Characterization of Starch Physicochemical Properties and Grain Transcriptome Reveal the Mechanism for Resistant Starch Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Sampling and Trait Measurements
2.2.1. Measurements of Starch, Amylose, Amylopectin, and RS Contents
2.2.2. Starch Extraction and Size Distribution of Starch Granules
2.2.3. X-ray Diffraction (XRD)
2.2.4. Thermal Properties of Starch
2.2.5. Chain Length Distribution (CLD)
2.2.6. Scanning Electron Microscopy (SEM)
2.2.7. RNA-Seq Analysis
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Accumulation of Total Starch, Amylose, Amylopectin, and RS in Wheat Grains
3.2. CLD of Starch during Kernel Development
3.3. XRD of Starch during Kernel Development
3.4. Size Distribution of Starch Granules
3.5. SEM of Starch Granules
3.6. Thermal Properties of Starch during Kernel Development
3.7. DEGs Involved in RS Accumulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, 3–50. [Google Scholar]
- Asp, N.G.; Bjӧrck, I. Resistant starch. Trends Food Sci. Tech. 1992, 3, 111–114. [Google Scholar] [CrossRef]
- Shen, L.S.; Li, J.Y.; Li, Y.H. Resistant starch formation in rice: Genetic regulation and beyond. Plant Commun. 2022, 3, 100329. [Google Scholar] [CrossRef] [PubMed]
- Haralampu, S.G. Resistant starch—A review of the physical properties and biological impact of RS3. Carbohydr. Polym. 2000, 41, 285–292. [Google Scholar] [CrossRef]
- Koh, G.Y.; Rowling, M.J. Resistant starch as a novel dietary strategy to maintain kidney health in diabetes mellitus. Nutr. Rev. 2017, 75, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Lockyer, S.; Nugent, A.P. Health effects of resistance starch. Nutr. Buttetin 2017, 42, 10–41. [Google Scholar]
- Regina, A.; Bird, A.; Topping, D.; Bowden, S.; Freeman, J.; Barsby, T.; Kosar-Hashemi, B.; Li, Z.; Rahman, S.; Morell, M. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc. Natl. Acad. Sci. USA 2006, 103, 3546–3551. [Google Scholar] [CrossRef]
- Wang, L.; Wang, G.Y.; Sui, C.H.; Li, W.H. Correlation analysis between resistant starch content and other quality-related traits in spring wheat. Mol. Plant. Breed. 2012, 10, 669. [Google Scholar]
- Panlasigui, L.N.; Thompson, L.U.; Juliano, B.O.; Perez, C.M.; Yiu, S.H.; Greenberg, G.R. Rice varieties with similar amylose content differ in starch digestibility and glycemic response in humans. Am. J. Clin. Nutr. 1991, 5, 871–877. [Google Scholar] [CrossRef]
- Frei, M.; Siddhuraju, P.; Becker, K. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food. Chem. 2003, 83, 395–402. [Google Scholar] [CrossRef]
- Singh, J.; Dartois, A.; Kaur, L. Starch digestibility in food matrix: A review. Trends Food. Sci. Tech. 2010, 21, 168–180. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, D.; Wang, R.M.; Yan, Y.M. Crop resistant starch and genetic improvement: A review of recent advances. Appl. Genet. 2018, 131, 2495–2511. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Liu, Q.; Lee, L.; Wei, D. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocoll. 2011, 25, 968–975. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, D.; Chang, H.M.; Yan, X.; Yan, Y.M. Effects of water-deficit and high-nitrogen treatments on wheat resistant starch crystalline structure and physicochemical properties. Carbohyd. Polym. 2020, 234, 115905. [Google Scholar] [CrossRef]
- Pang, H.; Li, W.H.; Zhang, H.B.; Wang, L.; Yin, Y.A.; Yuan, H.G.; Wang, Z.B. Inheritance analysis of resistant starch content in kernels of wheat. Genetics 2010, 32, 172–176. [Google Scholar] [CrossRef]
- Satoh, H.; Shibahara, K.; Tokunaga, T.; Nishi, A.; Tasaki, M.; Hwang, S.K.; Okita, T.W.; Kaneko, N.; Fujita, N.; Yoshida, M.; et al. Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant. Cell 2008, 20, 1833–1849. [Google Scholar] [CrossRef]
- Yamamori, M.; Kato, M.; Yui, M.; Kawasaki, M. Resistant starch and starch pasting properties of a starch synthase IIa-deficient wheat with apparent high amylose. Aust. J. Agr. Res. 2006, 57, 531–535. [Google Scholar] [CrossRef]
- Schoen, A.; Joshi, A.; Tiwari, V.; Gill, B.S.; Rawat, N. Triple null mutations in starch synthase SSIIa gene homoeologs lead to high amylose and resistant starch in hexaploid wheat. BMC Plant Biol. 2021, 21, 74. [Google Scholar] [CrossRef]
- He, Z.F. Grain and Oil Grain Quality and Its Analysis Technology; Agricultural Press: Beijing, China, 1985; p. 290. [Google Scholar]
- Peng, M.; Gao, M.; Abdel-Aal, E.S.M.; Hucl, P.; Chibbar, R.N. Separation and characterization of A- and B-type starch granules in wheat endosperm. Cereal Chem. 1999, 76, 375–379. [Google Scholar] [CrossRef]
- Kuang, N.; Zhou, W.; Zhang, X.; Zheng, H.B.; Tang, Q.Y. The research of ratoon rice on cooking and eating quality and the paste property and starch crystal structure. J. Chin. Cereals Oils Assoc. 2021, 36, 21–26. [Google Scholar]
- Kang, G.; Xu, W.; Liu, G.; Peng, X.; Guo, T. Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum) endosperm. Genome 2013, 56, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Feng, J.; Jiang, X.; Yao, Y.; Gao, H.; Ma, D. Resistant starch accumulation characteristics and expression analysis of genes encoding starch synthesis–related enzymes in wheat grain. Plant. Physiol. J. 2021, 57, 112–120. [Google Scholar]
- Wang, H.P.; Cai, H.Y.; Zhu, J.H.; Wei, X.; Zhang, S.; Liu, G.; He, Y.G.; Li, B.; Xu, L.; Jiao, C.H.; et al. Dynamic resistant starch accumulation in contrasting wheat genotypes highlights the lipid metabolic pathway related to resistant starch synthesis. Agriculture 2022, 12, 308. [Google Scholar] [CrossRef]
- Hoebler, C.; Karinthi, A.; Chiron, H.; Champ, M.; Barry, J.L. Bioavailability of starch in bread rich in amylose: Metabolic responses in healthy subjects and starch structure. Eur. J. Clin. Nutr. 1999, 53, 360–366. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Pautong, P.A.; Liu, Q.; Sreenivasulu, N. Low glycemic index rice—A desired trait in starchy staples. Trends Food. Sci. Tech. 2020, 106, 132–149. [Google Scholar] [CrossRef]
- Lv, X.; Hong, Y.; Zhou, Q.; Jiang, C. Structural features and digestibility of corn starch with different amylose content. Front. Nutr. 2021, 8, 692673. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, X.; Wei, B.; Tian, Y.; Xu, X.; Jin, Z. Effects of α-maltotriohydrolase hydrolysis prior to debranching on the structure and digestibility of normal maize starch. Starch/Starke 2017, 69, 1600078. [Google Scholar] [CrossRef]
- Ramadoss, B.R.; Gangola, M.P.; Agasimani, S.; Jaiswal, S.; Venkatesan, T.; Sundaram, G.R.; Chibbar, R.N. Starch granule size and amylopectin chain length influence starch in vitro enzymatic digestibility in selected rice mutants with similar amylose concentration. J. Food. Sci. Tech. 2019, 56, 391–400. [Google Scholar] [CrossRef]
- Li, C.; Feng, C.; Wang, Y.; Zhang, R.; Guo, W.; Zhu, X.; Peng, Y. Differences and correlations of starch physicochemical properties among different wheat cultivars. Acta Agron. Sin. 2007, 33, 1129–1134. [Google Scholar]
- Kumar, R.; Kumar, A.; Sharma, N.K.; Kaur, N.; Chunduri, V.; Chawla, M.; Sharma, S.; Singh, K.; Garg, M. Soft and hard textured wheat differ in starch properties as indicated by trimodal distribution, morphology, thermal and crystalline properties. PLoS ONE 2016, 11, 0147622. [Google Scholar] [CrossRef]
- Man, J.; Cai, J.; Xu, B.; Zhang, F.; Liu, Q.; Wei, C. Spectrum analysis of crystalline structure of crop starches. Acta Agron. Sin. 2012, 38, 691–698. [Google Scholar] [CrossRef]
- Bao, W.; Li, Q.; Wu, Y.; Ouyang, J. Insights into the crystallinity and in vitro digestibility of chestnut starch during thermal processing. Food Chem. 2018, 269, 244–251. [Google Scholar] [CrossRef]
- Bechtel, D.B.; Zayas, I.; Laleikau, L.; Pomeranz, Y. Size-distribution of wheat starch granules during endosperm development. Cereal Chem. 1990, 67, 59–63. [Google Scholar]
- Ahmed, Z.; Tetlow, I.J.; Falk, D.E.; Liu, Q.; Emes, M.J. Resistant starch content is related to granule size in barley. Cereal Chem. 2016, 93, 618–630. [Google Scholar] [CrossRef]
- Lu, H.; Wang, C.; Guo, T.; Xie, Y.; Feng, W.; Li, S. Starch composition and its granules distribution in wheat grains in relation to post-anthesis high temperature and drought stress treatments. Starch/Starke 2014, 66, 419–428. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, Q.; Li, E.; Yuan, L.; Wang, W.; Zhang, H.; Liu, L.; Wang, Z.; Yang, J.; Gu, J. Effects of nitrogen fertilizer on structure and physicochemical properties of “super” rice starch. Carbohyd. Polym. 2020, 239, 116237. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Henry, R.J.; Gilbert, R.G. Starch structure-property relations in Australian wild rices compared to domesticated rices. Carbohyd. Polym. 2021, 271, 118412. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, C.; Zhou, G.; Huo, Z. Physicochemical properties of indica-japonica hybrid rice starch from Chinese varieties. Food Hydrocoll. 2017, 63, 356–363. [Google Scholar] [CrossRef]
- Zi, Y.; Shen, H.; Dai, S.; Ma, X.; Ju, W.; Wang, C.; Guo, J.; Liu, A.; Cheng, D.; Li, H.; et al. Comparison of starch physicochemical properties of wheat cultivars differing in bread- and noodle-making quality. Food Hydrocoll. 2019, 93, 78–86. [Google Scholar] [CrossRef]
- Li, P.H.; Wang, C.W.; Lu, W.C.; Chan, Y.J.; Wang, C.R. Effect of resistance starch sources on the physical properties of dough and on the eating quality and glycemic index of salted noodles. Foods 2022, 11, 814. [Google Scholar] [CrossRef] [PubMed]
- Schonhofen, A.; Zhang, X.; Dubcovsky, J. Combined mutations in five wheat STARCH BRANCHINE ENZYME II genes improve resistance starch but affect grain yield and bread-making quality. J. Cereal Sci. 2017, 75, 165–174. [Google Scholar] [CrossRef]
- Zhou, H.J.; Wang, L.J.; Liu, G.F.; Meng, X.B.; Jing, Y.H.; Shu, X.L.; Kong, X.; Sun, J.; Yu, H.; Smith, S.M.; et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proc. Natl. Acad. Sci. USA 2016, 113, 12844–12849. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, X.; Zhang, C.; Jiang, L.; Jiang, M.; Zhong, M.; Fan, X.; Gu, M.; Liu, Q. Rice soluble starch synthase I: Allelic variation, expression, function, and interaction with Waxy. Front. Plant. Sci. 2018, 9, 1591. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Du, X.X.; Han, Z.Y.; Ye, Y.; Pan, G.; Asad, M.A.U.; Zhou, Q.; Cheng, F. Suppression of starch synthase I (SSI) by RNA interference alters starch biosynthesis and amylopectin chain distribution in rice plants subjected to high temperature. Crop. J. 2019, 7, 573–586. [Google Scholar] [CrossRef]
- Kajiura, H.; Takata, H.; Akiyama, T.; Kakutani, R.; Furuyashiki, T.; Kojima, I.; Harui, T.; Kuriki, T. In Vitro synthesis of glycogen: The structure, properties, and physiological function of enzymatically-synthesized glycogen. Biologia 2011, 66, 387–394. [Google Scholar] [CrossRef]
- Li, W.W.; Li, C.M.; Gu, Z.B.; Qiu, Y.J.; Cheng, L.; Hong, Y.; Li, Z. Relationship between structure and retrogradation properties of corn starch treated with 1,4-α-glucan branching enzyme. Food Hydrocoll. 2016, 52, 868–875. [Google Scholar] [CrossRef]
- Nakamura, Y.; Ono, M.; Utsumi, C.; Steup, M. Functional interaction between plastidial starch phosphorylase and starch branching enzymes from rice during the synthesis of branched maltodextrins. Plant. Cell. Physiol. 2012, 53, 869–878. [Google Scholar] [CrossRef]
Traits | Cultivar (Line) | 10 DAA | 20 DAA | 30 DAA | Maturity |
---|---|---|---|---|---|
Total starch content (g kg−1) | ZM22 | 109.24 ± 1.40 c | 570.19 ± 3.60 b | 652.37 ± 1.36 a | 637.29 ± 10.80 b |
RS639 | 239.71 ± 1.21 a | 595.69 ± 6.36 a | 658.41 ± 4.44 a | 661.90 ± 1.29 a | |
RS683 | 211.79 ± 1.30 b | 553.80 ± 0.95 b | 616.63 ± 2.98 b | 601.80 ± 8.90 c | |
Amylose content (g kg−1) | ZM22 | 42.54 ± 0.37 c | 123.88 ± 5.30 c | 199.28 ± 5.68 b | 205.80 ± 8.93 c |
RS639 | 72.76 ± 11.00 a | 201.25 ± 2.18 a | 232.70 ± 1.13 a | 231.70 ± 5.27 a | |
RS683 | 53.66 ± 3.15 b | 167.02 ± 2.66 b | 195.98 ± 10.88 b | 224.90 ± 7.70 b | |
Amylopectin content (g kg−1) | ZM22 | 66.86 ± 1.14 c | 438.00 ± 0.33 a | 453.09 ± 2.71 a | 438.20 ± 0.64 a |
RS639 | 141.72 ±0.43 b | 395.78 ± 6.33 b | 424.44 ± 6.11 b | 437.77 ± 3.47 a | |
RS683 | 158.13 ± 4.01 a | 389.30 ± 4.11 b | 420.67 ± 15.25 b | 376.92 ± 0.74 b | |
Resistant starch content (g kg−1) | ZM22 | 12.80 ± 0.40 a | 17.29 ± 2.40 c | 19.65 ± 0.95 b | 20.89 ± 0.30 c |
RS639 | 13.56 ± 0.20 a | 22.45 ± 0.35 a | 32.26 ± 1.00 a | 49.50 ± 0.11 a | |
RS683 | 12.70 ± 0.10 a | 21.21 ± 0.30 b | 31.27 ± 1.35 a | 36.70 ± 1.10 b |
DAA | Cultivar (Line) | Distribution (%) | ACL (DP) | |||
---|---|---|---|---|---|---|
A (DP 6–12) | B1 (DP 13–24) | B2 (DP 25–36) | B3 (DP > 37) | |||
20 | ZM22 | 42.40 ± 1.69 a | 40.55 ± 1.10 b | 10.35 ± 0.40 b | 6.75 ± 0.40 b | 17.13 ± 0.36 b |
RS639 | 32.30 ± 2.70 b | 47.15 ± 1.77 a | 12.85 ± 0.78 a | 7.65 ± 0.21 a,b | 18.85 ± 0.42 a | |
RS683 | 34.95 ± 2.10 b | 44.95 ± 1.20 a | 12.30 ± 0.71 a,b | 7.80 ± 0.28 a | 18.52 ± 0.38 a | |
30 | ZM22 | 41.35 ± 1.34 a | 41.05 ± 0.92 b | 10.50 ± 0.28 b | 7.20 ± 0.07 a | 17.41 ± 0.22 b |
RS639 | 30.35 ± 0.21 b | 48.65 ± 0.07 a | 13.30 ± 0.14 a | 7.70 ± 0.21 a | 19.08 ± 0.09 a | |
RS683 | 41.45 ± 2.89 a | 40.75 ± 2.05 b | 10.55 ± 0.64 b | 7.25 ± 0.21 a | 17.43 ± 0.48 b | |
Maturity | ZM22 | 33.30 ± 0.98 a | 46.20 ± 0.56 b | 12.75 ± 0.35 b | 7.80 ± 0.14 a | 18.80 ± 0.18 a,b |
RS639 | 30.05 ± 0.21 b | 48.65 ± 0.21 a | 13.50 ± 0.01 a | 7.85 ± 0.07 a | 19.22 ± 0.01 a | |
RS683 | 35.15 ± 0.91 a | 44.65 ± 0.77 b | 12.40 ± 0.14 b | 7.85 ± 0.07 a | 18.58 ± 0.14 b |
Cultivar (Line) | 10 DAA | 20 DAA | 30 DAA | Maturity |
---|---|---|---|---|
ZM22 | 20.99 ± 0.99 c | 19.62 ± 1.13 c | 17.77 ± 1.03 c | 16.23 ± 0.94 c |
RS639 | 33.07 ± 2.24 a | 29.17 ± 0.88 b | 28.16 ± 1.74 a | 32.65 ± 0.33 a |
RS683 | 30.38 ± 2.27 b | 31.56 ± 1.92 a | 25.39 ± 1.09 b | 24.97 ± 0.95 b |
Granule | Diameter/µm | Cultivar (Line) | 10 DAA | 20 DAA | 30 DAA | Maturity |
---|---|---|---|---|---|---|
Volume distribution (%) | <2.0 | ZM22 | 8.86 ± 0.34 ab | 8.76 ± 0.06 a | 7.94 ± 0.28 a | 7.79 ± 0.28 b |
RS639 | 8.02 ± 0.26 b | 8.87 ± 0.13 a | 6.37 ± 0.10 c | 8.13 ± 0.10 b | ||
RS683 | 9.87 ± 0.42 a | 4.12 ± 0.29 b | 7.12 ± 0.18 b | 8.78 ± 0.30 a | ||
2.0–9.8 | ZM22 | 15.49 ± 1.32 c | 23.61 ± 0.02 a | 25.93 ± 2.62 a | 27.91 ± 2.36 a | |
RS639 | 28.15 ± 0.59 b | 26.02 ± 1.14 a | 30.15 ± 0.88 a | 27.00 ± 0.07 a | ||
RS683 | 35.79 ± 2.24 a | 19.01 ± 1.11 b | 29.26 ± 0.47 a | 30.54 ± 1.12 a | ||
>9.8 | ZM22 | 75.65 ± 1.66 a | 67.62 ± 0.07 b | 66.13 ± 2.89 a | 64.30 ± 2.63 a | |
RS639 | 63.83 ± 0.83 b | 65.11 ± 1.25 b | 63.48 ± 0.97 a | 64.88 ± 0.17 a | ||
RS683 | 54.34 ± 2.67 c | 76.87 ± 1.32 a | 63.63 ± 0.63 a | 60.69 ± 1.42 a | ||
Surface area distribution (%) | <2.0 | ZM22 | 54.55 ± 0.58 a | 47.96 ± 0.0 3 a | 42.83 ± 0.32 a | 40.60 ± 0.27 a |
RS639 | 41.86 ± 1.01 b | 44.46 ± 0.23 a | 33.86 ± 0.32 c | 41.83 ± 0.42 a | ||
RS683 | 42.49 ± 0.38 b | 32.15 ± 1.68 b | 36.97 ± 0.40 b | 42.02 ± 0.59 a | ||
2.0–9.8 | ZM22 | 18.26 ± 1.01 b | 30.59 ± 0.14 c | 36.27 ± 1.83 b | 38.02 ± 0.70 b | |
RS639 | 40.52 ± 0.22 a | 36.02 ± 0.87 a | 46.58 ± 0.67 a | 39.31 ± 0.28 a | ||
RS683 | 43.48 ± 1.09 a | 42.22 ± 0.79 b | 43.31 ± 0.46 a | 40.16 ± 0.21 a | ||
>9.8 | ZM22 | 27.19 ± 0.66 a | 21.46 ± 0.10 b | 20.91 ± 1.52 a | 21.37 ± 0.43 a | |
RS639 | 17.62 ± 1.23 b | 19.53 ± 0.63 b | 19.56 ± 0.35 a | 18.92 ± 0.14 b | ||
RS683 | 14.03 ± 0.98 c | 25.63 ± 1.93 a | 19.72 ± 0.23 a | 17.82 ± 0.80 b | ||
Number distribution (%) | <2.0 | ZM22 | 98.22 ± 0.16 a | 96.22 ± 0.01 a | 94.66 ± 0.17 a | 93.64 ± 0.32 a |
RS639 | 93.51 ± 0.35 b | 94.34 ± 0.17 a | 90.06 ± 0.43 c | 93.40 ± 0.21 a | ||
RS683 | 92.08 ± 0.30 c | 91.19 ± 1.33 b | 91.60 ± 0.26 b | 93.52 ± 0.23 a | ||
2.0–9.8 | ZM22 | 1.64 ± 0.15 c | 3.66 ± 0.005 b | 5.22 ± 0.17 c | 6.22 ± 0.33 a | |
RS639 | 6.37 ± 0.32 b | 5.55 ± 0.17 b | 9.78 ± 0.42 a | 6.50 ± 0.20 a | ||
RS683 | 7.79 ± 0.31 a | 8.64 ± 1.30 a | 8.25 ± 0.25 b | 6.37 ± 0.22 a | ||
>9.8 | ZM22 | 0.14 ± 0.005 a | 0.12 ± 0.001 b | 0.12 ± 0.005 b | 0.13 ± 0.005 a | |
RS639 | 0.11 ± 0.01 c | 0.12 ± 0.003 b | 0.15 ± 0.003 a | 0.12 ± 0.006 a | ||
RS683 | 0.13 ± 0.01 ab | 0.17 ± 0.03 a | 0.15 ± 0.003 a | 0.11 ± 0.006 a |
Traits | Cultivar (Line) | 10 DAA | 20 DAA | 30 DAA | Maturity |
---|---|---|---|---|---|
To (°C) | ZM22 | 60.70 ± 0.10 b | 61.60 ± 0.10 a | 57.95 ± 0.15 b | 62.90 ± 0.20 a |
RS639 | 57.85 ± 0.05 c | 57.80 ± 0.10 b | 59.30 ± 0.20 a | 58.55 ± 0.05 b | |
RS683 | 66.35 ± 0.15 a | 56.20 ± 0.20 c | 59.05 ± 0.55 a | 58.65 ± 0.15 b | |
Tp (°C) | ZM22 | 64.24 ± 0.65 b | 63.51 ± 0.01 a | 61.05 ± 0.06 c | 65.92 ± 0.01 a |
RS639 | 60.70 ± 0.03 c | 62.12 ± 0.12 b | 61.99 ± 0.10 b | 63.03 ± 0.37 b | |
RS683 | 69.81 ± 0.02 a | 61.25 ± 0.05 c | 63.07 ± 0.04 a | 61.11 ± 0.03 c | |
Tc (°C) | ZM22 | 67.75 ± 0.10 b | 65.52 ± 0.07 c | 64.80 ± 0.20 b | 65.01 ± 0.24 c |
RS639 | 64.41 ± 0.25 c | 66.65 ± 0.01 b | 64.85 ± 0.15 b | 67.28 ± 0.06 b | |
RS683 | 73.85 ± 0.15 a | 68.04 ± 0.24 a | 67.55 ± 0.35 a | 68.42 ± 0.01 a | |
Gelatinization enthalpy (J g−1) | ZM22 | 4.59 ± 0.06 a | 3.53 ± 0.21 a | 3.42 ± 0.02 a | 6.03 ± 0.19 a |
RS639 | 2.48 ± 0.03 b | 1.15 ± 0.01 b | 1.37 ± 0.01 b | 1.91 ± 0.04 c | |
RS683 | 1.11 ± 0.51 c | 1.62 ± 0.09 b | 1.23 ± 0.02 b | 2.68 ± 0.21 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Du, C.; Feng, J.; Jia, Y.; Hao, Z.; Xie, Y.; Wang, C.; Ma, D. Characterization of Starch Physicochemical Properties and Grain Transcriptome Reveal the Mechanism for Resistant Starch Accumulation. Agronomy 2023, 13, 1482. https://doi.org/10.3390/agronomy13061482
Liu S, Du C, Feng J, Jia Y, Hao Z, Xie Y, Wang C, Ma D. Characterization of Starch Physicochemical Properties and Grain Transcriptome Reveal the Mechanism for Resistant Starch Accumulation. Agronomy. 2023; 13(6):1482. https://doi.org/10.3390/agronomy13061482
Chicago/Turabian StyleLiu, Sujun, Chenyang Du, Jianchao Feng, Yuku Jia, Zirui Hao, Yingxin Xie, Chenyang Wang, and Dongyun Ma. 2023. "Characterization of Starch Physicochemical Properties and Grain Transcriptome Reveal the Mechanism for Resistant Starch Accumulation" Agronomy 13, no. 6: 1482. https://doi.org/10.3390/agronomy13061482
APA StyleLiu, S., Du, C., Feng, J., Jia, Y., Hao, Z., Xie, Y., Wang, C., & Ma, D. (2023). Characterization of Starch Physicochemical Properties and Grain Transcriptome Reveal the Mechanism for Resistant Starch Accumulation. Agronomy, 13(6), 1482. https://doi.org/10.3390/agronomy13061482