 2.0 | 7 ± 0.7 d | −5 |
Pea + Sudan grass | 21 ± 2.1 d | −7.0 | 21 ± 3.0 bc | 5.0 | 9 ± 0.8 c | −3 |
p-value | 0.052 | - | 0.020 | - | 0.022 | - |
Coefficient of variation (%) | 6.85 | - | 4.99 | 2.10 | 2.00 | - |
With cover crop | ||||||
Sudan grass (control) | 9 ± 0.5 c | - | 7 ± 1.1 d | - | 2 ± 0.4 c | - |
Common millet | 18 ± 3.8 b | 9.0 | 13 ± 2.5 b | 6.0 | 5 ± 0.9 a | 3.0 |
Japanese millet | 28 ± 4.2 a | 19.0 | 24 ± 2.6 a | 17.0 | 4 ± 0.2 ab | 2.0 |
Pea + barley | 6 ± 0.4 d | −3 | 5 ± 0.3 e | -2.0 | 1 ± 0.3 d | −1 |
Pea + Sudan grass + barley | 7 ± 0.9 d | −2.0 | 7 ± 0.7 d | - | 1.5 ± 0.5 d | −0.5 |
Pea + Sudan grass | 10 ± 1.2 c | 1.0 | 10 ± 1.8 c | 5.0 | 3 ± 0.6 b | 1 |
p-value | 0.0205 | - | 0.0090 | - | 0.0041 | - |
Coefficient of variation (%) | 7.18 | - | 3.88 | 10.05 | - |
Variables | 2020 | 2021 | Average 2020–2021 | ||
---|---|---|---|---|---|
Green Mass Yield t ha−1 | +/− Control | Green Mass Yield t ha−1 | +/− Control | Green Mass Yield t ha−1 | |
Without cover crop | |||||
Sudan grass (control) | 18.9 ± 0.2 b | - | 15.0 ± 0.8 c | - | 16.9 |
Common millet | 15.3 ± 0.5 d | −3.6 | 12.3 ± 1.0 d | −2.7 | 13.8 |
Japanese millet | 11.1 ± 0.8 e | −7.8 | 10.0 ± 0.7 de | −3.0 | 10.5 |
Pea + barley | 17.1 ± 2.0 bc | - | 15.1 ± 1.1 c | - | 16.4 |
Pea + Sudan grass + barley | 27.6 ± 3.2 a | 9.8 | 16.3 ± 2.0 b | 1.2 | 21.9 |
Pea + Sudan grass | 26.0 ± 3.8 ab | 8.3 | 20.0 ± 2.5 a | 6.1 | 23.0 |
p-value | 0.22 | - | 0.20 | - | - |
Coefficient of variation (%) | 2.08 | - | 9.01 | - | 7.83 |
With cover crop | |||||
Sudan grass (control) | 20.2 ± 1.8 bc | - | 18.2 ± 2.4 bc | - | 19.2 |
Common millet | 17.5 ± 1.4 c | −2.7 | 15.4 ± 1.7 d | −2.8 | 16.4 |
Japanese millet | 23.3 ± 2.8 b | 2.1 | 12.4 ± 1.8 de | −5.8 | 17.3 |
Pea + barley | 23.7 ± 2.7 b | - | 19.5 ± 2.0 b | - | 21.6 |
Pea + Sudan grass + barley | 29.2 ± 3.1 a | 5.5 | 17.8 ± 1.7 c | −1.7 | 23.5 |
Pea + Sudan grass | 30.4 ± 3.9 a | 6.7 | 24.6 ± 3.2 a | 5.1 | 27.5 |
p-value | 0.020 | - | 0.023 | - | - |
Coefficient of variation (%) | 6.61 | - | 3.55 | - | - |
Chemical Composition (g kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Dry Matter g kg−1 | Protein | Fat | Fiber | Ash | Sugar | Carotene | Ca | p |
Without cover crop | |||||||||
Sudan grass (control) | 952.2 a | 101.7 a | 27.5 a | 304.9 ab | 88.3 b | 45.1 d | 19.4 a | 9.7 d | 2.3 c |
Common millet | 947.3 a | 90.7 b | 27.6 a | 303.2 ab | 92.5 a | 32.3 e | 19.85 a | 11.1 c | 2.3 c |
Japanese millet | 794.7 c | 92.0 b | 24.2 ab | 265.8 c | 70.9 c | 83.2 bc | 16.7 b | 11.5 c | 3.2 a |
Pea + barley (Control) | 925.3 ab | 105.9 a | 20.5 b | 306.3 ab | 87.3 b | 91.7 ab | 15.5 b | 15.3 a | 3.1 ab |
Pea + Sudan grass + barley | 921.6 ab | 96.4 ab | 15.2 c | 319.7 a | 82.6 bc | 87.1 b | 11.3 c | 15.5 a | 3.2 a |
Pea + Sudan grass | 930.4 a | 104.0 a | 24.0 a | 320.3 a | 70.3 c | 99.8 a | 14.8 b | 14.2 b | 3.4 a |
p-value | 1.051 | 0.021 | 1.022 | 0.022 | 0.001 | 1.025 | 0.051 | 0.009 | 1.0 |
Coefficient of variation (%) | 6.25 | 2.05 | 6.60 | 4.52 | 1.08 | 7.75 | 5.18 | 8.19 | 3.3 |
With cover crop | |||||||||
Sudan grass (control) | 972.2 a | 111.7 a | 37.6 a | 314.9 b | 98.3 a | 55.1 d | 29.8 a | 19.7 cd | 3.3 b |
Common millet | 953.3 ab | 96.2 b | 37.4 a | 313.2 b | 102.0 a | 42.3 e | 29.3 a | 21.0 c | 3.3 b |
Japanese millet | 824.7 c | 102.0 ab | 34.2 ab | 275.8 c | 80.9 c | 93.2 bc | 26.7 ab | 21.5 c | 4.2 a |
Pea + barley | 945.3 ab | 115.1 a | 30.5 b | 316.3 b | 97.3 ab | 101.7 ab | 25.5 b | 25.0 a | 4.1 a |
Pea + Sudan grass + barley | 941.6 ab | 106.4 a | 25.2 c | 329.7 a | 92.6 b | 97.1 b | 21.3 c | 25.5 a | 4.2 a |
Pea + Sudan grass | 940.4 ab | 114.0 a | 34.0 ab | 330.3 a | 80.3 c | 109.7 a | 24.8 bc | 24.2 b | 4.4 a |
p-value | 0.020 | 0.020 | 0.009 | 0.007 | 0.018 | 0.010 | 0.087 | 0.069 | 0.001 |
Coefficient of variation (%) | 10.28 | 2.08 | 6.17 | 8.11 | 6.19 | 9.27 | 4.37 | 3.88 | 7.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stybayev, G.; Zargar, M.; Serekpayev, N.; Zharlygassov, Z.; Baitelenova, A.; Nogaev, A.; Mukhanov, N.; Elsergani, M.I.M.; Abdiee, A.A.A. Spring-Planted Cover Crop Impact on Weed Suppression, Productivity, and Feed Quality of Forage Crops in Northern Kazakhstan. Agronomy 2023, 13, 1278. https://doi.org/10.3390/agronomy13051278
Stybayev G, Zargar M, Serekpayev N, Zharlygassov Z, Baitelenova A, Nogaev A, Mukhanov N, Elsergani MIM, Abdiee AAA. Spring-Planted Cover Crop Impact on Weed Suppression, Productivity, and Feed Quality of Forage Crops in Northern Kazakhstan. Agronomy. 2023; 13(5):1278. https://doi.org/10.3390/agronomy13051278
Chicago/Turabian StyleStybayev, Gani, Meisam Zargar, Nurlan Serekpayev, Zhenis Zharlygassov, Aliya Baitelenova, Adilbek Nogaev, Nurbolat Mukhanov, Mohamed Ibrahim Mohamed Elsergani, and Aldaibe Ahmed Abdalbare Abdiee. 2023. "Spring-Planted Cover Crop Impact on Weed Suppression, Productivity, and Feed Quality of Forage Crops in Northern Kazakhstan" Agronomy 13, no. 5: 1278. https://doi.org/10.3390/agronomy13051278
APA StyleStybayev, G., Zargar, M., Serekpayev, N., Zharlygassov, Z., Baitelenova, A., Nogaev, A., Mukhanov, N., Elsergani, M. I. M., & Abdiee, A. A. A. (2023). Spring-Planted Cover Crop Impact on Weed Suppression, Productivity, and Feed Quality of Forage Crops in Northern Kazakhstan. Agronomy, 13(5), 1278. https://doi.org/10.3390/agronomy13051278