Effects of Incorporating Different Proportions of Humic Acid into Phosphate Fertilizers on Phosphorus Migration and Transformation in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of HA, CP, and HAPs
2.2. Structural and Compositional Analysis of CP and HAP10
2.3. Water-Soluble P Fixation Rate of CP and HAPs
2.4. Migration of P Derived from CP and HAPs
2.4.1. Soil Incubation
2.4.2. Soil Sampling and Laboratory Analyses
2.4.3. Calculations
2.4.4. Phospholipid Fatty Acid (PLFA) Analysis
2.5. Mobility of HA in HAPs
2.6. Statistical Analysis
3. Results
3.1. Orthophosphate and Phosphate Ester Exists in HAPs
3.2. HA Combined with Phosphate Fertilizer Reduces the Rate of Water-Soluble P Fixation
3.3. HAP Application Promotes the Migration of Fertilizer-Derived P
3.4. HAP Application Enhances Soil P Availability
3.5. HA Movement Distance in HAPs Increases with the Amount of HA Added
4. Discussion
4.1. Phosphate Monoester Is Formed during HAP Production
4.2. Incorporating HA into Phosphate Fertilizer Promotes P Migration and Enhances P Availability
4.3. Optimal Use of 0.5% HA in HAPs Promotes P Migration and Transformation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Chapter 6-Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Zhang, F.S.; Cui, Z.L.; Chen, X.P.; Ju, X.T.; Shen, J.B.; Chen, Q.; Liu, X.J.; Zhang, W.F.; Mi, G.H.; Fan, M.S.; et al. Integrated nutrient management for food security and environmental quality in China. Adv. Agron. 2012, 116, 1–40. [Google Scholar]
- Roberts, T.L.; Johnston, A.E. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 2015, 105, 275–281. [Google Scholar] [CrossRef]
- Castro, B.; Torrent, J. Phosphate sorption by calcareous Vertisols and Inceptisols as evaluated from extended P-sorption curves. Eur. J. Soil Sci. 1998, 49, 661–667. [Google Scholar] [CrossRef]
- Eghball, B.; Sander, D.H. Distance and distribution effects of phosphorus fertilizer on corn. Soil Sci. Soc. Am. J. 1989, 53, 282–287. [Google Scholar] [CrossRef]
- An, T.; Qin, Y.; Cheng, H.; Wu, J.N.; Su, W.H.; Meng, G.H.; Wei, H.X.; Sun, C.H.; Liu, Z.Y.; Guo, X.H. TiO2-WO3 activated weathered lignite coating phosphate fertilizer to improve longitudinal migration efficiency. J. Clean. Prod. 2022, 351, 131549. [Google Scholar] [CrossRef]
- Wang, S.X.; Liang, X.Q.; Chen, Y.X.; Luo, Q.X.; Liang, W.S.; Li, S.; Huang, C.L.; Li, Z.Z.; Wan, L.L.; Li, W.; et al. Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosystems. Soil Sci. Soc. Am. J. 2012, 76, 161–167. [Google Scholar] [CrossRef]
- Yang, F.; Sui, L.; Tang, C.; Li, J.; Cheng, K.; Xue, Q. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. Sci. Total Environ. 2021, 768, 145106. [Google Scholar] [CrossRef]
- Zhao, B.Q. Modification of conventional fertilizers for enhanced property and function. Plant Nutr. Fert. Sci. 2016, 22, 1–7. (In Chinese) [Google Scholar]
- Chen, Q.; Qu, Z.M.; Li, Z.L.; Zhang, Z.X.; Ma, G.H.; Liu, Z.G.; Wang, Y.F.; Wu, L.; Fang, F.L.; Wei, Z.B.; et al. Coated diammonium phosphate combined with humic acid improves soil phosphorus availability and photosynthesis and the yield of maize. Front. Plant Sci. 2021, 12, 759929. [Google Scholar] [CrossRef]
- Urrutia, O.; Erro, J.; Guardado, I.; San Francisco, S.; Mandado, M.; Baigorri, R.; Yvin, J.C.; Garcia-Mina, J.M. Physico-chemical characterization of humic-metal-phosphate complexes and their potential application to the manufacture of new types of phosphate-based fertilizers. J. Plant Nutr. Soil Sci. 2014, 177, 128–136. [Google Scholar] [CrossRef]
- Emami, S.; Alikhani, H.A.; Pourbabaee, A.A.; Etesami, H.; Sarmadian, F.; Motesharezadeh, B.; Taghizadeh-Mehrjardi, R. Performance evaluation of phosphate-solubilizing fluorescent pseudomonads in minimizing phosphorus fertilizer use and improving wheat productivity: A two-year field study. J. Soil Sci. Plant Nut. 2022, 22, 1224–1237. [Google Scholar] [CrossRef]
- Jing, J.Y.; Zhang, S.Q.; Yuan, L.; Li, Y.T.; Zhang, Y.Q.; Zhao, B.Q. Synergistic effects of humic acid and phosphate fertilizer facilitate root proliferation and phosphorus uptake in low-fertility soil. Plant Soil 2022, 478, 491–503. [Google Scholar] [CrossRef]
- Li, R.H.; Wang, J.J.; Zhou, B.Y.; Awasthi, M.K.; Ali, A.; Zhang, Z.Q.; Lahori, A.H.; Mahar, A. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Bioresour. Technol. 2016, 215, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.Q.; Yuan, L.; Li, Y.T.; Zhang, S.Q. Overview of Value-Added Fertilizer; China Agricultural Science and Technology Press: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Li, J.; Yuan, L.; Zhao, B.Q.; Li, Y.T.; Wen, Y.C.; Li, W.; Lin, Z.A. Effect of adding humic acid to phosphorous fertilizer on maize yield and phosphorus uptake and soil available phosphorus content. Plant Nutr. Fert. Sci. 2017, 23, 641–648. (In Chinese) [Google Scholar]
- Ma, M.K.; Yuan, L.; Li, Y.T.; Gao, Q.; Zhao, B.Q. The effect of sulfonated humus acid phosphate fertilizer on enhancing grain yield and phosphorus uptake and utilization in winter wheat. Plant Nutr. Fert. Sci. 2019, 25, 362–369. (In Chinese) [Google Scholar]
- Yang, F.; Zhang, S.S.; Song, J.P.; Du, Q.; Li, G.X.; Tarakina, N.V.; Antonietti, M. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility. Angew. Chem. Int. Edit. 2019, 58, 18883–18886. [Google Scholar]
- Jing, J.Y.; Yuan, L.; Zhang, S.Q.; Li, Y.T.; Zhao, B.Q. Effects and mechanism of humic acid in humic acid enhanced phosphate fertilizer on fertilizer-phosphorus migration. Sci. Agric. Sin. 2021, 54, 5032–5042. (In Chinese) [Google Scholar]
- Yuan, Y.; Gai, S.; Tang, C.Y.; Jin, Y.X.; Cheng, K.; Antonirtti, M.; Yang, F. Artificial humic acid improves maize growth and soil phosphorus utilization efficiency. Appl. Soil. Ecol. 2022, 179, 104587. [Google Scholar] [CrossRef]
- Hue, N.V. Effects of organic acids/anions on p sorption and phytoavailability in soils with different mineralogies. Soil Sci. 1991, 152, 463–471. [Google Scholar] [CrossRef]
- Urrutia, O.; Guardado, I.; Erro, J.; Mandado, M.; García-Mina, J.M. Theoretical chemical characterization of phosphate-metal–humic complexes and relationships with their effects on both phosphorus soil fixation and phosphorus availability for plants. J. Sci. Food Agr. 2013, 93, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Olaetxea, M.; De Hita, D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreño, A.M.; et al. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot-growth. Appl. Soil Ecol. 2018, 123, 521–537. [Google Scholar] [CrossRef]
- Grossl, P.R.; Inskeep, W.P. Precipitation of dicalcium phosphate dihydrate in the presence of organic acids. Soil Sci. Soc. Am. J. 1991, 55, 670–675. [Google Scholar] [CrossRef]
- Du, Z.Y.; Wang, Q.H.; Liu, F.C.; Ma, H.L.; Ma, B.Y.; Malhi, S.S. Movement of phosphorus in a calcareous soil as affected by humic acid. Pedosphere 2013, 23, 229–235. [Google Scholar] [CrossRef]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafi, M.I.; Adnan, M.; Fahad, S.; Wahid, F.; Khan, A.; Yue, Z.; Danish, S.; Zafar-ul-Hye, M.; Brtnicky, M.; Datta, R. Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (Triticum aestivum L.) in calcareous soil. Agronomy 2020, 10, 1224. [Google Scholar] [CrossRef]
- Jing, J.Y.; Zhang, S.Q.; Yuan, L.; Li, Y.T.; Lin, Z.A.; Xiong, Q.Z.; Zhao, B.Q. Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings. Sci. Rep. 2020, 10, 17502. [Google Scholar] [CrossRef]
- Jing, J.Y.; Zhang, S.Q.; Yuan, L.; Li, Y.T.; Chen, C.R.; Zhao, B.Q. Humic acid modified by being incorporated into phosphate fertilizer increases its potency in stimulating maize growth and nutrient absorption. Front. Plant Sci. 2022, 13, 885156. [Google Scholar] [CrossRef]
- Tahiri, A.; Destain, J.; Druart, P.; Thonart, P. Physical-chemical and biological properties of humic substances in relation to plant growth. A review. Biotechnol. Agron. Soc. 2014, 18, 436–445. [Google Scholar]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L.; Jackson, W.R.; Cavagnaro, T.R. Chapter Two—A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron. 2014, 124, 37–89. [Google Scholar]
- Zhang, S.Q.; Yuan, L.; Li, W.; Lin, Z.A.; Li, Y.T.; Hu, S.W.; Zhao, B.Q. Characterization of pH-fractionated humic acids derived from Chinese weathered coal. Chemosphere 2017, 166, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Haslemore, R.M.; Roughan, P.G. Rapid chemical analysis of some plant constituents. J. Sci. Food Agr. 1976, 27, 1171–1178. [Google Scholar] [CrossRef]
- Schall, E.D. Potassium analysis of twelve years’ Magruder check samples by flame photometry. J. AOAC Int. 1953, 36, 902–907. [Google Scholar] [CrossRef] [Green Version]
- Kalra, Y.P. Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Zhang, Y.Q.; Zhang, S.Q.; Yuan, L.; Li, Y.T.; Lin, Z.A.; Wang, L.Y.; Zhao, B.Q. Structure analysis of citric acid-modified phosphate fertilizer and its effects on water-soluble phosphorus fixation. Plant Nutr. Fert. Sci. 2021, 27, 878–885. (In Chinese) [Google Scholar]
- Bai, Z.H.; Li, H.G.; Yang, X.Y.; Zhou, B.K.; Shi, X.H.; Wang, B.R.; Li, D.C.; Shen, J.B.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 2013, 372, 27–37. [Google Scholar] [CrossRef]
- Hui, X.L.; Luo, L.C.; Wang, S.; Cao, H.; Huang, M.; Shi, M.; Malhi, S.S.; Wang, Z.H. Critical concentration of available soil phosphorus for grain yield and zinc nutrition of winter wheat in a zinc-deficient calcareous soil. Plant Soil 2019, 444, 315–330. [Google Scholar] [CrossRef]
- Ai, C.; Liang, G.; Sun, J.; He, P.; Tang, S.; Yang, S.; Zhou, W.; Wang, X. The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Biol. Fert. Soils 2015, 51, 465–477. [Google Scholar] [CrossRef]
- Smith, A.P.; Marin-Spiotta, E.; Balser, T. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: A multiyear study. Global Chang. Biol. 2015, 21, 3532–3547. [Google Scholar] [CrossRef]
- Weng, S.F.; Xu, Y.Z. Fourier Transform Infrared Spectroscopy Analysis; Chemical Industry Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Li, Y.J.; Yang, C.H.; Chen, B.; Qiu, H.Z. Bioavailability and mechanism of modified rock phosphate in calcareous soil. Chin. J. Eco. Agr. 2012, 20, 303–309. (In Chinese) [Google Scholar] [CrossRef]
- Li, L.D.; Hou, S.H.; Zhao, Z.B. Progress in the preparation of monophosphate. Chem. React. 2008, 30, 748–752, 758. (In Chinese) [Google Scholar]
- Hill, M.W.; Hopkins, B.G.; Jolley, V.D. Maize in-season growth response to organic acid-bonded phosphorus fertilizer (Carbond P (R)). J. Plant Nutr. 2015, 38, 1398–1415. [Google Scholar] [CrossRef]
- Summerhays, J.S.; Hopkins, B.G.; Jolley, V.D.; Hill, M.W.; Ransom, C.J.; Brown, T.R. Enhanced phosphorus fertilizer (Carbond P (R)) supplied to maize in moderate and high organic matter soils. J. Plant Nutr. 2015, 38, 1359–1371. [Google Scholar] [CrossRef]
- Liu, J.; Yang, J.J.; Hu, Y.; Li, J.M.; Zhang, X.; Ma, Y.B. Molecular speciation of phosphorus in an organically bound phosphorus fertilizer with high phytoavailability characterized by multiple spectroscopy. Spectrosc. Spect. Anal. 2018, 38, 958–962. (In Chinese) [Google Scholar]
- Li, W.; Yuan, L.; Zhang, S.Q.; Lin, Z.A.; Li, Y.T.; Zhao, B.Q. Mechanism of middle and low molecular weight humic acids in promoting phosphorus fertilizer uptake efficiency and yield of winter wheat. Plant Nutr. Fert. Sci. 2020, 26, 2043–2050. (In Chinese) [Google Scholar]
- Zhang, S.S.; Du, Q.; Cheng, K.; Antonietti, M.; Yang, F. Efficient phosphorus recycling and heavy metal removal from wastewater sludge by a novel hydrothermal humification-technique. Chem. Eng. J. 2020, 394, 124832. [Google Scholar] [CrossRef]
- Hill, M.W.; Hopkins, B.G.; Jolley, V.D.; Webb, B.L. Phosphorus mobility through soil increased with organic acid-bonded phosphorus fertilizer (Carbond (R) P). J. Plant Nutr. 2015, 38, 1416–1426. [Google Scholar] [CrossRef]
- Kaminsky, L.M.; Thompson, G.L.; Trexler, R.V.; Bell, T.H.; Kao-Kniffin, J. Medicago sativa has reduced biomass and nodulation when grown with soil microbiomes conditioned to high phosphorus inputs. Phytobiomes J. 2018, 2, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Dong, W.Y.; Dai, X.Q.; Schaeffer, S.; Yang, F.T.; Radosevich, M.; Xu, L.L.; Liu, X.Y.; Sun, X.M. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer. Sci. Total Environ. 2015, 536, 59–67. [Google Scholar] [CrossRef]
Element Composition (%) | The Percentage of Molecular Weight (%) | ||||||
---|---|---|---|---|---|---|---|
C | H | O | N | S | <10 kDa | 10–100 kDa | >100 kDa |
59.5 | 2.7 | 31.1 | 2.5 | 0.8 | 62.8 | 15.4 | 21.7 |
Relative proportions of C-containing functional groups (%) | |||||||
Alkyl C | O-alkyl | Aromatics | Aromatic C-O | Carboxyl C | Ketones/Aldehydes | ||
2.0 | 6.5 | 58.8 | 8.1 | 20.6 | 4.2 |
Phosphate Fertilizer | HA Content (%) | Total P (P2O5%) | Water-Soluble P (P2O5%) | The Ratio of Water-Soluble P (%) | Total K (K2O%) | |
---|---|---|---|---|---|---|
Theoretical Contents | Actual Contents | |||||
CP | 0.00 | 0.00 | 35.80 | 34.00 | 94.97 | 54.38 |
HAP0.1 | 0.10 | 0.09 | 35.71 | 33.98 | 95.16 | 54.27 |
HAP0.5 | 0.50 | 0.50 | 34.57 | 33.63 | 97.28 | 53.68 |
HAP1 | 1.00 | 0.99 | 34.47 | 33.59 | 97.45 | 52.77 |
HAP5 | 5.00 | 4.85 | 32.36 | 31.42 | 97.10 | 49.64 |
HAP10 | 10.00 | 9.73 | 30.83 | 29.78 | 96.59 | 48.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, J.; Zhang, S.; Yuan, L.; Li, Y.; Zhang, Y.; Ye, X.; Zhang, L.; Xiong, Q.; Wang, Y.; Zhao, B. Effects of Incorporating Different Proportions of Humic Acid into Phosphate Fertilizers on Phosphorus Migration and Transformation in Soil. Agronomy 2023, 13, 1576. https://doi.org/10.3390/agronomy13061576
Jing J, Zhang S, Yuan L, Li Y, Zhang Y, Ye X, Zhang L, Xiong Q, Wang Y, Zhao B. Effects of Incorporating Different Proportions of Humic Acid into Phosphate Fertilizers on Phosphorus Migration and Transformation in Soil. Agronomy. 2023; 13(6):1576. https://doi.org/10.3390/agronomy13061576
Chicago/Turabian StyleJing, Jianyuan, Shuiqin Zhang, Liang Yuan, Yanting Li, Yingqiang Zhang, Xinxin Ye, Ligan Zhang, Qizhong Xiong, Yingying Wang, and Bingqiang Zhao. 2023. "Effects of Incorporating Different Proportions of Humic Acid into Phosphate Fertilizers on Phosphorus Migration and Transformation in Soil" Agronomy 13, no. 6: 1576. https://doi.org/10.3390/agronomy13061576
APA StyleJing, J., Zhang, S., Yuan, L., Li, Y., Zhang, Y., Ye, X., Zhang, L., Xiong, Q., Wang, Y., & Zhao, B. (2023). Effects of Incorporating Different Proportions of Humic Acid into Phosphate Fertilizers on Phosphorus Migration and Transformation in Soil. Agronomy, 13(6), 1576. https://doi.org/10.3390/agronomy13061576