Response of Crop Performance and Yield of Spring Sweet Potato (Ipomoea batatas [L.] Lam) as Affected by Mechanized Transplanting Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment Description
2.1.1. Finger-Clip Compound Transplanter
2.1.2. Clamping-Plate Compound Transplanter
2.2. Site Description
2.3. Experimental Design
2.4. Measurements
2.4.1. Missing Seedling Rate and Qualified Rate of Transplanting Population
2.4.2. Precision of Seedling Placement
2.4.3. Soil Temperature and Plant Growth
2.4.4. Weight of Fresh Vines with Leaves and Tuber Yield
2.4.5. Economic Benefit
2.5. Data Analysis
3. Results
3.1. Missing Seedling Rate and Qualified Rate of Transplanting Population
3.2. Precision of Seedling Placement
3.3. Soil Temperature and Plant Growth
3.4. Weight of Fresh Vines with Leaves and Tuber Yield
3.5. Economic Benefit
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Bennett, E.M.; Brauman, K.A.; Carpenter, S.R.; Cassidy, E.; Gerber, J.; Hill, J.; Johnston, M.; Monfreda, C. Solutions for a cultivated planet: Addressing our global food production and environmental sustainability challenges. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardey, P.G.; Beddow, J.M.; Hurley, T.M.; Beatty, T.K.M.; Eidman, V.R. A bounds analysis of world food futures: Global agriculture through to 2050. Aust. J. Agric. Resour. Econ. 2014, 58, 571–589. [Google Scholar] [CrossRef] [Green Version]
- Oladejo, A.O.; Ma, H.; Qu, W.; Zhou, C.; Wu, B.; Yang, X. Influence of ultrasound pretreatments on diffusion coefficients, texture and colour of osmodehydrated sweet potato (Ipomea batatas). Int. J. Food Sci. Technol. 2017, 52, 888–896. [Google Scholar] [CrossRef]
- Low, J.; Ball, A.; Magezi, S.; Njoku, J.; Mwanga, R.; Andrade, M.; Tomlins, K.; Dove, R.; Mourik, T.V. Sweet potato development and delivery in sub-Saharan Africa. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 11955–11972. [Google Scholar] [CrossRef]
- Gao, F.; Gong, Y.; Zhang, P. Production and deployment of virus-free sweetpotato in China. Crop Prot. 2000, 19, 105–111. [Google Scholar]
- Iese, V.; Holland, E.; Wairiu, M.; Havea, R.; Patolo, S.; Nishi, M.; Hoponoa, T.; Bourke, R.M.; Dean, A.; Waqainabete, L. Facing food security risks: The rise and rise of the sweet potato in the Pacific Islands. Glob. Food Secur. 2018, 18, 48–56. [Google Scholar] [CrossRef]
- Getahun, G.T.; Katterer, T.; Munkholm, L.J.; Rychel, K.; Kirchmann, H. Effects of loosening combined with straw incorporation into the upper subsoil on soil properties and crop yield in a three-year field experiment. Soil Tillage Res. 2022, 223, 105466. [Google Scholar] [CrossRef]
- Brandenberger, L.; Shrefler, J.; Rebek, E.; Damicone, J. Sweet Potato Production. Division of Agricultural Sciences and Natural Resources, Oklahoma State University. Tech. Rep. 2015, 8, HLA-6022. [Google Scholar]
- Abrham, T.; Beshir, H.M.; Haile, A. Sweetpotato production practices, constraints, and variety evaluation under different storage types. Food Energy Secur. 2020, 10, e263. [Google Scholar] [CrossRef]
- Parwada, C.; Gadzirai, C.T.; Sithole, A.B. Effect of Ridge Height and Planting Orientation on Ipomoea Batatas (sweet potato) Production. J. Agric. Biotechnol. Sustain. 2011, 3, 72–76. [Google Scholar]
- Chagonda, I.; Mapfeka, R.F.; Chitata, T. Effect of Tillage Systems and Vine Orientation on Yield of Sweet Potato (Ipomoea batatas L.). Am. J. Plant. Sci. 2014, 5, 3159–3165. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, B.; Githiri, S.M.; Kariuki, W.; Saha, H.M. Evaluation of the Performance of Sweet Potato (Ipomoea batatas) Clones under Water Stress in the Coastal Lowlands of Kenya. World J. Agric. Res. 2020, 8, 114–120. [Google Scholar]
- Ribeiro, N.P.; Fernandes, A.M.; Silva, R.M.D.; Pelvine, R.A.; Assuncao, N.S. Growth and yield of sweet potato in response to the application of nitrogen rates and paclobutrazol. Soil Plant Nutr. 2021, 80, e3821. [Google Scholar] [CrossRef]
- PEPÓ, P. The effect of different planting methods on the yield and spad readings of sweet potato (Ipomoea batatas L.). J. Agric. Environ. Sci. 2018, 5, 7–12. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). FAOSTAT Online Statistical Database: Food Balance 2019. FAOSTAT. Available online: http://www.fao.org/faostat/zh/#data/QC (accessed on 17 February 2022).
- Agili, S.; Nyende, B.; Ngamau, K.; Masinde, P. Selection, yield, drought tolerance indices of orange-fleshed sweet potato (Ipomoea batatas Lam) hybrid clone. J. Nutr. Food Sci. 2012, 2, 1–8. [Google Scholar]
- Wang, B. Overview of sweet potato production in China. In Main Cultivation Modes of Sweet Potato in China, 1st ed.; Zhang, L., Ma, D., Wang, Q., Wang, B., Eds.; China Agricultural Science and Technology Press: Beijing, China, 2012; pp. 1–8. [Google Scholar]
- Xu, F.L.; Guo, B.; Ye, B.; Ye, Q.; Chen, H.; Ju, X.; Guo, J.; Wang, Z. Systematical evaluation of GPMIMERG and TRMM3B42V7 precipitation products in the Huang-Huai-Hai Plain, China. Remote Sens. 2019, 11, 697. [Google Scholar] [CrossRef] [Green Version]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Ma, D.; E, W. Chapter three- Key technology of green light simplification for fresh edible sweet potato. In Handbook of Green Light Simplified Cultivation Techniques for Sweet Potato; China Agricultural Press: Beijing, China, 2021. [Google Scholar]
- Hou, F.Y.; Dong, S.X.; Xie, B.T.; Zhang, H.Y.; Li, A.X.; Wang, Q.M. Mulching with plastic film improved the root quality of summer-sown sweet potato (Ipomoea batatas (L). Lam.) in northern China. J. Integr. Agric. 2019, 18, 982–991. [Google Scholar] [CrossRef]
- Hu, L.; Hu, Z.; Xie, Y.; Tian, L.; Ji, F.; Wang, B. Study on the route of mechanization of sweet potato (Ipomoea batatas lam.) production technology in China. Chin. Agric. Mech. 2011, 5, 20–25. [Google Scholar]
- Chen, L.H.; Younis, T.S.; Allison, M. Horizontal Transplanting of Sweet Potatoes. Trans. ASAE 1982, 25, 1524–1528. [Google Scholar] [CrossRef]
- Hu, L.; Wang, B.; Wang, G.; Yu, Z.; You, Z.; Hu, Z.; Wang, B.; Gao, X. Design and experiment of type 2ZGF-2 duplex sweet potato transplanter. Trans. Chin. Soc. Agric. Eng. 2016, 32, 8–16. [Google Scholar]
- Mukhopadhyay, S.K.; Chattopadhyay, A.; Chakraborty, I.; Bhattacharya, I. Crops that feed the world 5: Sweet potato. Sweet potatoes for income and food security. Food Secur. 2011, 3, 283–305. [Google Scholar] [CrossRef]
- Leighton, C.S. Nutrient and Sensory Quality of Orange-Fleshed Sweet Potato. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2007. [Google Scholar]
- Murakami, K.; Takahiko, T.; Yamaguchi, H.; Tanazaki, A. Seedling Transplanter. CN Patent 103988621B, 20 August 2014. [Google Scholar]
- Li, H.; He, T.; Liu, H.; Shi, S.; Wang, B.; Zhou, J.; Liu, X.; Wei, G.; Zhang, R. Efficacy of Sweet Potato Transplanting Machine for Different Cultivation Systems in Northern China. Agriculture 2022, 12, 1184. [Google Scholar] [CrossRef]
- Pan, Z.; Li, L.; Chen, D.; Zha, X.; Yang, R. Design and Optimization of a Boat-BottomShaped Transplanting Device for Sweet Potato (Ipomoea batatas) with Low Seedling Damage Rate. Appl. Sci. 2022, 12, 2817. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Zheng, W.; Lv, Z.; Zhang, W. Design of a Sweet Potato Transplanter Based on a Robot Arm. Appl. Sci. 2022, 11, 9349. [Google Scholar] [CrossRef]
- China Meteorological Administration. China Meteorological Data Network: Global Historical Statistics 2016–2021. China Meteorological Data Service Center. Available online: http://data.cma.cn/ (accessed on 7 March 2023).
- JB/T 10291-2013; Transplanter of Dry Land Plant. Machinery Industry Press: Beijing, China, 2013.
- NY/T 3486-2019; Operating Quality for Vegetable Transplanter. China Agricultural Press: Beijing, China, 2019.
- Tessier, S.; Saxton, K.E.; Papendick, R.I.; Hyde, G.M. Zero-tillage furrow opener effects on seed environment and wheat emergence. Soil Tillage Res. 1991, 21, 347–360. [Google Scholar] [CrossRef]
- Mao, S.C.; Song, M.Z.; Zhang, C.J.; Han, Y.C.; Xing, J.S.; Zhuang, J.N. Studies on the effects of soil temperature in cotton fields in the wheat and cotton co-growing period under a double cropping system in the Huanghuaihai Plains. Sci. Agric. Sin. 1998, 31, 5. [Google Scholar]
- Cristofori, V.; Rouphael, Y.; Gyves, E.M.; Bignami, C. A simple model for estimating leaf area of hazelnut from linear measurements. Sci. Hortic. 2007, 113, 221–225. [Google Scholar] [CrossRef]
- Mulungu, L.S.; Mwailana, D.J.; Reuben, S.S.; Tarimo, J.P.; Massawe, A.W.; Makundi, R.H. Evaluation on the Effect of Topping Frequency on Yield of Two Contrasting Sweet Potato (Ipomoea batatas L.) Genotypes. J. Appl. Sci. 2006, 6, 1132–1137. [Google Scholar] [CrossRef] [Green Version]
- Sugito, Y. Research Methods: Experiment Method and Scientific Writing; UB Press, Universitas Brawijaya: Malang, Indonesia, 2013. [Google Scholar]
- Widaryanto, E.; Saitama, A. Analysis of plant growth of ten varieties of sweet potato (Ipomoea batatas L.) cultivated in rainy season. Asian J. Plant Sci. 2017, 16, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, H.; He, J.; Wang, Q.; Golabi, M.H. Influence of conservation tillage practices on soil properties and crop yields for maize and wheat cultivation in Beijing, China. Aust. J. Soil Res. 2009, 47, 362–371. [Google Scholar] [CrossRef]
- Yan, W.; Hu, M.; Li, K.; Wang, J.; Zhang, W. Design and Experiment of Horizontal Transplanter for Sweet Potato Seedlings. Agriculture 2022, 12, 675. [Google Scholar] [CrossRef]
- Haque, M.A.; Jahiruddin, M.; Clarke, D. Effect of plastic mulch on crop yield and land degradation in south coastal saline soils of Bangladesh. Int. Soil Water Conserv. Res. 2018, 6, 317–324. [Google Scholar] [CrossRef]
- Shehata, S.A.; Abouziena, H.F.; Abdelgawad, K.F.; Eikhawaga, F.A. Weed Control efficacy, growth and yield of potato (Solanum tuberosum L.) as affected by alternative weed control methods. Potato Res. 2019, 62, 139–155. [Google Scholar] [CrossRef]
- Rao, S.A.; Singh, P.; Gonsalves, T. Black plastic mulch affects soil temperature and yield of sweet potato under short season temperate climates. Int. J. Veg. Sci. 2023, 29, 72–83. [Google Scholar] [CrossRef]
- Bandara, G.; Raja, R.K.; Shankle, M.W. Quantifying Growth and Developmental Responses of Sweetpotato to Mid- and Late-Season Temperature. Agron. J. 2015, 107, 1854–1862. [Google Scholar]
- Kundu, D.K.; Singh, R.; Chowdhury, S.R. Effect of rice straw mulch and irrigation on nutrient availability in soil and tuber yield of sweet potato (Ipomoea batatas L.) in coastal Orissa. Root and Tuber Crops. In Nutrition, Food Security and Sustainable Environment; Naskar, S.K., Nedunchezhiyan, M., Rajasekhara, R.K., Sivakumar, P.S., Ray, R.C., Misra, R.S., Mukherjee, A., Eds.; Regional Entre of Central Tuber Crops Research Institute: Bhubaneswar, India, 2006; pp. 117–122. [Google Scholar]
- Dumbuya, G.; Alemayehu, H.A.; Hasan, M.M.; Matsunamid, M.; Shimono, H. Effect of soil temperature on growth and yield of sweet potato (Ipomoea batatas L.) under cool climate. J. Agric. Meteorol. 2021, 77, 118–127. [Google Scholar] [CrossRef]
- Kassali, R. Economics of Sweet Potato Production. Int. J. Veg. Sci. 2011, 17, 313–321. [Google Scholar] [CrossRef]
- Tang, C.; Lu, Y.; Jiang, B.; Chen, J.; Mo, X.; Yang, Y.; Wang, Z. Energy, Economic, and Environmental Assessment of Sweet Potato Production on Plantations of Various Sizes in South China. Agronomy 2022, 12, 1290. [Google Scholar] [CrossRef]
Parameter | Finger-Clip Compound Transplanter | Clamping-Plate Compound Transplanter |
---|---|---|
Matched power | 120–180 hp | 120–180 hp |
Working width | 1.7 m | 1.7 m |
Number of ridges | 2 | 2 |
Transplanting part | Finger-clip type slip taking-planting mechanism | Clamping-plate type slip taking-placing mechanism |
Transplant spacing | 20–30 cm | 20–30 cm |
Transplanting depth | 4–10 cm | 4–10 cm |
Slips placement | Boat-shape placement | Horizontal vertical placement |
Suitable system | Mulched raised beds system and bare raised beds system | Bare raised beds system |
Productivity | 0.08–0.13 ha h−1 | 0.1–0.2 ha h−1 |
Treatment | Mean Value | Transplanting Quality | |||||||
---|---|---|---|---|---|---|---|---|---|
Theoretical Planted Counts N’ | Total Planted Counts NT | Missed Counts NLZ | Exposed Counts NLM | Buried Counts NMM | Replanted Counts NCZ | Injured Counts NSM | Missing Seedling Rate QM (%) | Qualified Rate QZ (%) | |
RB1 | 120.0 a | 118.3 a | 1.7 a | 2.7 a | 0 a | 0 a | 0.3 a | 1.4 a | 96.1 a |
RB2 | 120.0 a | 117.0 a | 3.0 a | 2.0 a | 0.3 a | 0 a | 0 a | 2.5 a | 95.6 a |
RB3 | 120.0 a | 119.7 a | 0.7 a | 3.3 a | 0 a | 0.7 b | 0 a | 0.6 a | 96.1 a |
Treatment | Plant Spacing | Mean Planting Length (mm) | Planting Depth | |||
---|---|---|---|---|---|---|
Spacing Value (cm) | Coefficient of Variation (%) | Depth Value (mm) | Qualified Rate (%) | Coefficient of Variation (%) | ||
RB1 | 24.3 a | 5.1 a | 201.8 a | 78.1 a | 97.1 a | 8.7 a |
RB2 | 23.9 a | 6.1 ab | 198.2 a | 75.4 a | 96.9 a | 9.2 a |
RB3 | 24.2 a | 8.9 b | 202.9 a | 59.2 b | 97.5 a | 10.6 a |
Treatment | Soil Layer Depth (cm) | Mean Daily Soil Temperatures (°C) | ||
---|---|---|---|---|
10 Days after Transplanting | 20 Days after Transplanting | 30 Days after Transplanting | ||
RB1 | 5 | 20.0 a | 23.4 ab | 29.4 b |
RB2 | 19.0 a | 23.1 a | 28.0 a | |
RB3 | 18.6 a | 23.3 b | 28.0 b | |
RB1 | 10 | 18.3 a | 21.5 a | 27.5 a |
RB2 | 17.2 a | 21.1 a | 25.8 a | |
RB3 | 17.2 a | 21.4 b | 25.9 b |
Treatment | Leaf Number | Plant Height (mm) | Leaf Area Index |
---|---|---|---|
RB1 | 7.2 a | 83.6 a | 0.125 a |
RB2 | 6.5 a | 76.9 a | 0.118 a |
RB3 | 5.7 a | 78.6 a | 0.117 a |
Treatment | Vines (/Plant) | Tubers (/Plant) | Yield (t ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
Total Number | Length of Longest Vine (m) | Weight of Fresh Vines (g) | Total Number | Large Tubers No. | Medium Tubers No. | Fresh Weight (g) | Standard Deviation | ||
RB1 | 5.6 a | 1.7 a | 949.7 a | 4.0 a | 1.0 a | 3.0 a | 875.2 a | 27.0% | 42.9 a |
RB2 | 5.2 ab | 1.5 a | 602.8 b | 4.2 a | 1.0 a | 3.0 a | 653.8 a | 24.5% | 32.1 a |
RB3 | 4.3 b | 1.7 a | 556.1 b | 5.2 a | 0.9 a | 4.2 a | 706.8 a | 26.6% | 34.6 a |
Treatment | RB1 | RB2 | RB3 |
---|---|---|---|
Inputs | |||
Sweet potato slips (US$ ha−1) | 765.6 | 765.6 | 765.6 |
Fertilizer (US$ ha−1) | 210.9 | 210.9 | 210.9 |
Herbicide (US$ ha−1) | 81.8 | 93.8 | 93.8 |
Plastic mulch and drip irrigation pipe (US$ ha−1) | 632.7 | 485.1 | 485.1 |
Mechanical operation cost in transplanting (US$ ha−1) | 234.4 | 234.4 | 234.4 |
Labour in transplanting (US$ ha−1) | 125.0 | 117.2 | 113.3 |
Irrigation (US$ ha−1) | 21.6 | 30.4 | 37.8 |
Mechanical operation cost in other process (US$ ha−1) | 703.1 | 703.1 | 703.1 |
Labour use in other process (US$ ha−1) | 562.5 | 562.5 | 562.5 |
Total (US$ ha−1) | 3337.6 | 3203.0 | 3206.5 |
Outputs | |||
Yield (US$ ha−1) | 42.9 | 32.1 | 34.6 |
Price (US$ kg−1) | 0.39 | 0.39 | 0.39 |
Income (US$ ha−1) | 16,731.0 | 12,519.0 | 13,494.0 |
Farmer income (US$ ha−1) | 13,393.4 | 9316.0 | 10,287.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, B.; Shi, S.; Zhou, J.; Shi, Y.; Liu, X.; Liu, H.; He, T. Response of Crop Performance and Yield of Spring Sweet Potato (Ipomoea batatas [L.] Lam) as Affected by Mechanized Transplanting Properties. Agronomy 2023, 13, 1611. https://doi.org/10.3390/agronomy13061611
Li H, Wang B, Shi S, Zhou J, Shi Y, Liu X, Liu H, He T. Response of Crop Performance and Yield of Spring Sweet Potato (Ipomoea batatas [L.] Lam) as Affected by Mechanized Transplanting Properties. Agronomy. 2023; 13(6):1611. https://doi.org/10.3390/agronomy13061611
Chicago/Turabian StyleLi, Hui, Baoqing Wang, Song Shi, Jilei Zhou, Yupeng Shi, Xuechuan Liu, Hu Liu, and Tengfei He. 2023. "Response of Crop Performance and Yield of Spring Sweet Potato (Ipomoea batatas [L.] Lam) as Affected by Mechanized Transplanting Properties" Agronomy 13, no. 6: 1611. https://doi.org/10.3390/agronomy13061611
APA StyleLi, H., Wang, B., Shi, S., Zhou, J., Shi, Y., Liu, X., Liu, H., & He, T. (2023). Response of Crop Performance and Yield of Spring Sweet Potato (Ipomoea batatas [L.] Lam) as Affected by Mechanized Transplanting Properties. Agronomy, 13(6), 1611. https://doi.org/10.3390/agronomy13061611