Assessment of the Degree of Relatedness of Some Inbred Lines Created at ARDS Turda
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Results Regarding the Per Se Traits of the 7 Sister Inbred Lines
3.1.1. Per Se Phenotypic Traits of the Inbred Lines
3.1.2. Variability of the Phenotypic Per Se Traits of the Inbred Lines
3.2. Results Regarding the p(p − 1)/2 Diallel Crossing System
3.2.1. Expression of the Degree of Relatedness between the Sister Inbred Lines by the Intensity of Heterosis
3.2.2. Analysis of Genetic Variances between the Sister Inbred Lines
3.2.3. Analysis of Additive Genetic Effects
3.2.4. Analysis of Non-Additive Genetic Effects (ŝij)
- positive differentiations between: TD236 × TD238 (ŝij = 689.36 *); TD236 × TD235 (ŝij = 448.73 *)—for yield; TD238 × TD237 (ŝij = 5.26 *)—for plant breaking resistance.
- relatedness between: TD239 × TD235 (ŝij = −548.29 0)—for yield; TD239 × TD237 (ŝij = −0.66 0), TD236 × TD233 (ŝij = −0.57 0)—for dry matter.
3.3. Results Regarding the m × n Cyclic Crossing System (7 × 4)
3.3.1. Analysis of Genetic Variances between the Inbred Lines
3.3.2. Analysis of Additive Genetic Effects (ĝ)
- TD236—for the hereditary transmission of yield (ĝm = 101.3), ear weight (ĝm = 8.97), grain/ear weight (ĝm = 4.48), TKW (ĝm = 10.02) and for the kernel row number (ĝm = 1.55);
- TD233—for the hereditary transmission of yield (ĝm = 218.1), ear weight (ĝm = 6.94), grain/ear weight (ĝm = 5.95) and for the number of kernels/row (ĝm = 1.77);
- TD234—the positive value of additive effects for precocity (ĝm = 0.55), higher hectoliter mass (ĝm = 0.84) and a number of kernels/row.
- TD237—the source of improvement for plant breaking resistance.
3.3.3. Analysis of the Non-Additive Genetic Effects (ŝmn)
3.4. Discussions Regarding the Study on Genetic Diversity/Relatedness of Maize Inbred Lines Using SSR Molecular Markers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Babic, M.; Babic, V.; Prodanovic, S.; Filipovic, M.; Andjelkovic, V. Comparison of Morphological and Molecular Genetic Distances of Maize Inbreds. Genetika 2012, 44, 119–128. [Google Scholar] [CrossRef]
- Lauer, S.; Hall, B.D.; Mulaosmanovic, E.; Anderson, S.R.; Nelson, B.; Smith, S. Morphological Changes in Parental Lines of Pioneer Brand Maize Hybrids in the U.S. Central Corn Belt. Crop Sci. 2012, 52, 1033–1043. [Google Scholar] [CrossRef]
- Babic, V.; Nikolic, A.; Andjelkovic, V.; Kovacevic, D.; Filipovic, M.; Vasic, V.; Mladenovic-Drinic, S. UPOV Morphological versus Molecular Markers for Maize Inbred Lines Variability Determination. Chil. J. Agric. Res. 2016, 76, 417–426. [Google Scholar] [CrossRef]
- Oyetunde, O.A.; Badu-Apraku, B.; Ariyo, O.J.; Alake, C.O. Efficiencies of Heterotic Grouping Methods for Classifying Early Maturing Maize Inbred Lines. Agronomy 2020, 10, 1198. [Google Scholar] [CrossRef]
- Benchimol, L.L.; de Souza, C.L., Jr.; Garcia, A.A.F.; Kono, P.M.S.; Mangolin, C.A.; Barbosa, A.M.M.; Coelho, A.S.G.; de Souza, A.P. Genetic Diversity in Tropical Maize Inbred Lines: Heterotic Group Assignment and Hybrid Performance Determined by RFLP Markers. Plant Breed. 2000, 119, 491–496. [Google Scholar] [CrossRef]
- Patto, M.C.V.; Satovic, Z.; Pêgo, S.; Fevereiro, P. Assessing the Genetic Diversity of Portuguese Maize Germplasm Using Microsatellite Markers. Euphytica 2004, 137, 63–72. [Google Scholar] [CrossRef]
- Abegunde, O.I.; Idehen, E.O.; Oduwaye, O.A.; Fabunmi, T.O.; Kehinde, O.B. Genetic Characterization of Drought-Tolerant Maize Genotypes Based on SSR Markers. Nig. J. Biotechnol. 2023, 39, 97–105. [Google Scholar] [CrossRef]
- Bocianowski, J.; Nowosad, K.; Wróbel, B.; Szulc, P. Identification of Associations between SSR Markers and Quantitative Traits of Maize (Zea mays L.). Agronomy 2021, 11, 182. [Google Scholar] [CrossRef]
- Mathiang, E.A.; Sa, K.J.; Park, H.; Kim, Y.J.; Lee, J.K. Genetic Diversity and Population Structure of Normal Maize Germplasm Collected in South Sudan Revealed by SSR Markers. Plants 2022, 11, 2787. [Google Scholar] [CrossRef]
- Xia, X.C.; Reif, J.C.; Melchinger, A.E.; Frisch, M.; Hoisington, D.A.; Beck, D.; Pixley, K.; Warburton, M.L. Genetic Diversity among CIMMYT Maize Inbred Lines Investigated with SSR Markers: II. Subtropical, Tropical Midaltitude, and Highland Maize Inbred Lines and Their Relationships with Elite U.S. and European Maize. Crop Sci. 2005, 45, 2573–2582. [Google Scholar] [CrossRef]
- Xia, X.C.; Reif, J.C.; Hoisington, D.A.; Melchinger, A.E.; Frisch, M.; Warburton, M.L. Genetic Diversity among CIMMYT Maize Inbred Lines Investigated with SSR Markers: I. Lowland Tropical Maize. Crop Sci. 2004, 44, 2230–2237. [Google Scholar] [CrossRef]
- Senior, M.L.; Murphy, J.P.; Goodman, M.M.; Stuber, C.W. Utility of SSRs for Determining Genetic Similarities an Relationships in Maize Using an Agarose Gel System. Crop Sci. 1998, 38, 1088–1098. [Google Scholar] [CrossRef]
- Pejic, I.; Ajmone-Marsan, P.; Morgante, M.; Kozumplick, V.; Castiglioni, P.; Taramino, G.; Motto, M. Comparative Analysis of Genetic Similarity among Maize Inbred Lines Detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor. Appl. Genet. 1998, 97, 1248–1255. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Miranda, J.B. Quantitative Genetics in Maize Breeding; Iowa State University Press: Ames, IA, USA, 1981. [Google Scholar]
- Haș, I. Heterozisul La Porumb. In Porumbul—Studiu Monografic; Editura Academiei Române: București, Romania, 2004; Volume 1, pp. 311–362. ISBN 973-27-1056-X. [Google Scholar]
- Yadav, V.K.; Singh, I.S. Comparative Evaluation of Maize Inbred Lines (Zea mays L.) According to Dus Testing Using Morphological, Physiological and Molecular Markers. Agric. Sci. 2010, 01, 131–142. [Google Scholar] [CrossRef]
- Aliu, S.; Fetahu, S.; Salillari, A. Estimation of Heterosis and Combining Ability in Maize (Zea mays L.) for Ear Weight (EW) Using the Diallel Crossing Method. Agron. Vestis 2008, 11, 7–12. [Google Scholar]
- Aliu, S.; Rusinovci, I.; Fetahu, S.; Rozman, L. The Combining Ability of Maize (Zea mays L.) Inbred Lines for Grain Yield and Yield Components. Agric. For. 2016, 62, 295–303. [Google Scholar] [CrossRef]
- Murtadha, M.A.; Ariyo, O.J.; Alghamdi, S.S. Analysis of Combining Ability over Environments in Diallel Crosses of Maize (Zea mays). J. Saudi Soc. Agric. Sci. 2018, 17, 69–78. [Google Scholar] [CrossRef]
- Barata, C.; Carena, M.J. Classification of North Dakota Maize Inbred Lines into Heterotic Groups Based on Molecular and Testcross Data. Euphytica 2006, 151, 339–349. [Google Scholar] [CrossRef]
- Fan, X.M.; Zhang, Y.M.; Yao, W.H.; Chen, H.M.; Tan, J.; Xu, C.X.; Han, X.L.; Luo, L.M.; Kang, M.S. Classifying Maize Inbred Lines into Heterotic Groups Using a Factorial Mating Design. Agron. J. 2009, 101, 106–112. [Google Scholar] [CrossRef]
- Adu, G.B.; Awuku, F.J.; Amegbor, I.K.; Haruna, A.; Manigben, K.A.; Aboyadana, P.A. Genetic Characterization and Population Structure of Maize Populations Using SSR Markers. Ann. Agric. Sci. 2019, 64, 47–54. [Google Scholar] [CrossRef]
- Kumar, S.; Das, A.K.; Naliath, R.; Kumar, R.; Karjagi, C.G.; Sekhar, J.C.; Vayas, M.; Yathish, K.R.; Singh, A.; Mukri, G.; et al. Potential Use of Random and Linked SSR Markers in Establishing the True Heterotic Pattern in Maize (Zea mays). Crop Pasture Sci. 2022, 73, 1345–1353. [Google Scholar] [CrossRef]
- Zhao, M.; Shu, G.; Hu, Y.; Cao, G.; Wang, Y. Pattern and Variation in Simple Sequence Repeat (SSR) at Different Genomic Regions and Its Implications to Maize Evolution and Breeding. BMC Genom. 2023, 24, 136. [Google Scholar] [CrossRef] [PubMed]
- Sa, K.J.; Park, H.; Jang, S.J.; Lee, J.K. Association Mapping of Amylose Content in Maize RIL Population Using SSR and SNP Markers. Plants 2023, 12, 239. [Google Scholar] [CrossRef]
- Hallauer, A.R. Modern Methods in Maize Breeding. In Proceedings of the Maize Breeding and Maize Production; Maize Research Institute Zemun Polje: Belgrade, Serbia, 1988; pp. 1–20. [Google Scholar]
- Șuteu, D.; Băcilă, I.; Haș, V.; Haș, I.; Miclăuș, M. Romanian Maize (Zea mays) Inbred Lines as a Source of Genetic Diversity in SE Europe, and Their Potential in Future Breeding Efforts. PLoS ONE 2013, 8, e85501. [Google Scholar] [CrossRef] [PubMed]
- Griffing, B. Concept of General and Specific Combining Ability in Relation to Diallel Crossing Systems. Aust. Jnl. Bio. Sci. 1956, 9, 463. [Google Scholar] [CrossRef]
- Gardner, C.O.; Eberhart, S.A. Analysis and Interpretation of the Variety Cross Diallel and Related Populations. Biometrics 1966, 22, 439. [Google Scholar] [CrossRef]
- Căbulea, I. Metode Statistice Pentru Analiza Componentelor Genetice Ale Variabilității Continue [Statistical Methods for Analyzing the Genetic Components of Continuous Variability]. Probl. Genet. Teor. Aplic. 1975, 7, 391–420. [Google Scholar]
- Căbulea, I. Genetica Porumbului. In Porumbul—Studiu Monografic; Editura Academiei Române: București, Romania, 2004; Volume 1, pp. 207–310. ISBN 973-27-1056-X. [Google Scholar]
- Li, Z.; Coffey, L.; Garfin, J.; Miller, N.D.; White, M.R.; Spalding, E.P.; De Leon, N.; Kaeppler, S.M.; Schnable, P.S.; Springer, N.M.; et al. Genotype-by-Environment Interactions Affecting Heterosis in Maize. PLoS ONE 2018, 13, e0191321. [Google Scholar] [CrossRef]
- Musteață, S.I.; Mistreț, S.I.; Brumă, S. Sravnitel’nyj Analiz Kriteriev Opredeleniâ Otličimosti u Rodstvennyh Linij Kukuruzy. [Comparative Analysis of the Criteria for Determining the Distinctiveness of Related Maize Lines]. Kukuruza Sorgo 2009, 6, 18–24. [Google Scholar]
- Brumă, S. Aprecierea Comparativă a Diferitor Indici de Discriminare a Liniilor Înrudite de Porumb. Știința Agric. 2012, 2, 7–11. [Google Scholar]
- Hallauer, A.R. Methods Used in Developing Maize Inbreds. Maydica 1990, 35, 1–16. [Google Scholar]
- Troyer, A.F. Temperate Corn: Background, Behavior and Breeding. In Speciality Corns; CRC Press: Boca Raton, FL, USA, 2000; pp. 393–466. [Google Scholar]
- Brumă, S. Evaluarea Capacităţii de Combinare şi a Distinctivităţii Liniilor Consangvinizate de Porumb Timpuriu. [Evaluation of Combining Ability and Distinctiveness of Early Maize Inbred Lines]. Ph.D. Thesis, Academy of Science of Moldova, Chișinău, Moldova, 2013. [Google Scholar]
Trait | Lines p(p − 1)/2 | LSD 5% | |||||||
---|---|---|---|---|---|---|---|---|---|
TD233 | TD234 | TD235 | TD236 | TD237 | TD238 | TD239 | Average | ||
Yield (kg/ha) | 4026 ns | 2049 0 | 3945 ns | 4576 * | 4169 ns | 4553 * | 3135 0 | 3779 | 608 |
Dry matter (%) | 82.4 ns | 87.1 * | 82.6 ns | 80.3 0 | 82.7 ns | 83.9 ns | 82.2 ns | 83.0 | 1.6 |
Unbroken plants (%) | 78.5 ns | 73.4 ns | 82.9 ns | 78.8 ns | 80.1 ns | 79.7 ns | 77.7 ns | 78.7 | 6.1 |
Thousand kernel weight (g) | 233 ns | 178 0 | 227 ns | 221 ns | 243 * | 216 ns | 277 * | 228 | 14 |
Shelling percentage (%) | 79.4 ns | 73.4 ns | 73.3 ns | 80.1 ns | 77.6 ns | 81.0 ns | 75.7 ns | 77.2 | 4.2 |
Hectoliter mass (kg/hl) | 62.4 ns | 60.3 0 | 61.0 0 | 67.6 * | 63.3 ns | 66.9 * | 66.2 ns | 64.0 | 2.9 |
Ear weight (g) | 80.3 ns | 47.0 0 | 109.3 * | 100.5 * | 90.6 * | 84.4 ns | 72.7 0 | 83.5 | 6.0 |
Grains/ear weight (g) | 66.8 ns | 37.2 0 | 88.2 * | 85.8 * | 74.6 * | 69.9 ns | 58.2 0 | 68.7 | 3.9 |
Ear length (cm) | 12.9 0 | 11.8 0 | 15.6 * | 15.2 * | 14.2 * | 13.7 ns | 12.0 0 | 13.6 | 0.5 |
No kernels/row (no.) | 25.5 ns | 20.8 0 | 27.7 * | 27.8 * | 28.3 * | 27.0 * | 21.7 0 | 25.5 | 1.3 |
Kernel row number (no.) | 13.9 ns | 11.2 0 | 16.7 * | 17.0 * | 12.7 0 | 13.8 ns | 12.3 0 | 13.9 | 0.5 |
Kernel depth (cm) | 0.72 ns | 0.47 0 | 0.74 ns | 0.67 ns | 0.70 ns | 0.68 ns | 0.66 ns | 0.70 | 0.04 |
Source of Variation DF | Variance (s2) | |||||||
---|---|---|---|---|---|---|---|---|
Years (Y) | Lines (L) | Y × L | Error | |||||
Trait | 2 | 8 | 16 | 72 | ||||
Production traits | ||||||||
Yield (kg/ha) | 7,620,960 | ** | 7,774,270 | ** | 4,854,916 | ** | 559,772 | |
Dry matter (%) | 433.01 | ** | 42.77 | * | 8.95 | ** | 3.77 | |
Unbroken plants (%) | 762.24 | ** | 130.07 | * | 52.73 | ns | 56.05 | |
Thousand kernel weight (g) | 9515.33 | ** | 8513.99 | ** | 913.47 | ** | 312.42 | |
Shelling percentage (%) | 44.28 | ns | 137.50 | ** | 49.79 | * | 26.98 | |
Hectoliter mass (kg/hl) | 147.62 | ** | 78.25 | ** | 65.25 | ** | 12.61 | |
Ear weight (g) | 6105.36 | ** | 3930.87 | ** | 472.58 | ** | 38.54 | |
Grains/ear weight (g) | 4558.92 | ** | 2983.08 | ** | 365.43 | ** | 22.54 | |
Ear length (cm) | 3.36 | * | 30.64 | ** | 2.91 | ** | 0.44 | |
No kernels/row (no.) | 92.78 | ** | 132.79 | ** | 19.49 | ** | 2.38 | |
Kernel row number (no.) | 0.15 | ns | 45.64 | ** | 0.91 | ** | 0.33 | |
Kernels depth (cm) | 0.05 | ** | 0.08 | ** | 0.005 | ** | 0.002 | |
Plant traits | ||||||||
Plant height (cm) | 12,966.39 | ** | 3344.26 | ** | 667.23 | ** | 42.27 | |
Ear height (cm) | 283.98 | * | 1755.10 | ** | 216.89 | ** | 21.30 | |
Total no leaves (no.) | 7.18 | ** | 23.27 | ** | 4.61 | ** | 0.38 | |
Leaves above the ear (no.) | 1.61 | * | 9.27 | ** | 0.42 | ** | 0.08 | |
Leaf area (cm2) | 15,306.26 | ** | 47,565.71 | ** | 2511.65 | * | 1281.55 | |
No tassel branches (no.) | 4291.93 | ** | 105.05 | ** | 54.41 | ** | 2.81 |
Parental Lines | TD233 | TD234 | TD235 | TD236 | TD237 | TD238 | TD239 | |
---|---|---|---|---|---|---|---|---|
TD233 | 1 | 14 | 86 | 55 | 32 | 31 | 10 | |
2 | - | 24 | 28 | 89 | 32 | 27 | 32 | |
3 | 25 | 29 | 92 | 35 | 32 | 32 | ||
TD234 | 1 | 83 | 53 | 28 | 31 | 74 | ||
2 | - | 29 | 90 | 32 | 26 | 33 | ||
3 | 29 | 91 | 37 | 33 | 34 | |||
TD235 | 1 | 47 | 33 | 15 | 91 | |||
2 | - | 79 | 32 | 12 | 12 | |||
3 | 79 | 34 | 13 | 15 | ||||
TD236 | 1 | 154 | 74 | 40 | ||||
2 | - | 97 | 89 | 88 | ||||
3 | 100 | 88 | 87 | |||||
TD237 | 1 | 29 | 21 | |||||
2 | - | 26 | 34 | |||||
3 | 29 | 35 | ||||||
TD238 | 1 | 22 | ||||||
2 | - | 14 | ||||||
3 | 15 | |||||||
Hr (%) 1—yield 2—ear weight 3—grains weight/ear | Grouping of lines based on heterosis: (a) similar—Hr% < 30%; (b) genetically closed—Hr% = 30–70%; (c) genetically distant—Hr% = 70–90%; (d) from alternative groups—Hr% > 90% |
Source of Variation DF | Variance (s2) | ||||||
---|---|---|---|---|---|---|---|
Years | Genotypes | Years × Genotypes | |||||
Trait | 1 | 20 | 20 | ||||
Production traits | |||||||
Yield (kg/ha) | 5.22 | ns | 60.61 | ** | 1.60 | ns | |
Dry matter (%) | 632.55 | ** | 10.49 | ** | 2.84 | ns | |
Unbroken plants (%) | 45.32 | ** | 3.37 | ** | 2.22 | ns | |
Thousand kernel weight (g) | 2.29 | ns | 28.91 | ** | 2.76 | ** | |
Hectoliter mass (kg/hl) | 368.26 | ** | 5.57 | ** | 2.21 | ** | |
Ear weight (g) | 76.18 | ** | 100.60 | ** | 2.74 | * | |
Grains/ear weight (g) | 21.32 | * | 96.02 | ** | 2.89 | * | |
Ear length (cm) | 337.09 | ** | 34.79 | ** | 9.76 | ** | |
No kernels/row (no.) | 720.70 | ** | 34.56 | ** | 10.15 | ** | |
Kernel row number (no.) | 2.47 | ** | 7.64 | ** | 1.06 | ||
Plant traits | |||||||
Plant height (cm) | 1.00 | ns | 32.51 | ** | 0.001 | ns | |
Ear height (cm) | 1.25 | ns | 24.99 | ** | 0.54 | ns | |
Leaf area (cm2) | 0.81 | ns | 22.95 | ** | 1.49 | ns | |
No tassel branches (no.) | 3.31 | ns | 49.84 | ** | 4.41 | ** |
Trait | Inbred Lines p(p − 1)/2 | LSD 5% | ||||||
---|---|---|---|---|---|---|---|---|
TD233 | TD234 | TD235 | TD236 | TD237 | TD238 | TD239 | ||
Yield (kg/ha) | −61.8 ns | −241.1 ns | −619.9 0 | 2097.3 * | −309.6 ns | −303.7 ns | −561.2 0 | 505.7 |
Dry matter (%) | 0.0 ns | 0.34 ns | 0.30 ns | −0.63 0 | −0.33 ns | −0.10 ns | 0.35 ns | 0.54 |
Thousand kernel weight (g) | −6.12 ns | −12.59 0 | −3.17 ns | 29.20 * | 2.68 ns | −2.95 ns | −7.06 ns | 10.7 |
Hectoliter mass (kg/hl) | 0.16 ns | 0.70 ns | 1.16 ns | −1.26 ns | −0.77 ns | −0.24 ns | 0.25 ns | 1.61 |
Ear weight (g) | 5.25 ns | −2.22 ns | −13.23 0 | 28.98 * | −0.13 ns | −8.9 0 | −9.73 0 | 5.97 |
Grains/ear weight (g) | 5.05 * | −0.99 ns | −11.35 0 | 23.73 * | 1.50 ns | −6.62 0 | −8.32 0 | 5.04 |
Ear length (cm) | 0.64 * | −0.02 ns | −0.94 0 | 0.45 * | 0.29 ns | −0.19 ns | −0.23 ns | 0.39 |
No kernels/row (no.) | 1.86 * | 0.49 ns | −1.53 0 | 1.25 * | −0.93 ns | −0.15 ns | −0.98 ns | 1.15 |
Kernel row number (no.) | −0.07 ns | 0.10 ns | −0.24 ns | 0.60 ns | −0.07 ns | −0.24 ns | −0.07 ns | 0.80 |
m Inbred Line | TD233 | TD234 | TD235 | TD236 | TD237 | TD238 | |
---|---|---|---|---|---|---|---|
TD234 | a | −486.69 ns | |||||
b | −0.37 ns | - | |||||
c | 3.19 ns | ||||||
TD235 | a | 63.64 ns | −214.46 ns | ||||
b | 0.20 ns | 0.29 ns | - | ||||
c | 0.44 ns | −2.11 ns | |||||
TD236 | a | 53.00 ns | 350.27 ns | 448.73 ns | |||
b | −0.57 0 | 0.01 ns | −0.30 ns | - | |||
c | −0.15 ns | 1.86 ns | 2.21 ns | ||||
TD237 | a | 216.05 ns | 147.44 ns | −247.98 ns | 277.87 ns | ||
b | 0.47 ns | 0.09 ns | −0.09 ns | 0.14 ns | - | ||
c | −2.10 ns | −4.20 ns | 4.96 ns | −1.70 ns | |||
TD238 | a | −63.23 ns | −217.71 ns | −121.50 ns | 689.36 * | −333.61 ns | |
b | 0.09 ns | 0.04 ns | 0.03 ns | −0.09 ns | −0.29 ns | - | |
c | −3.80 ns | 0.01 ns | −1.57 ns | −2.01 ns | 5.26 * | ||
TD239 | a | 155.48 ns | 180.00 ns | −548.290 | 278.06 ns | −369.40 ns | −257.04 ns |
b | 0.27 ns | 0.28 ns | 0.17 ns | 0.18 ns | −0.66 ns | 0.11 ns | |
c | 2.56 ns | 1.78 ns | −5.43 0 | 1.75 ns | −2.05 ns | 1.09 ns | |
a = yield | LSD 5% = 505.76 | ||||||
b = % dry matter | LSD 5% = 0.54 | ||||||
c = % unbroken plants | LSD 5% = 5.07 |
Source of Variation DF | Years (Y) | Genotypes (G) | Additive Actions—Inbred Lines (Am) | Additive Actions—Testers (An) | Non-Additive Actions (NA) | Y × G | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trait | |||||||||||||
2 | 27 | (6) | (3) | (18) | 54 | ||||||||
Yield (kg/ha) | 1937.7 | ** | 65.2 | ** | 0.2 | ns | 46.1 | ** | 90.1 | ** | 6.45 | ** | |
Dry matter (%) | 126.8 | ** | 3.6 | ** | 0.1 | ns | 1.8 | ns | 5.1 | ** | 0.87 | ns | |
Unbroken plants (%) | 149.9 | ** | 2.8 | ** | 0.1 | ns | 1.8 | ns | 3.9 | ** | 1.41 | * | |
Thousand kernel weight (g) | 848.5 | ** | 27.6 | ** | 2.1 | ** | 15.0 | ** | 38.2 | ** | 5.63 | ** | |
Hectoliter mass (kg/hl) | 236.6 | ** | 16.4 | ** | 0.4 | ns | 10.9 | * | 22.7 | ** | 2.40 | ** | |
Grains/ear weight (g) | 38.9 | ** | 107.5 | ** | 0.9 | ns | 76.5 | ** | 98.0 | ** | 6.66 | ** | |
Ear length (cm) | 1.6 | ns | 106.2 | ** | 0.3 | ns | 75.4 | ** | 147.6 | ** | 9.68 | ** | |
No kernels/row (no.) | 7.9 | ** | 42.3 | ** | 1.3 | ns | 26.5 | ** | 58.7 | ** | 7.03 | ** | |
Kernel row number (no.) | 15.6 | ** | 72.1 | ** | 4.5 | ** | 38.3 | ** | 100.9 | ** | 2.80 | ** | |
Kernel depth (cm) | 1.4 | ** | 0.1 | ** | 0.001 | ** | 0.1 | ** | 38.6 | ** | 0.008 | ** |
Traits | m Lines | LSD 5% | ||||||
---|---|---|---|---|---|---|---|---|
TD233 | TD234 | TD235 | TD236 | TD237 | TD238 | TD239 | ||
Yield (kg/ha) | 218.1 ns | 72.1 ns | −94.7 ns | 101.3 ns | 25.4 ns | −36.9 ns | −285.3 0 | 259.7 |
Dry matter (%) | −0.05 ns | 0.55 ns | −0.60 ns | −0.30 ns | −0.17 ns | 0.33 ns | 0.25 ns | 1.76 |
Unbroken plants (%) | 0.16 ns | −0.29 ns | −1.04 ns | 0.93 ns | 3.13 ns | −0.84 ns | −2.04 ns | 7.22 |
Thousand kernel weight (g) | −3.28 ns | −15.18 0 | 3.72 ns | 10.02 * | 5.40 ns | 5.10 ns | −5.78 ns | 9.46 |
Shelling percentage (%) | 0.53 ns | 0.23 ns | −0.44 ns | −0.67 ns | −0.87 ns | 1.01 ns | 0.21 ns | 2.29 |
Hectoliter mass (kg/hl) | 0.22 ns | 0.84 ns | −0.11 ns | −0.98 ns | −0.03 ns | −0.13 ns | 0.19 ns | 1.46 |
Ear weight (g) | 6.94 ns | −1.51 ns | 4.09 ns | 8.97 ns | −4.76 ns | −4.63 ns | −9.11 ns | 11.95 |
Grains/ear weight (g) | 5.95 ns | −0.41 ns | 3.23 ns | 4.48 ns | −7.59 ns | −0.44 ns | −5.21 ns | 8.56 |
Ear length (cm) | 0.13 ns | −0.19 ns | −0.19 ns | −0.17 ns | 0.26 ns | 0.13 ns | 0.03 ns | 0.58 |
No kernels/row (no.) | 1.77 * | 1.22 ns | −0.13 ns | −1.40 ns | −1.45 ns | 0.15 ns | −0.15 ns | 1.69 |
Kernel row number (no.) | −0.08 ns | 0.45 ns | −0.23 ns | 1.55 ns | −1.08 ns | −0.40 ns | −0.20 ns | 1.72 |
Kernel depth (cm) | 0.01 ns | −0.01 ns | 0.00 ns | 0.01 ns | −0.02 ns | 0.01 ns | −0.01 ns | 0.05 |
Inbred Lines | Trait | Inbred Lines m | ||||||
---|---|---|---|---|---|---|---|---|
n | TD233 | TD234 | TD235 | TD236 | TD237 | TD238 | TD239 | |
TB329 | a | −369 ns | 85 ns | −502 ns | 815 * | −190 ns | −69 ns | 230 ns |
TC177 | 9 ns | −61 ns | 292 ns | −473 ns | 167 ns | −136 ns | 201 ns | |
TC344 | 709 * | 59 ns | −44 ns | 105 ns | −415 ns | −65 ns | −348 ns | |
TA367 | −349 ns | −83 ns | 254 ns | −447 ns | 438 ns | 270 ns | −83 ns | |
TB329 | b | −6.19 ns | −0.74 ns | −8.84 ns | 17.39 * | 2.91 ns | −1.21 ns | −3.34 ns |
TC177 | −1.94 ns | 0.91 ns | 3.21 ns | −17.87 0 | 0.26 ns | 6.83 ns | 8.61 ns | |
TC344 | 11.49 ns | −0.56 ns | 2.44 ns | 6.36 ns | −13.01 0 | 1.76 ns | −8.46 ns | |
TA367 | −3.36 ns | 0.39 ns | 3.19 ns | −5.88 ns | 9.84 ns | −7.38 ns | 3.19 ns | |
TB329 | c | −0.97 ns | 0.39 ns | −5.76 ns | 13.45 * | −0.94 ns | −2.43 ns | −3.74 ns |
TC177 | −0.37 ns | 1.31 ns | 2.91 ns | −13.12 0 | 3.23 ns | 1.60 ns | 4.44 ns | |
TC344 | 6.50 ns | −2.41 ns | 2.34 ns | 5.38 ns | −11.15 0 | −0.01 ns | −0.65 ns | |
TA367 | −5.15 ns | 0.70 ns | 0.51 ns | −5.70 ns | 8.86 * | 0.84 ns | −0.06 ns | |
TB329 | d | −0.15 ns | 0.28 ns | −0.52 ns | 1.45 * | −0.47 ns | −0.25 ns | −0.35 ns |
TC177 | 0.42 ns | 0.05 ns | 0.35 ns | −1.28 0 | 0.10 ns | 0.22 ns | 0.13 ns | |
TC344 | −0.08 ns | −0.15 ns | −0.15 ns | −0.48 ns | 0.10 ns | 0.22 ns | 0.52 ns | |
TA367 | −0.20 ns | −0.18 ns | 0.32 ns | 0.30 ns | 0.27 ns | −0.20 ns | −0.30 ns | |
a = yield (kg/ha) | LSD 5% = 527.21 | c = grain/ear weight (g) | LSD 5% = 8.56 | |||||
b = ear weight (g) | LSD 5% = 11.95 | d = ear length (cm) | LSD 5% = 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga, A.; Călugăr, R.E.; Vana, C.; Ceclan, L.; Racz, I.; Tritean, N. Assessment of the Degree of Relatedness of Some Inbred Lines Created at ARDS Turda. Agronomy 2023, 13, 1505. https://doi.org/10.3390/agronomy13061505
Varga A, Călugăr RE, Vana C, Ceclan L, Racz I, Tritean N. Assessment of the Degree of Relatedness of Some Inbred Lines Created at ARDS Turda. Agronomy. 2023; 13(6):1505. https://doi.org/10.3390/agronomy13061505
Chicago/Turabian StyleVarga, Andrei, Roxana Elena Călugăr, Carmen Vana, Loredana Ceclan, Ionuț Racz, and Nicolae Tritean. 2023. "Assessment of the Degree of Relatedness of Some Inbred Lines Created at ARDS Turda" Agronomy 13, no. 6: 1505. https://doi.org/10.3390/agronomy13061505
APA StyleVarga, A., Călugăr, R. E., Vana, C., Ceclan, L., Racz, I., & Tritean, N. (2023). Assessment of the Degree of Relatedness of Some Inbred Lines Created at ARDS Turda. Agronomy, 13(6), 1505. https://doi.org/10.3390/agronomy13061505