Maize/Peanut Intercropping Reduces Carbon Footprint Size and Improves Net Ecosystem Economic Benefits in the Huang-Huai-Hai Region: A Four-Year Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling and Measurements
2.3.1. Crop Productivity
2.3.2. Greenhouse Gas Emissions
2.3.3. Carbon Footprint Calculations
CNPP = −(CG + CS + CR + CE) × 44/12
CG = Grain biomass × C content
CS = Straw biomass × C content
CR = Root biomass × C content
CE = NPP × 0.11
CExport = (CG + CS) × 44/12
2.3.4. NEEB Calculations
2.4. Statistical Analysis
3. Results
3.1. Maize and Peanut Yields under Different Cropping Systems
3.2. Direct Soil GHG Emissions
3.3. CO2 Fixation of NPP, Equivalent CO2 Emissions, and Composition
3.4. Comparison of the Carbon Footprint Size Associated with Different Cropping Systems
3.5. Net Ecosystem Economic Benefit Calculations
4. Discussion
4.1. The Relationship between Intercropping and Crop Productivity
4.2. GHG Emissions from Maize and Peanut Intercropping System
4.3. The Impact of Intercropping on CF and NEEB
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Sowing Time | Topdressing Time | Harvest Time |
---|---|---|---|
2018 | 23 June | 9 August | 9 October |
2019 | 21 June | 15 August | 12 October |
2020 | 18 June | 10 August | 15 October |
2021 | 19 June | 2 August | 16 October |
Items | Unit Prices | Units | Sources | |||
---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | |||
Maize seed | 34.4 | 34.4 | 34.4 | 37.5 | CNY kg−1 | Market price at the time of purchase |
Peanut seed | 18.0 | 18.0 | 18.0 | 24.0 | CNY kg−1 | Market price at the time of purchase |
Nitrogenous fertilizer (N) | 2073.9 | 1997.5 | 1730.3 | 2674.2 | CNY t−1 | http://yte1.com/ (accessed on 10 March 2023) [54] |
Compound fertilizer | 2565.0 | 2580.0 | 2390.0 | 2601.6 | CNY t−1 | http://yte1.com/ (accessed on 10 March 2023) [54] |
Insecticides | 100.0 | 100.0 | 100.0 | 100.0 | CNY kg−1 | [55] |
Herbicides | 26,812.1 | 24,000.0 | 21,000.0 | 47,656.3 | CNY t−1 | http://yte1.com/ (accessed on 10 March 2023) [54] |
Fungicide | 90.0 | 90.0 | 90.0 | 90.0 | CNY kg−1 | [55] |
Diesel consumption | 6716.1 | 6369.9 | 5275.0 | 6486.0 | CNY t−1 | http://yte1.com/ (accessed on 10 March 2023) [54] |
Electricity | 0.6 | 0.6 | 0.6 | 0.6 | CNY KWH−1 | [34] |
Maize | 1772.4 | 1809.5 | 2302.0 | 2511.5 | CNY t−1 | http://yte1.com/ (accessed on 10 March 2023) [54] |
Peanut | 6010.0 | 7535.6 | 9083.3 | 8283.3 | CNY t−1 | http://yte1.com/ (accessed on 10 March 2023) [54] |
Carbon-trade price | 232.7 | 232.7 | 232.7 | 232.7 | CNY t−1 CO2-eq | [28] |
References
- Li, Y.; Shang, J.; Zhang, C.; Zhang, W.; Niu, L.; Wang, L.; Zhang, H. The role of freshwater eutrophication in greenhouse gas emissions: A review. Sci. Total Environ. 2021, 768, 144582. [Google Scholar] [CrossRef] [PubMed]
- IPCC. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Rogelj, J.; den Elzen, M.; Hohne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 degrees C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Cui, Z.; Ying, H.; Zheng, H.; Wang, Z.; Zhang, F. Managing the trade-offs among yield increase, water resources inputs and greenhouse gas emissions in irrigated wheat production systems. Sci. Total Environ. 2017, 164, 567–574. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Xie, J.; Luo, Z.; Zhang, R.; Cai, L.; Coulter, J.A.; Palta, J.A. Managing the trade-offs among yield, economic benefits and carbon and nitrogen footprints of wheat cropping in a semi-arid region of China. Sci. Total Environ. 2021, 768, 145280. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Coulter, J.A.; Li, L.; Luo, Z.; Xie, J. Plastic mulching reduces nitrogen footprint of food crops in China: A meta-analysis. Sci. Total Environ. 2020, 748, 141479. [Google Scholar] [CrossRef]
- IPCC. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambrige, UK; NewYork, NY, USA, 2013. [Google Scholar]
- Zhao, Y.; Wang, L.; Lei, X.; Wang, B.; Cui, J.; Xu, Y.; Chen, Y.; Sui, P. Reducing carbon footprint without compromising grain security through relaxing cropping rotation system in the North China Plain. J. Clean. Prod. 2021, 318, 128465. [Google Scholar] [CrossRef]
- United Nations. 2023. Available online: https://www.un.org/en/global-issues/population (accessed on 5 April 2023).
- The Word Bank. Food and Agriculture Organization, Electronic Files and Web Site. 2018. Available online: https://data.worldbank.org.cn/indicator/AG.LND.ARBL.HA.PC (accessed on 5 April 2023).
- National Bureau of Statistics. 2022. Available online: https://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 5 April 2023).
- Food and Agriculture Organization of the United Nations. 2022. Available online: https://www.fao.org/faostat/en/#data/QC/visualize (accessed on 5 April 2023).
- State Council of the People’s Republic of China. 2022. Available online: http://www.gov.cn/zhengce/2022-02/22/content_5675035.htm (accessed on 5 April 2023).
- Gao, H.; Meng, W.; Zhang, C.; Werf, W.; Zhang, Z.; Wan, S.; Zhang, F. Yield and nitrogen uptake of sole and intercropped maize and peanut in response to N fertilizer input. Food Energy Secur. 2020, 9, e187. [Google Scholar] [CrossRef]
- Duchene, O.; Vianl, J.-F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Xu, Z.; Li, C.; Zhang, C.; Yu, Y.; van der Werf, W.; Zhang, F. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Res. 2020, 246, 107661. [Google Scholar] [CrossRef]
- Shen, Y.; Sui, P.; Huang, J.; Wang, D.; Whalen, J.K.; Chen, Y. Greenhouse gas emissions from soil under maize–soybean intercrop in the North China Plain. Nutr. Cycl. Agroecosyst. 2018, 110, 451–465. [Google Scholar] [CrossRef]
- Senbayram, M.; Wenthe, C.; Lingner, A.; Isselstein, J.; Steinmann, H.; Kaya, C.; Köbke, S. Legume-based mixed intercropping systems may lower agricultural born N2O emissions. Energy Sustain. Soc. 2016, 6, 2. [Google Scholar] [CrossRef]
- Abagandura, G.O.; Sekaran, U.; Singh, S.; Singh, J.; Ibrahim, M.A.; Subramanian, S.; Owens, V.N.; Kumar, S. Intercropping kura clover with prairie cordgrass mitigates soil greenhouse gas fluxes. Sci. Rep. 2020, 10, 7334. [Google Scholar] [CrossRef]
- Raji, S.G.; Dörsch, P. Effect of legume intercropping on N2O emission and CH4 uptake during maize production in the Great Rift Valley, Ethiopia. Biogeosciences 2020, 17, 345–359. [Google Scholar] [CrossRef]
- Dyer, L.; Oelbermann, M. Soil carbon dioxide and nitrous oxide emissions during the growing season of maize-soybean intercropping and sole cropping systems. J. Plant Nutr. Soil Sci. 2012, 175, 394–400. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Xu, C.T.; Han, S.W.; Li, X.X.; Kan, Z.R.; Zhao, X.; Zhang, H.L. Strategic tillage achieves lower carbon footprints with higher carbon accumulation and grain yield in a wheat-maize cropping system. Sci. Total Environ. 2021, 798, 149220. [Google Scholar] [CrossRef]
- Yang, X.; Gao, W.; Min, Z.; Chen, Y.; Peng, S. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J. Clean. Prod. 2014, 76, 131–139. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Lachouani, P.; Knudsen, M.T.; Ambus, P.; Boelt, B.; Gislum, R. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input. Sci. Total Environ. 2016, 541, 1339–1347. [Google Scholar] [CrossRef]
- Qian, X.; Zhou, J.; Luo, B.; Dai, H.; Hu, Y.; Ren, C.; Peixoto, L.; Guo, L.; Wang, C.; Zamanian, K.; et al. Yield advantage and carbon footprint of oat/sunflower relay strip intercropping depending on nitrogen fertilization. Plant Soil 2022, 481, 581–594. [Google Scholar] [CrossRef]
- Chai, Q.; Nemecek, T.; Liang, C.; Zhao, C.; Yu, A.; Coulter, J.A.; Wang, Y.; Hu, F.; Wang, L.; Siddique, K.H.M.; et al. Integrated farming with intercropping increases food production while reducing environmental footprint. Proc. Natl. Acad. Sci. USA 2021, 118, e2106382118. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhang, X.; Yang, X.; Wu, J.; Lin, L.; Zhang, Y.; Wang, G.; Xiao, Y.; Peng, H.; Zhu, X.; et al. Performance assessment of rice production based on yield, economic output, energy consumption, and carbon emissions in Southwest China during 2004–2016. Ecol. Indic. 2020, 117, 106667. [Google Scholar] [CrossRef]
- Song, K.; Zhang, G.; Yu, H.; Huang, Q.; Zhu, X.; Wang, T.; Xu, H.; Lv, S.; Ma, J. Evaluation of methane and nitrous oxide emissions in a three-year case study on single rice and ratoon rice paddy fields. J. Clean. Prod. 2021, 297, 126650. [Google Scholar] [CrossRef]
- Dordas, C. Alternative Cropping Systems for Climate Change. Agronomy 2023, 13, 1131. [Google Scholar] [CrossRef]
- Liu, K.; Johnson, E.N.; Blackshaw, R.E.; Hossain, Z.; Gan, Y. Improving the productivity and stability of oilseed cropping systems through crop diversification. Field Crops Res. 2019, 237, 65–73. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R.W. The Concept of a ‘Land Equivalent Ratio’ and Advantages in Yields from Intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef]
- Sun, T.; Zhao, C.; Feng, X.; Yin, W.; Gou, Z.; Lal, R.; Deng, A.; Chai, Q.; Song, Z.; Zhang, W. Maize-based intercropping systems achieve higher productivity and profitability with lesser environmental footprint in a water-scarce region of northwest China. Food Energy Secur. 2020, 10, e260. [Google Scholar] [CrossRef]
- Ma, C.; Liu, Y.; Wang, J.; Xue, L.; Hou, P.; Xue, L.; Yang, L. Warming increase the N2O emissions from wheat fields but reduce the wheat yield in a rice-wheat rotation system. Agric. Ecosyst. Environ. 2022, 337, 108064. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, L.; Wang, B.; Xiang, J.; Gao, M.; Fu, Z.; Long, P.; Luo, H.; Huang, C. Conversion from double-season rice to ratoon rice paddy fields reduces carbon footprint and enhances net ecosystem economic benefit. Sci. Total Environ. 2022, 813, 152550. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Janzen, H.H.; Gregorich, E.G.; Angers, D.A.; VandenBygaart, A.J. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric. Ecosyst. Environ. 2007, 118, 29–42. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, W.; Sun, W.; Zheng, X. Net primary production of Chinese croplands from 1950 to 1999. Ecol. Appl. 2007, 17, 692–701. [Google Scholar] [CrossRef]
- Gregory, P.J. Roots, rhizosphere and soil: The route to a better understanding of soil science? Eur. J. Soil Sci. 2006, 57, 2–12. [Google Scholar] [CrossRef]
- Winans, K.S.; Tardif, A.-S.; Lteif, A.E.; Whalen, J.K. Carbon sequestration potential and cost-benefit analysis of hybrid poplar, grain corn and hay cultivation in southern Quebec, Canada. Agrofor. Syst. 2015, 89, 421–433. [Google Scholar] [CrossRef]
- Tristram, O.; West, G.M. A synthesis of carbon sequestration, carbon emissions, and net carbonflux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Yu, L.; Shu, Y.; Tan, F.; Gou, Y.; Luo, S.; Yang, W.; Li, Z.; Wang, J. Sugarcane/soybean intercropping with reduced nitrogen input improves crop productivity and reduces carbon footprint in China. Sci. Total Environ. 2020, 719, 137517. [Google Scholar] [CrossRef]
- Li, S.; Guo, L.; Cao, C.; Li, C. Integrated assessment of carbon footprint, energy budget and net ecosystem economic efficiency from rice fields under different tillage modes in central China. J. Clean. Prod. 2021, 295, 126398. [Google Scholar] [CrossRef]
- Carbonnews. 2020. Available online: https://www.carbonnews.co.nz/ (accessed on 5 April 2023).
- Babec, B.; Šeremešić, S.; Hladni, N.; Ćuk, N.; Stanisavljevic, D.; Rajkovic, M. Potential of Sunflower-Legume Intercropping: A Way Forward in Sustainable Production of Sunflower in Temperate Climatic Conditions. Agronomy 2021, 11, 2381. [Google Scholar] [CrossRef]
- Chaudhari, V.D.; Virdia, H.; Chaudhari, N.R. Sugarcane (Saccharum officinarum L.) yield and quality in relation to planting methods, spacing and intercropping. Int. J. Farm Sci. 2021, 11, 109–113. [Google Scholar] [CrossRef]
- Anishetra, S.; Kalaghatagi, S.B. Evaluation of Sesame (Sesamum indicum L.) Based Intercropping Systems with Millets by Varying Row Proportions under Dry Condition. Indian J. Agric. Res. 2020, 55, 229520744. [Google Scholar] [CrossRef]
- Parkin, T.B.; Kaspar, T.C.; Senwo, Z.; Prueger, J.H.; Hatfield, J.L. Relationship of Soil Respiration to Crop and Landscape in the Walnut Creek Watershed. J. Hydrometeorol. 2005, 6, 812–824. [Google Scholar] [CrossRef]
- Chai, Q.; Qin, A.; Gan, Y.; Yu, A. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron. Sustain. Dev. 2013, 34, 535–543. [Google Scholar] [CrossRef]
- Sun, M.; Zhan, M.; Zhao, M.; Tang, L.L.; Qin, M.G.; Cao, C.G.; Cai, M.L.; Jiang, Y.; Liu, Z.H. Maize and rice double cropping benefits carbon footprint and soil carbon budget in paddy field. Field Crops Res. 2019, 243, 107620. [Google Scholar] [CrossRef]
- Lemke, R.L.; Zhong, Z.; Campbell, C.A.; Zentner, R. Can Pulse Crops Play a Role in Mitigating Greenhouse Gases from North American Agriculture? Agron. J. 2007, 99, 1719–1725. [Google Scholar] [CrossRef]
- Canisares, L.P.; Rosolem, C.A.; Momesso, L.; Crusciol, C.A.C.; Villegas, D.M.; Arango, J.; Ritz, K.; Cantarella, H. Maize-Brachiaria intercropping: A strategy to supply recycled N to maize and reduce soil N2O emissions? Agric. Ecosyst. Environ. 2021, 319, 107491. [Google Scholar] [CrossRef] [PubMed]
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.-t.; Zhang, C. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review. J. Integr. Agric. 2017, 16, 2848–2862. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, Q.; Song, K.; Yu, H.; Ma, J.; Xu, H. Responses of greenhouse gas emissions and soil carbon and nitrogen sequestration to field management in the winter season: A 6-year measurement in a Chinese double-rice field. Agric. Ecosyst. Environ. 2021, 318, 107506. [Google Scholar] [CrossRef]
- Available online: http://yte1.com/ (accessed on 10 March 2023).
- Lin, L.; Yanju, S.; Ying, X.; Zhisheng, Z.; Bin, W.; You, L.; Zichuan, S.; Haoran, Z.; Ming, Z.; Chengfang, L.; et al. Comparing rice production systems in China: Economic output and carbon footprint. Sci. Total Environ. 2021, 791, 147890. [Google Scholar] [CrossRef]
Agricultural Inputs | Factors | Units | References |
---|---|---|---|
Maize seed | 3.85 | kg CO2-eq kg−1 | [35,39] |
Peanut seed | 0.92 | kg CO2-eq kg−1 | [39] |
Nitrogenous fertilizer (N) | 4.96 | kg CO2-eq kg−1 | [8] |
Compound fertilizer | 1.77 | kg CO2-eq kg−1 | [40] |
Insecticides | 16.60 | kg CO2-eq kg−1 | [34] |
Herbicides | 10.15 | kg CO2-eq kg−1 | [34] |
Fungicide | 10.57 | kg CO2-eq kg−1 | [34] |
Diesel consumption | 4.10 | kg CO2-eq kg−1 | [34] |
Electricity | 1.23 | kg CO2-eq kg−1 | [34] |
Year | Treatment | Yield (kg hm−2) Maize | RY Maize | Yield (kg hm−2) Peanut | RY Peanut | LER | Intercropping Advantage (kg hm−2) |
---|---|---|---|---|---|---|---|
M | 10,051.7 a | - | - | - | |||
2018 | M||P | 6673.0 b | 0.66 | 1250.2 b | 0.42 | 1.09 | 1420.05 |
P | - | 2954.6 a | - | - | |||
2019 | M | 11,116.7 a | - | - | - | ||
M||P | 7485.7 b | 0.67 | 1290.3 b | 0.40 | 1.08 | 1615.30 | |
P | - | 3204.7 a | - | - | |||
M | 10,990.9 a | - | - | - | |||
2020 | M||P | 8597.2 b | 0.78 | 1273.0 b | 0.48 | 1.24 | 2071.85 |
P | - | 2666.7 a | - | - | |||
M | 8829.1 a | - | - | - | |||
2021 | M||P | 6683.2 b | 0.76 | 1090.1 b | 0.42 | 1.17 | 2046.45 |
P | - | 2624.6 a | - | - |
Year | Treatments | CO2 Emission Rate (kg hm−1 h−1) | N2O Emission Rate (g hm−1 h−1) | CH4 Emission Rate (g hm−1 h−1) |
---|---|---|---|---|
M | 5.23 ± 0.30 a | 1.12 ± 0.03 a | −0.14 ± 0.02 b | |
2018 | MP | 4.58 ± 0.13 b | 0.97 ± 0.03 b | −0.10 ± 0.01 a |
P | 4.01 ± 0.16c | 0.60 ± 0.05 c | −0.08 ± 0.01 a | |
M | 6.46± 0.10 a | 0.93 ± 0.06 a | −0.26 ± 0.01 c | |
2019 | MP | 6.15 ± 0.14 b | 0.73 ± 0.03 b | −0.24 ± 0.01 b |
P | 5.24 ± 0.14 c | 0.38 ± 0.03 c | −0.18 ± 0.01 a | |
M | 8.05 ± 0.27 a | 1.01 ± 0.03 a | −0.41 ± 0.02 b | |
2020 | MP | 7.51 ± 0.24 b | 0.57 ± 0.03 b | −0.36 ± 0.04 ab |
P | 7.11 ± 0.13 b | 0.35 ± 0.05 c | −0.34 ± 0.02 a | |
M | 6.73 ± 0.16 a | 0.90± 0.05 a | −0.37 ± 0.02 c | |
2021 | MP | 5.97 ± 0.32 b | 0.68 ± 0.03 b | −0.35 ± 0.01 b |
P | 5.32 ± 0.13 c | 0.41 ± 0.02 c | −0.32 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Wang, J.; Liu, Y.; You, Z.; Zhang, J.; Guo, F.; Gao, H.; Li, L.; Wan, S. Maize/Peanut Intercropping Reduces Carbon Footprint Size and Improves Net Ecosystem Economic Benefits in the Huang-Huai-Hai Region: A Four-Year Study. Agronomy 2023, 13, 1343. https://doi.org/10.3390/agronomy13051343
Yan Z, Wang J, Liu Y, You Z, Zhang J, Guo F, Gao H, Li L, Wan S. Maize/Peanut Intercropping Reduces Carbon Footprint Size and Improves Net Ecosystem Economic Benefits in the Huang-Huai-Hai Region: A Four-Year Study. Agronomy. 2023; 13(5):1343. https://doi.org/10.3390/agronomy13051343
Chicago/Turabian StyleYan, Zhenhui, Jianguo Wang, Ying Liu, Zhaoyang You, Jialei Zhang, Feng Guo, Huaxin Gao, Lin Li, and Shubo Wan. 2023. "Maize/Peanut Intercropping Reduces Carbon Footprint Size and Improves Net Ecosystem Economic Benefits in the Huang-Huai-Hai Region: A Four-Year Study" Agronomy 13, no. 5: 1343. https://doi.org/10.3390/agronomy13051343
APA StyleYan, Z., Wang, J., Liu, Y., You, Z., Zhang, J., Guo, F., Gao, H., Li, L., & Wan, S. (2023). Maize/Peanut Intercropping Reduces Carbon Footprint Size and Improves Net Ecosystem Economic Benefits in the Huang-Huai-Hai Region: A Four-Year Study. Agronomy, 13(5), 1343. https://doi.org/10.3390/agronomy13051343