Nitrogen Application Effect on Maize Yield, NH3, and N2O Emissions in Northeast China by Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Classification
2.3. Data Calculation and Analysis
3. Results
3.1. The Effects of N Fertilizer Application on Maize Yield, N2O, and NH3
3.1.1. Natural Factors
Experiment Region and Climatic Factors
Soil Factors
3.1.2. Human Management Factors
Nitrogen Fertilizer Management
Tillage Management
3.1.3. Analysis of Explanatory Variables on Maize Yield and Nitrogen Loss
3.2. Driving Factors and the Relationships between Yield-Scaled N2O and NH3
3.2.1. Natural Factors
3.2.2. Human Management Factors
4. Discussion
4.1. Natural Factors
4.2. Human Factors
4.2.1. Nitrogen Fertilizer Type
4.2.2. Nitrogen Fertilizer Rate and N Surplus
4.2.3. Tillage Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, X.; Li, Z.; Bu, Q.; Cheng, D.; Duan, W.; Sun, Z. Effects of rainfall harvesting and mulching on corn yield and water use in the corn belt of Northeast China. Agron. J. 2014, 106, 2175–2184. [Google Scholar] [CrossRef]
- NBSC (National Bureau of Statistics of China). China Statistical Yearbook, 2012–2019; Statistical Publishing House: Beijing, China, 2012; pp. 16–18.
- Pan, J.X.; Zhang, L.; He, X.M.; Chen, X.P.; Cui, Z.L. Long-term optimization of crop yield while concurrently improving soil quality. Land. Degrad. Dev. 2019, 30, 897–909. [Google Scholar] [CrossRef]
- Xu, X.P.; He, P.; Pampolino, M.F.; Johnston, A.M.; Qiu, S.J.; Zhao, S.C.; Chuan, L.M.; Zhou, W. Fertilizer recommendation for maize in China based on yield response and agronomic efficiency. Field Crops Res. 2014, 157, 27–34. [Google Scholar] [CrossRef]
- Kong, F.B.; Guo, Q.L.; Pan, D. Evaluation on overfertilization and its spatial-temporal difference about major grain crops in China. Econ. Geo. 2018, 38, 201–210. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Griffis, T.J.; Lee, X.; Baker, J.M.; Russelle, M.P.; Zhang, X.; Venterea, R.; Millet, D.B. Reconciling the differences between top-down and bottom-up estimates of nitrous oxide emission for the U.S. Corn Belt. Glob. Biogeochem. Cycles 2013, 27, 746–754. [Google Scholar] [CrossRef]
- He, F.; Jiang, R.; Chen, Q.; Zhang, F.; Su, F. Nitrous oxide emission from an intensively managed greenhouse vegetable cropping system in Northern China. Environ. Pollut. 2009, 157, 1666–1672. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.; Han, S.; Zheng, X.; Xie, H.; Lu, C.; Sui, Y.; Wang, R.; Liu, C.; Yao, Z.; et al. Less intensive nitrate leaching from Phaeozems cultivated with maize generally occurs in northeastern China. Agric. Ecosyst. Environ. 2021, 310, 107303. [Google Scholar] [CrossRef]
- Zhang, W.F.; Dou, Z.X.; He, P.; Ju, X.T.; David, P.; Dave, C.; David, N.; Lu, Y.L.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef]
- Yang, X.L.; Lu, Y.L.; Ding, Y.; Yin, X.F.; Raza, S.; Tong, Y.A. Optimising nitrogen fertilization: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation. Field Crops Res. 2017, 206, 1–10. [Google Scholar] [CrossRef]
- Zhang, F.S.; Wang, J.Q.; Zhang, W.F.; Cui, Z.L.; Ma, W.Q.; Chen, X.Q.; Jiang, F.R. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol. Sin. 2008, 45, 915–924. [Google Scholar]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Hoben, J.P.; Gehl, R.J.; Millar, N.; Grace, P.R.; Robertson, G.P. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob. Chang. Biol. 2011, 17, 1140–1152. [Google Scholar] [CrossRef]
- Wang, D.; Li, G.Y.; Mo, Y.; Cai, M.K.; Bian, X.Y. Evaluation of optimal nitrogen rate for corn production under mulched drip fertigation and economic benefits. Field Crops Res. 2018, 216, 225–233. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, F.Q.; Li, H.; Wang, L.G.; Wu, S.X.; Xiao, G.M.; Wu, W.L. Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat–maize cropping system. Agric. Water Manag. 2019, 211, 26–36. [Google Scholar] [CrossRef]
- Ruser, R.; Flessa, H.; Russow, R. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting. Soil Boil. Biochem. 2005, 38, 263–274. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Bhogal, A.; Chadwick, D.; Gill, E.; Gooday, R.D.; Lord, E.; Misselbrook, T.; Rollett, A.J.; Sagoo, E.; Smith, K.A.; et al. An enhanced software tool to support better use of manure nutrients: Manner-NPK. Soil Use Manag. 2013, 29, 473–484. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Kasper, G.J.; Velthof, G.L.; Dasselaar, A.V.D.P.; Kuikman, P.J. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant Soil 2004, 263, 101–111. [Google Scholar] [CrossRef]
- Fan, H.; Jiang, S.S.; Wei, Y.; Jiang, J.Y. Assessment of gaseous nitrogen (NH3 and N2O) mitigation after the application of a range of new nitrogen fertilizers in summer maize cultivation. Environ. Sci. 2016, 37, 2906–2913. [Google Scholar] [CrossRef]
- Bender, D.J.; Contreras, T.A.; Fahrig, L. Habitat loss and population decline: A meta-analysis of the patch size effect. Ecology 1998, 79, 517–533. [Google Scholar] [CrossRef]
- Ellenberg, S.S. Meta-analysis: The quantitative approach to research review. Semin. Oncol. 1988, 5, 472. [Google Scholar]
- Rusinamhodzi, L.; Corbeels, M.; Van Wijk, M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657–673. [Google Scholar] [CrossRef]
- Eagle, A.J.; Olander, L.P.; Locklier, K.L.; Heffernan, J.B.; Bernhardt, E.S. Fertilizer management and environmental factors drive N2O and NO3 losses in corn: A Meta-analysis. Soil Sci. Soc. Am. J. 2017, 81, 1191. [Google Scholar] [CrossRef]
- Zhang, W.S.; Liang, Z.Y.; He, X.M.; Wang, W.Z.; Shi, X.J.; Zou, C.Q.; Chen, X.P. The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environ. Pollut. 2019, 246, 559–565. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.X.; Dong, G.; Du, Z.L.; Wu, W.L.; Chadwick, D.; Bol, R. The importance of ammonia volatilization in estimating the efficacy of nitrification inhibitors to reduce N2O emissions: A global meta-analysis. Environ. Pollut. 2020, 271, 116365. [Google Scholar] [CrossRef]
- Hu, N.; Chen, Q.; Zhu, L. The Responses of Soil N2O Emissions to residue returning systems: A Meta-analysis. Sustainability 2019, 11, 748. [Google Scholar] [CrossRef]
- Bracken, M.B. Effective Care of the Newborn Infant. Arch. Dis. Child. 1992, 11, 1415–1416. [Google Scholar]
- Van Groenigen, J.W.; Velthof, G.L.; Oenema, O.; Van Groenigen, K.J.; Van Kessel, C. Towards an agronomic assessment of N2O emissions: A case study for arable crops. Eur. J. Soil Sci. 2010, 61, 903–913. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The Meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Rosenberg, M.S.; Adams, D.C.; Gurevitch, J. Metawin: Statistical Software for Meta-Analysis, Version 2.1; Sinauer Associates: Sunderland, MA, USA, 2000; pp. 7–11. [Google Scholar]
- Zhang, Y.; Zhang, F.; Abalos, D.; Luo, Y.; Hui, D.; Hungate, B.A.; Chen, J. Stimulation of ammonia oxidizer and denitrifier abundances by nitrogen loading: Poor predictability for increased soil N2O emission. Glob. Chang. Biol. 2022, 28, 2158. [Google Scholar] [CrossRef]
- Chen, C.Q.; Lei, C.X.; Deng, A.X.; Qian, C.R.; Hoogmoed, W.; Zhang, W.J. Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965–2008. Agric. For. Meteorol. 2011, 151, 1580–1588. [Google Scholar] [CrossRef]
- Kool, D.M.; Dolfing, J.; Wrage, N.; Groenigen, J.W.V. Nitrifier denitrification as a distinct and significant source of Nitrous Oxide from Soil. Soil Biol. Biochem. 2011, 43, 174–178. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Chen, D.L.; Zhang, J.B.; Edis, R.; Hu, C.S.; Zhu, A.N. Ammonia volatilization and denitrification losses form an irrigated maize-wheat rotation field in the north China plain. Pedosphere 2004, 14, 533–540. [Google Scholar] [CrossRef]
- Sha, Z.; Li, Q.; Lv, T.; Misselbrook, T.; Liu, X. Response of ammonia volatilization to biochar addition: A meta-analysis. Sci. Total Environ. 2019, 655, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, R.R.; Goh, K.M. Dynamics of ammonia volatilization from simulated urine patches and aqueous urea applied to pasture.3. filed verification of a simplified model. Fertil. Res. 1985, 6, 23–36. [Google Scholar] [CrossRef]
- Robinson, C.H.; Saunders, P.W.; Madan, N.J.; Janie Pryce-Miller, E.; Pentecost, A. Does nitrogen deposition affect soil microfungal diversity and soil N and P dynamics in a high Arctic ecosystem? Glob. Chang. Biol. 2004, 10, 1065–1079. [Google Scholar] [CrossRef]
- Gentile, R.; Vanlauwe, B.; Chivenge, P.; Six, J. Interactive effects form combining fertilizer and organic Residue inputs on nitrogen transfomations. Soil Biol. Biochem. 2008, 40, 2375–2384. [Google Scholar] [CrossRef]
- Gu, J.X.; Nicoulaud, B.; Rochette, P.; Grossel, A.; Hénault, C.; Cellier, P.; Richard, G. A regional experiment suggest that soil texture is a major control of N2O emissions form tile drained winter wheat fields during the fertilization period. Soil Biol. Biochem. 2013, 60, 134–141. [Google Scholar] [CrossRef]
- Fan, X.H.; Li, Y.C.; Alva, A.K. Effects of temperature and soil type on ammonia volatilization from slow-release nitrogen fertilizers. Commun. Soil Sci. Plan. 2011, 42, 1111–1122. [Google Scholar] [CrossRef]
- Laegreid, M.; Bockman, O.C.; Kaarstad, O. Agriculture Fertilizers and the Environment; CABI Publishing in Association with Norsk Hydro ASA: New York, NY, USA, 1999; pp. 5–13. [Google Scholar]
- Struwe, S.; Kjller, A. Potential for production from beech (Fagus silvaticus) forest soils with varying pH. Soil Biol. Biochem. 1994, 26, 1003–1009. [Google Scholar] [CrossRef]
- Liu, S.W.; Lin, F.; Wu, S.; Ji, C.; Sun, Y.; Jin, Y.G.; Li, S.Q.; Li, Z.F.; Zou, J.W. A meta-analysis of fertilizer-induced soil NO and combined NO+N2O emissions. Glob. Chang. Biol. 2017, 23, 2520–2532. [Google Scholar] [CrossRef] [PubMed]
- Vinzent, B.; Fuß, R.; Maidl, F.X.; Hülsbergen, K.J. N2O emissions and nitrogen dynamics of winter rapeseed fertilized with different N forms and a nitrification inhibitor. Agric. Ecosyst. Environ. 2018, 259, 86–97. [Google Scholar] [CrossRef]
- Geng, J.; Chen, J.; Sun, Y.; Zheng, W.; Tian, X.; Yang, Y.; Li, C.; Zhang, M. Controlled release urea improved nitrogen use efficiency and yield of wheat and corn. Agron. J. 2016, 108, 1666–1673. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.Y.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation option for N2O and NO Emission form agricultural soils: Meta-analysis. Glob. Chang. Biol. 2010, 19, 1837–1846. [Google Scholar] [CrossRef]
- Lv, F.L.; Yang, X.Y.; Xu, H.H.; Khan, A.; Zhang, S.L.; Sun, B.H.; Gu, J.X. Effect of organic amendments on yield-scaled N2O emissions from winter wheat-summer maize cropping systems in Northwest China. Environ. Sci. Pollut. R. 2020, 27, 31933–31945. [Google Scholar] [CrossRef]
- Akiyama, H.; Mctaggart, I.P.; Ball, B.C.; Scott, A. N2O, NO, and NH3 emissions from soil after the application of organic fertilizers, urea and water. Water Air Soil Pollt. 2004, 156, 113–129. [Google Scholar] [CrossRef]
- Thangarajan, R.; Bolan, N.S.; Tian, G.L.; Naidu, R.; Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission form soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef]
- Chadwick, D.R.; Pain, B.F.; Brookman, S.K. Nitrous oxide and methane emissions following application of animal manures to grassland. J. Environ. Qual. 2000, 9, 277–287. [Google Scholar] [CrossRef]
- Li, X.; Yan, X.Y.; Xing, G.X.; Xiong, Z.Q.; Shi, T.J.; Shen, G.Y.; Zeng, X. Crop utilization of N from different animal excreta and its contribution to N2O emissions. Soils 2008, 40, 548–553. [Google Scholar] [CrossRef]
- Wu, L.Q.; Wu, L.; Cui, Z.L.; Chen, X.P.; Zhang, F.S. Basic NPK fertilizer recommendation and fertilizer formula for maize production regions in China. Acta Pedol. Sin. 2015, 52, 802–817. [Google Scholar] [CrossRef]
- IPCC. Special Report on Emissions Scenarios, Working Group III, Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000; pp. 5–16. [Google Scholar]
- Bouwman, A.F.; Boumans, L.; Batjes, N.H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 2002, 16, 53–60. [Google Scholar] [CrossRef]
- Zheng, X.H.; Han, S.H.; Huang, Y.; Wang, Y.S.; Wang, M.X. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Glob. Biogeochem. Cycles 2018, 18, GB2018. [Google Scholar] [CrossRef]
- Ma, R.Y.; Zou, J.W.; Han, Z.Q.; Yu, K.; Wu, S.; Li, Z.F.; Liu, S.W.; Niu, S.L.; Horwath, W.R.; Zhu-Barker, X. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. Glob. Chang. Biol. 2021, 27, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Oenema, O.; Kros, H.; Vries, W.D. Approaches and uncertainties in nutrient budgets: Implications for nutrient management and environmental policies. Eur. J. Agron. 2003, 20, 3–16. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, P.; Miao, P.; Wang, H.Y.; Bai, X.L.; Chen, Z.J.; Zhou, J.B. Nitrogen use and management in orchards and vegetable fields in China: Challenges and solutions. Front. Agric. Sci. Eng. 2022, 9, 386–395. [Google Scholar] [CrossRef]
- Song, H.J.; Hu, D.D.; Wu, L.; Du, J.; Hu, Z.; Zhang, W.; Li, D.; Yu, H.; Liu, K. Dynamics of nitrogen use efficiency of maize and alkali-hydrolyzable nitrogen content of red soil under long-term application of organic and inorganic fertilizers. J. Plant Nutri. Fert. 2022, 28, 2030–2040. Available online: http://www.plantnutrifert.org (accessed on 11 March 2023).
- Liu, J.; Li, J.; Ma, Y.; Wang, E.; Liang, Q.; Jia, Y.; Li, T.; Wang, G. Crop productivity and nitrogen balance as influenced by nitrogen deposition and fertilizer application in North China. Sustainability 2019, 11, 1347. [Google Scholar] [CrossRef]
- Huang, D.D.; Cao, G.J.; Geng, Y.H.; Wang, L.C.; Liang, A.Z. Impact of agricultural waste return on soil greenhouse gas emissions. Appl. Ecol. Env. Res. 2019, 17, 1321–1335. [Google Scholar] [CrossRef]
Influence Factor | Subgroup Analysis |
---|---|
Experiment region | Hei Longjiang; Liaoning; Jilin; and Inner Mongolia (Hulun Buir; Tongliao; Chifeng; Hinggan League; and Xilingol League) |
Mean annual precipitation (mm) | ≤400; 400–800; >800 |
Mean annual temperature (°C) | ≤4; 4–8; >8 |
Soil texture | Coarse; Medium; Fine |
Soil pH | pH ≤ 6.5; 6.5 < pH ≤ 7.5; pH > 7.5 |
Soil organic matter (g kg−1) | SOM ≤ 10; 10 < SOM ≤ 30; SOM > 30 |
Soil total N (g kg−1) | Total N ≤ 1.0; 1.0 < Total N ≤ 1.5; Total N > 1.5 |
Alk N (mg kg−1) | Alk N ≤ 90; 90 < Alk N ≤ 120; Alk N > 120 |
Tillage method | Conventional tillage; subsoiling; rotary tillage |
Straw return to the field | Straw return; no straw return |
Nitrogen application rate (kg ha−1) | <180; 180–240; >240 |
Nitrogen fertilizer type | Traditional solid fertilizer; liquid fertilizer; slow/controlled release fertilizer; organic fertilizer; organic+ inorganic fertilizer |
Fertilization method | Single; split |
N | Mean | Q-val | df | PQ-val | I2 | |
---|---|---|---|---|---|---|
Yield | 993 | 0.4097 | 83,654.3622 | 992 | <0.0001 | 98.91% |
N2O | 100 | 0.4971 | 1948.3468 | 99 | <0.0001 | 97.04% |
NH3 | 54 | 0.5262 | 140,006.8329 | 53 | <0.0001 | 99.96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, X.; Gao, Q.; Yan, L. Nitrogen Application Effect on Maize Yield, NH3, and N2O Emissions in Northeast China by Meta-Analysis. Agronomy 2023, 13, 1479. https://doi.org/10.3390/agronomy13061479
Zhang L, Zhang X, Gao Q, Yan L. Nitrogen Application Effect on Maize Yield, NH3, and N2O Emissions in Northeast China by Meta-Analysis. Agronomy. 2023; 13(6):1479. https://doi.org/10.3390/agronomy13061479
Chicago/Turabian StyleZhang, Lingchun, Xinyue Zhang, Qiang Gao, and Li Yan. 2023. "Nitrogen Application Effect on Maize Yield, NH3, and N2O Emissions in Northeast China by Meta-Analysis" Agronomy 13, no. 6: 1479. https://doi.org/10.3390/agronomy13061479
APA StyleZhang, L., Zhang, X., Gao, Q., & Yan, L. (2023). Nitrogen Application Effect on Maize Yield, NH3, and N2O Emissions in Northeast China by Meta-Analysis. Agronomy, 13(6), 1479. https://doi.org/10.3390/agronomy13061479