Geochemical Behaviors of Heavy Metal(loid)s in Soil Ferromanganese Nodules in Typical Karst Areas in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Preparation
2.3. Chemical Analysis
2.4. Selective Extractions
2.5. Statistical Analysis
3. Results and Discussion
3.1. Elemental Concentrations
3.1.1. Major Element Concentrations
3.1.2. Heavy Metal(loid)s Concentrations
3.2. Relationships between Major and Trace Elements in FMNs
3.3. Heavy Metal(loid)s Bindings during the FMN Formation Process
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dixon, J.; Skinner, H. Manganese minerals in surface environments. Catena Suppl. 1992, 21, 31–50. [Google Scholar]
- Gasparatos, D.; Tarenidis, D.; Haidouti, C.; Oikonomou, G. Microscopic structure of soil Fe-Mn nodules: Environmental implication. Environ. Chem. Lett. 2005, 2, 175–178. [Google Scholar] [CrossRef]
- Gasparatos, D.; Haidouti, C.; Tarenidis, D. Characterization of iron oxides in Fe-rich concretions from an imperfectly-drained Greek soil: A study by selective dissolution techniques and X-ray diffraction. Arch. Agron. Soil Sci. 2004, 50, 485–493. [Google Scholar] [CrossRef]
- Gasparatos, D. Sequestration of heavy metals from soil with Fe-Mn concretions and nodules. Environ. Chem. Lett. 2013, 11, 1–9. [Google Scholar] [CrossRef]
- Ettler, V.; Tomášová, Z.; Komárek, M.; Mihaljevič, M.; Šebek, O.; Michálková, Z. The pH dependent long-term stability of amorphous manganese oxide in smelter—Polluted soils: Implication for chemical stabilization of metals and metalloids. J. Hazard. Mater. 2015, 286, 386–394. [Google Scholar] [CrossRef]
- Ettler, V.; Chren, M.; Mihaljevič, M.; Drahota, P.; Kříbek, B.; Veselovský, F.; Sracek, O.; Vaněk, A.; Penížek, V.; Komárek, M.; et al. Characterization of Fe-Mn concentric nodules from Luvisol irrigated by mine water in a semi-arid agricultural area. Geoderma 2017, 299, 32–42. [Google Scholar] [CrossRef]
- Neaman, A.; Mouélé, F.; Trolard, F.; Bourrié, G. Improved methods for selective dissolution of Mn oxides: Applications for studying trace element associations. Appl. Geochem 2004, 19, 973–979. [Google Scholar] [CrossRef]
- Neaman, A.; Waller, B.; Mouélé, F.; Trolard, F.; Bourrié, G. Improved methods for selective dissolution of manganese oxides from soils and rocks. Eur. J. Soil Sci. 2004, 55, 47–54. [Google Scholar] [CrossRef]
- Neaman, A.; Martínez, C.E.; Trolard, F.; Bourrié, G. Trace element associations with Fe- and Mn-oxides in soil nodules: Comparison of selective dissolution with electron probe microanalysis. Appl. Geochem. 2008, 23, 778–782. [Google Scholar] [CrossRef] [Green Version]
- Suda, A.; Makino, T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Tan, W.F.; Lui, F.; Li, Y.H.; Hu, H.Q.; Huang, Q.Y. Elemental composition and geochemical characteristics of iron-manganese nodules in main soils of China. Pedosphere 2006, 16, 72–81. [Google Scholar] [CrossRef]
- Yu, X.L.; Lu, S.G. Micrometer-scale internal structure and element distribution of Fe-Mn nodules in Quaternary red earth of Eastern China. J. Soils Sediments 2016, 16, 621–633. [Google Scholar] [CrossRef]
- Ji, W.B.; Yang, Z.F.; Yin, A.J.; Lu, Y.Y.; Ying, R.R.; Yang, Q.; Liu, X. Geochemical characteristics of Fe-Mn nodules with different sizes in soils of high geological background areas. Chin. J. Ecol. 2021, 40, 2289–2301. [Google Scholar]
- Ji, W.B.; Yang, Z.F.; Yin, A.J.; Lu, Y.Y.; Ying, R.R.; Yang, Q.; Liu, X.; Li, B.; Duan, Y.R. Formation mechanisms of iron-manganese nodules in soils from high geological background area of central Guangxi. Chin. J. Ecol. 2021, 40, 2302–2314. [Google Scholar]
- Yuan, D. Modern Karst; Science Press: Beijing, China, 2016. [Google Scholar]
- GB 15618-2018. Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018.
- Wen, Y.; Li, W.; Yang, Z.; Zhuo, X.; Guan, D.-X.; Song, Y.; Guo, C.; Ji, J. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China. Environ. Pollut. 2020, 258, 113645. [Google Scholar] [CrossRef]
- Wen, Y.B.; Li, W.; Yang, Z.F.; Zhang, Q.Z.; Ji, J.F. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 2020, 245, 125620. [Google Scholar] [CrossRef]
- Ji, W.B.; Yang, Z.F.; Yu, T.; Yang, Q.; Wen, Y.B.; Wu, T. Potential Ecological Risk Assessment of Heavy Metals in the Fe-Mn Nodules in the Karst Area of Guangxi, Southwest China. Bull. Environ. Contam. Toxicol. 2021, 106, 51–56. [Google Scholar] [CrossRef]
- Ji, W.B.; Lu, Y.Y.; Zhao, C.Y.; Zhang, X.Y.; Wang, H.; Hu, Z.W.; Yu, T.; Wen, Y.B.; Ying, R.R.; Yang, Z.F. Mineral Composition and Environmental Importance of Fe–Mn Nodules in Soils in Karst Areas of Guangxi, China. Sustainability 2022, 14, 12457. [Google Scholar] [CrossRef]
- Ji, W.B.; Ying, R.R.; Yang, Z.F.; Hu, Z.W.; Yang, Q.; Liu, X.; Yu, T.; Wang, L.; Qin, J.X.; Wu, T.S. Arsenic concentration, fraction, and environmental implication in Fe-Mn Nodules in the karst area of Guangxi. Water 2022, 14, 3021. [Google Scholar] [CrossRef]
- Ji, W.B.; Lu, Y.Y.; Yang, M.; Wang, J.; Zhang, X.Y.; Zhao, C.Y.; Xia, B.; Wu, Y.J.; Ying, Y.Y. Geochemical Characteristics of Typical Karst Soil Profiles in Anhui Province, Southeastern China. Agronomy 2023, 13, 1067. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.F.; Filippelli, G.M.; Ji, J.F.; Ji, W.B.; Liu, X.; Wang, L.; Yu, T.; Wu, T.S.; Zhuo, X.S.; et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China. Chem. Geol. 2021, 567, 120081. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.F.; Ji, J.F.; Liu, X.; Ji, W.B.; Wang, L. Characteristics of Mineralogy and Heavy Metal Geochemistry in Ferromanganese Nodule Rich Soils with High Geochemical Background from Guigang, Guangxi. Geoscience 2021, 35, 1450–1458. [Google Scholar]
- Gao, T.; Ke, S.; Wang, S.J.; Li, F.B.; Liu, C.S.; Lei, J.; Liao, C.Z.; Wu, F. Contrasting Mg isotopic compositions between Fe-Mn nodules and surrounding soils: Accumulation of light Mg isotopes by Mg–depleted clay minerals and Fe oxides. Geochim. Cosmochim. Acta 2018, 237, 205–222. [Google Scholar] [CrossRef]
- Lin, K.; Yang, Z.F.; Yu, T.; Ji, W.B.; Liu, X.; Li, B.; Wu, Z.L.; Li, X.; Ma, X.D.; Wang, L.; et al. Enrichment mechanisms of Mo in soil in the karst region Guangxi, China. Ecotoxicol. Environ. Saf. 2023, 255, 114808. [Google Scholar] [CrossRef]
- Qian, J.; Fu, W.; Zheng, G.; Deng, B.; Wu, T. Selenium distribution in surface soil layer of karst area of Guangxi and its affecting factors: A case study of Wuming County. Acta Pedol. Sin. 2020, 57, 1299–1310. [Google Scholar]
- China National Environmental Monitoring Centre (CNEMC). Elemental Background Values of Soils in China; Environmental Science Press of China: Beijing, China, 1990. [Google Scholar]
- DZ/T 0295–2016. Specification of Land Quality Geochemical Assessment. MLR: Dallas, TX, USA, 2016.
- Fan, T.; Yang, M.; Li, Q.; Zhou, Y.; Xia, F.; Chen, Y.; Yang, L.; Ding, D.; Zhang, S.; Zhang, X.; et al. A new insight into the influencing factors of natural attenuation of chlorinated hydrocarbons contaminated groundwater: A long-term field study of a retired pesticide site. J. Hazard. Mater. 2022, 439, 129595. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Jiang, Y.; Wang, Q.; Owens, P. Fe-Mn nodules in a southern Indiana loess with a fragipan and their soil forming significance. Geoderma 2018, 313, 92–111. [Google Scholar] [CrossRef]
- Palumbo, B.; Bellanca, A.; Neri, R.; Roe, M.J. Trace metal partitioning in Fe-Mn nodules from Sicilian soils, Italy. Chem. Geol. 2001, 173, 257–269. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. 4.1-Composition of the continental crust. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4, pp. 1–51. [Google Scholar]
- Xi, X.H.; Hou, Q.Y.; Yang, Z.F.; Ye, J.Y.; Yu, T.; Xia, X.Q.; Cheng, H.X.; Zhou, G.; Yao, L. Big data based studies of the variation features of Chinese soil’s background value versus reference value: A paper written on the occasion of Soil Geochemical Parameters of China’s publication. Ceophysical Geochem. Explor. 2021, 45, 1095–1108. (In Chinese) [Google Scholar]
- Hou, Q.Y.; Yang, Z.F.; Yu, T.; Xia, X.Q.; Cheng, H.; Zhou, G. Soil Geochemical Dataset of China, 16–17; Geological Publishing House: Beijing, China, 2020. [Google Scholar]
- Adriano, D.C. Trace Elements in the Terrestrial Environment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- LaForce, M.J.; Fendorf, S.E.; Li, G.C.; Rosenzweig, R.F. Redistribution of trace elements from contaminated sediments of Lake Coeur d’Alene during oxygenation. J. Environ. Qual. 1999, 28, 1195–1200. [Google Scholar] [CrossRef]
- Arachchi, L.; Tokashiki, Y.; Baba, S. Mineralogical characteristics and micromorphological observations of brittle/soft Fe/Mn concretions from Okinawan soils. Clays Clay Miner. 2004, 52, 462–472. [Google Scholar] [CrossRef]
- Liu, F.; Colombo, C.; Adamo, P.; He, J.Z.; Violante, A. Trace elements in manganese–iron nodules from a Chinese Alfisol. Soil Sci. Soc. Am. J. 2002, 66, 661–670. [Google Scholar] [CrossRef]
- Cornu, S.; Deschatrettes, V.; Salvador-Blanes, S.; Clozel, B.; Hardy, M.; Branchut, S.; Forestier, L.L. Trace element accumulation in Mn–Fe–oxide nodules of a planosolic horizon. Geoderma 2005, 125, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Szymański, W.; Skiba, M. Distribution, morphology, and chemical composition of Fe-Mn nodules in albeluvisols of the Carpathian Foothills, Polans. Pedosphere 2013, 23, 445–454. [Google Scholar] [CrossRef]
- Szymański, W.; Skiba, M.; Błachowski, A. Mineralogy of Fe-Mn nodules in Albeluvisols in the Carpathian Foothills, Poland. Geoderma 2014, 217–218, 102–110. [Google Scholar] [CrossRef]
- Timofeeva, Y.O.; Karabtsov, A.A.; Semal, V.A.; Burdukovskii, M.L.; Bondarchuk, N.V. Iron-manganese nodules in Udepts: The dependence of the accumulation of trace elements on nodule size. Soil Sci. Soc. Am. J. 2014, 78, 767–778. [Google Scholar] [CrossRef]
- Feng, Y.F.; Liao, Q.L.; Ji, W.B.; Ren, J.L.; Ji, J.F.; Yang, Z.F.; Zhuo, X.X.; Wang, L.; Liu, Y.Y. Geochemical characteristics of heavy metal enrichment in soil Fe-Mn nodules in the karst area of Guangxi. Geol. J. China Univ. 2022, 28, 787–798. [Google Scholar]
- Feng, X.H.; Zhai, L.M.; Tan, W.F.; Liu, F.; He, J.Z. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environ. Pollut. 2007, 147, 366–373. [Google Scholar] [CrossRef]
- Backes, C.A.; McLaren, R.G.; Rate, A.W.; Swift, R.S. Kinetics of cadmium and cobalt desorption from iron and manganese oxides. Soil Sci. Soc. Am. J. 1995, 59, 778–785. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Liu, F.; Feng, X.; Huang, Q.; Li, X. Adsorption and redox reactions of heavy metals on the Fe-Mn nodules from Chinese soils. J. Colloid Interface Sci. 2005, 284, 600–605. [Google Scholar] [CrossRef]
- Manceau, A.; Tamura, N.; Marcus, M.A.; MacDowell, A.A.; Celestre, R.S.; Sublett, R.E.; Sposito, G.; Padmore, H.A. Deciphering Ni sequestration in soil ferromanganese nodules by combining X-ray fluorescence, absorption, and diffraction at micrometer scales of resolution. Am. Miner. 2002, 87, 1494–1499. [Google Scholar] [CrossRef]
- Aide, M. Elemental composition of soil nodules from two alfisols on an alluvial terrace in Missouri. Soil Sci. 2005, 170, 1022–1033. [Google Scholar] [CrossRef]
- Manning, B.A.; Fendorf, S.E.; Bostick, B.; Suarez, D.L. Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite. Environ. Sci. Technol. 2002, 36, 976–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzou, Y.M.; Wang, M.; Loeppert, R.H. Sorption of phosphate and Cr(VI) by Fe(III) and Cr(III) hydroxides. Arch. Environ. Contam. Toxicol. 2003, 44, 445–453. [Google Scholar] [CrossRef]
- Manceau, A.; Tamura, N.; Celestre, R.S.; MacDowell, A.A.; Geoffroy, N.; Sposito, G.; Padmore, H.A. Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi basin. Environ. Sci. Technol. 2003, 37, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Sipos, P.; Németh, T.; May, Z.; Szalai, Z. Accumulation of trace elements in Fe-rich nodules in a neutral-slightly alkaline floodplain soil. Carpathian J. Earth Environ. Sci 2011, 6, 13–22. [Google Scholar]
- Sipos, P.; Balázs, R.; Bozsó, G.; Németh, T. Changes in micro-fabric and redistribution of Fe and Mn with nodule formation in a floodplain soil. J. Soils Sediments 2016, 16, 2105–2117. [Google Scholar] [CrossRef] [Green Version]
- Šegvić, B.; Girardclos, S.; Zanoni, G.; González, C.A.; Steimer-Herbet, T.; Besse, M. Origin and paleoenvironmental significance of Fe–Mn nodules in the Holocene perialpine sediments of Geneva Basin, western Switzerland. Appl. Clay Sci. 2018, 160, 22–39. [Google Scholar] [CrossRef]
- Ji, H.B.; Wang, S.J.; Ouyang, Z.Y.; Zhang, S.; Sun, C.; Liu, X.; Zhou, D. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau II. The mobility of rare earth elements during weathering. Chem. Geol. 2004, 203, 29–50. [Google Scholar] [CrossRef]
- Chang, C.; Beckford, H.O.; Ji, H. Indication of Sr Isotopes on Weathering Process of Carbonate Rocks in Karst Area of Southwest China. Sustainability 2022, 14, 4822. [Google Scholar] [CrossRef]
- Li, X.; Han, G.; Liu, M.; Liu, J.; Zhang, Q.; Qu, R. Potassium and its isotope behaviour during chemical weathering in a tropical catchment affected by evaporite dissolution. Geochim. Cosmochim. Acta 2022, 316, 105–121. [Google Scholar] [CrossRef]
- Rambeau, C.M.C.; Baize, D.; Saby, R.; Matera, V.; Adatte, T.; Föllmi, K.B. High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: A case study in Lower Burgundy, France. Environ. Earth Sci. 2010, 61, 1573–1585. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
Samples | Al2O3 | SiO2 | Fe2O3 | MnO2 | K2O | Na2O | CaO | MgO | P2O5 | TiO2 | References |
---|---|---|---|---|---|---|---|---|---|---|---|
FMNs (n = 21) | 18.75 ± 1.86 | 23.17 ± 6.34 | 24.56 ± 4.64 | 4.2 ± 3.59 | 0.54 ± 0.41 | 0.06 ± 0.01 | 0.83 ± 0.97 | 0.47 ± 0.19 | 0.81 ± 0.35 | 1.22 ± 0.19 | This study |
(14.39–22.04) | (13.63-36.41) | (15.17–31.57) | (0.51–12.40) | (0.15–1.31) | (0.048–0.081) | (0.16–2.95) | (0.25–0.78) | (0.34–1.41) | (0.95–1.62) | ||
FMNs (1–2 mm) in Indiana loess | 8.92 | 55.27 | 30.94 | 1.59 | 1.09 | 0.46 | 0.22 | 0.52 | 0.3 | 0.77 | [31] |
FMNs (0.5–1 mm) in Indiana loess | 8.44 | 61.6 | 25.28 | 1.15 | 1.19 | 0.51 | 0.26 | 0.53 | 0.29 | 0.75 | [31] |
Nine kinds of FMNs in China | 12.35 | 43.2 | 13.77 | 12.21 | 0.46 | 0.12 | 0.89 | 0.92 | 0.11 | 0.72 | [11] |
FMNs in Sicilian soils, Italy | 13.267 | / | 12.262 | 6.542 | 1.241 | 0.188 | 0.392 | 0.592 | / | / | [32] |
FMNs in red soils in Guangxi | 17.93 | 19.72 | 30.06 | 0.64 | 0.12 | 0.05 | 0.13 | 0.21 | 0.78 | 0.96 | [20] |
Iron nodules (n = 26) | 19.53 | 18.42 | 2.71 | 1.09 | 0.1 | 0.05 | 0.12 | 0.19 | 0.83 | 0.97 | [21] |
Manganese nodules (n = 21) | 17.12 | 25.09 | 18.51 | 10.36 | 0.79 | 0.07 | 1.16 | 0.6 | 0.52 | 1.33 | [13] |
Nodules | 12.55 | 14.67 | 41.88 | 15.93 | 0.32 | nd | nd | 0.22 | 0.32 | 1.11 | [7] |
Nodules (n = 53) in Guangxi | 16.10 | 23.97 | 27.71 | 7.44 | 0.47 | 0.09 | 0.71 | 0.58 | - | - | [26] |
Lateritic subsoil in Serra do Navio of Brazil | 27.98 | 31.94 | 18.36 | 1.12 | 0.17 | nd | nd | 0.2 | 0.14 | 2.59 | [8] |
AUCC | 15.4 | 66.62 | 5.6 | 0.12 | 2.8 | 3.27 | 3.59 | 2.48 | 1.49 | 0.64 | [33] |
Background soil (China) | 13.62 | 63.94 | 4.64 | 0.1 | 2.4 | 1.28 | 2.9 | 1.5 | 0.11 | 0.53 | [34] |
Background soil (Guangxi) | 13.07 | 73.67 | 3.63 | 0.03 | 1.12 | 0.09 | 0.17 | 0.44 | 0.14 | 0.56 | [35] |
* Enrichment factors | 1.46 | 0.28 | 7.15 | 132.65 | 0.34 | 0.65 | 4.12 | 0.89 | 6.72 | 2.20 |
Samples | Cd | Cr | Cu | Ni | Pb | Zn | As | References |
---|---|---|---|---|---|---|---|---|
Fe–Mn nodules (n = 21) | 35.04 ± 26.58 | 2483.29 ± 1491.7 | 98.34 ± 25.77 | 125.51 ± 38.06 | 568.33 ± 276.62 | 662 ± 190.32 | 160.9 ± 24.97 | This study |
(8.91–99.9) | (392–5180) | (55.7–149) | (74–209) | (274–1148) | (323–905) | (116–208) | ||
Fe–Mn nodules (n = 15) in Guangxi of China | 71.59 | 968.89 | 101.52 | 163.84 | 947.13 | 637.07 | NA b | [19] |
Terra rossa (n = 308) in Guangxi of China | 1.49 | 194 | 37.2 | 42.6 | 58.6 | 159 | NA b | [18] |
Fe–Mn nodules (n = 20) in Guangxi of China | 37.5 | 573 | 84.9 | 129 | 461 | 641 | NA b | [18] |
Background soil (China) | 0.097 | 61 | 22.6 | 26.9 | 26 | 74.2 | 11.2 | [28] |
Fe–Mn nodules in the northern part of Namibia | 6.83 | 36.1 | 447 | 89.6 | 597 | 137 | 23.1 | [6] |
Fe–Mn nodules (n = 18) from Sicilian soils, Italy | 22.50 | NA b | 63.72 | 249.78 | 558 | 108.17 | NA b | [32] |
Fe–Mn nodules (n = 9) in main soils of China | 9.54 | 41.5 | 152.3 | 282.6 | 4622 | 411.9 | NA b | [11] |
Fe–Mn nodules (n = 4) in Quaternary red earth of Eastern China | 0.02 | NA b | 56.70 | 160.43 | 2875 | 103.34 | NA b | [12] |
Fe–Mn nodules (n = 7) in Guangxi of China | 3.76 | 627 | 59 | 153 | 90.8 | 603 | 39.5 | [24] |
World soil | 0.35 | 40 | 30 | 20 | 19 | 90 | NA b | [36] |
AUCC | 0.00009 | 92 | 28 | 47 | 17 | 67 | 4.8 | [33] |
Background soil (Guangxi) | 0.144 | 50 | 18 | 15 | 24 | 43 | 8 | [35] |
Enrichment factors a | 243.33 | 49.67 | 5.46 | 8.37 | 23.68 | 15.40 | 20.11 |
Properties | PC1 | PC2 | PC3 |
---|---|---|---|
Al2O3 | −0.517 | −0.265 | 0.636 |
SiO2 | 0.813 | 0.167 | −0.183 |
Fe2O3 | −0.780 | −0.503 | 0.565 |
MnO2 | 0.477 | 0.821 | −0.177 |
K2O | 0.965 | 0.183 | −0.165 |
Na2O | 0.841 | 0.500 | −0.129 |
CaO | 0.303 | −0.058 | −0.930 |
MgO | 0.918 | 0.178 | −0.323 |
P2O5 | −0.714 | −0.261 | 0.593 |
TiO2 | 0.128 | 0.822 | 0.199 |
Cd | 0.101 | 0.975 | −0.122 |
Cr | −0.489 | −0.639 | 0.428 |
Cu | −0.567 | 0.651 | 0.403 |
Ni | 0.130 | 0.809 | 0.523 |
Pb | 0.301 | 0.938 | 0.012 |
Zn | −0.031 | 0.372 | 0.917 |
As | 0.665 | −0.168 | 0.408 |
Elements | Dissolved (% of the Total) | |||
---|---|---|---|---|
Control (HNO3) a | NH2OH–HCl | H2O2 + HNO3 | CBD | |
Al | 2.5 | 3.9 | 14.1 | 16.6 |
Fe | 1.4 | 4.8 | 7.5 | 67.1 |
Mn | 2.2 | 88.2 | 92.6 | 91.3 |
As | 2.5 | 4.1 | 16.5 | 51.4 |
Cd | 9.3 | 86.6 | 93.2 | 92.6 |
Cr | 0.5 | 9.5 | 7.3 | 48.4 |
Cu | 5.2 | 61.7 | 72.6 | 68.1 |
Ni | 2.1 | 58.3 | 66.8 | 71.9 |
Pb | 2.2 | 42.5 | 93.0 | 89.5 |
Zn | 4.5 | 47.8 | 62.3 | 71.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, W.; Luo, Z.; Huang, J.; Liu, X.; He, H.; Gong, Y.; Chen, M.; Wen, Y.; Ying, R. Geochemical Behaviors of Heavy Metal(loid)s in Soil Ferromanganese Nodules in Typical Karst Areas in Southwest China. Agronomy 2023, 13, 1602. https://doi.org/10.3390/agronomy13061602
Ji W, Luo Z, Huang J, Liu X, He H, Gong Y, Chen M, Wen Y, Ying R. Geochemical Behaviors of Heavy Metal(loid)s in Soil Ferromanganese Nodules in Typical Karst Areas in Southwest China. Agronomy. 2023; 13(6):1602. https://doi.org/10.3390/agronomy13061602
Chicago/Turabian StyleJi, Wenbing, Zhixiang Luo, Jianyu Huang, Xu Liu, Haiyun He, Yang Gong, Meng Chen, Yubo Wen, and Rongrong Ying. 2023. "Geochemical Behaviors of Heavy Metal(loid)s in Soil Ferromanganese Nodules in Typical Karst Areas in Southwest China" Agronomy 13, no. 6: 1602. https://doi.org/10.3390/agronomy13061602
APA StyleJi, W., Luo, Z., Huang, J., Liu, X., He, H., Gong, Y., Chen, M., Wen, Y., & Ying, R. (2023). Geochemical Behaviors of Heavy Metal(loid)s in Soil Ferromanganese Nodules in Typical Karst Areas in Southwest China. Agronomy, 13(6), 1602. https://doi.org/10.3390/agronomy13061602