Effect of Mineral and Organic Nitrogen Sources on Vegetative Development, Nutrition, and Yield of Sugarcane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Material
2.2. Fertilization Treatments
2.3. Biometric, Nutritional, and Yield Analyses
2.4. Experimental Design and Statistical Analysis
3. Results
4. Discussion
4.1. Application of Different Doses of MN or ON Affects the Growth of Sugarcane Plants
4.2. MN and ON Increase the Leaf N Content of Sugarcane Plants Similarly, and the Lack of One Is Compensated for by the Effect of the Other
4.3. Sugarcane Plants Subjected to MN or ON Fertilization Grew More and Accumulated More P and K in Crop Season 1 (2019/2020), but Those Treated with ON Had Higher Yields in Crop Season 2 (2020/2021)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatt, R. Resources management for sustainable sugarcane production. In Resources Use Efficiency in Agriculture; Kumar, S., Meena, R.S., Jhariya, M.K., Eds.; Springer: Singapore, 2020; pp. 647–693. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Z.; Lu, G.; Zeng, R.; Que, Y. Sugarcane ratooning ability: Research status, shortcomings, and prospects. Biology 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Bordonal, R.D.O.; Carvalho, J.L.N.; Lal, R.; de Figueiredo, E.B.; de Oliveira, B.G.; La Scala, N. Sustainability of sugarcane production in Brazil. A review. Agron. Sustain. Dev. 2018, 38, 13. [Google Scholar] [CrossRef] [Green Version]
- Ferreira Gomes, F.H.; Soares, F.A.L.; Teixeira, M.B.; Sousa, A.E.C.; da Silva, E.C.; Vidal, V.M.; Bastos, A.V.S.; Silva, N.F.; Cunha, F.N.; Morais, W.A.; et al. Sources and doses of nitrogen in plant cane production and residual effect on the first ratoon of sugarcane in a savannah Red Oxisol. Aust. J. Crop Sci. 2021, 15, 708–715. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, V. Production potential and nitrogen fractionation of sugarcane-based cropping system as influenced by planting materials and nitrogen nutrition. Sugar Tech 2020, 22, 622–629. [Google Scholar] [CrossRef]
- Robinson, N.; Brackin, R.; Vinall, K.; Soper, F.; Holst, J.; Gamage, H.; Paungfoo-Lonhienne, C.; Rennenberg, H.; Lakshmanan, P.; Schmidt, S. Nitrate paradigm does not hold up for sugarcane. PLoS ONE 2011, 6, e19045. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Li, L.; Xie, J.; Wang, X.; Coulter, J.A.; Liu, C.; Wang, L. Effect of long-term nitrogen addition on wheat yield, nitrogen use efficiency, and residual soil nitrate in a semiarid area of the loess plateau of China. Sustainability 2020, 12, 1735. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, W.J.; Collins, D.; Van Zwieten, L.; Rowlings, D.W. Nitrification (DMPP) and urease (NBPT) inhibitors had no effect on pasture yield, nitrous oxide emissions, or nitrate leaching under irrigation in a hot-dry climate. Soil Res. 2016, 54, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Fagodiya, R.K.; Kumar, A.; Kumari, S.; Medhi, K.; Shabnam, A.A. Role of nitrogen and its agricultural management in changing environment. In Contaminants in Agriculture: Sources, Impacts and Management; Naeem, M., Ansari, A.A., Gill, S.S., Eds.; Springer: Cham, Switzerland, 2020; pp. 247–270. [Google Scholar] [CrossRef]
- Corcioli, G.; Medina, G.D.S.; Arrais, C.A. Missing the target: Brazil’s agricultural policy indirectly subsidizes foreign investments to the detriment of smallholder farmers and local agribusiness. Front. Sustain. Food Syst. 2022, 5, 796845. [Google Scholar] [CrossRef]
- Da Silva Medina, G.; Pokorny, B. Agro-industrial development: Lessons from Brazil. Land Use Policy 2022, 120, 106266. [Google Scholar] [CrossRef]
- Randive, K.; Raut, T.; Jawadand, S. An overview of the global fertilizer trends and India’s position in 2020. Miner. Econ. 2021, 34, 371–384. [Google Scholar] [CrossRef]
- Liu, Z.; Ying, H.; Chen, M.; Bai, J.; Xue, Y.; Yin, Y.; Batchelor, W.D.; Yang, Y.; Bai, Z.; Du, M.; et al. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat. Food 2021, 2, 426–433. [Google Scholar] [CrossRef]
- Da Silva Mendes, J.; Fernandes, J.D.; Chaves, L.H.G.; Guerra, H.O.C.; Tito, G.A.; de Brito Chaves, I. Chemical and physical changes of soil amended with biochar. Water Air Soil Pollut. 2021, 232, 338. [Google Scholar] [CrossRef]
- Lucena, N.T.; Santos, E.M.; Oliveira, J.S.; Perazzo, A.F.; Cruz, G.F.; Pereira, D.M.; Pereira, G.A.; Macêdo, A.J.S.; Ramos, R.C.S.; Nogueira, M.S. Agronomic traits and chemical composition of forage sorghum plants fertilized with poultry litter and fermentative profile of silages. Chil. J. Agric. Res. 2021, 81, 575–584. [Google Scholar] [CrossRef]
- Briedis, C.; de Moraes Sá, J.C.; Ferreira, A.O.; Ramos, F.S. Efeito primário e residual de resíduos orgânicos de abatedouro de aves e suínos na produtividade do trigo. Rev. Verde 2011, 6, 221–226. [Google Scholar]
- Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock, M.J.; Panneerselvam, P. Uses and management of poultry litter. World Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef] [Green Version]
- Hirzel, J.; Matus, I.; Novoa, F.; Walter, I. Effect of poultry litter on silage maize (Zea mays L.) production and nutrient uptake. Span. J. Agric. Res. 2007, 5, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Bryant, R.B.; Endale, D.M.; Spiegal, S.A.; Flynn, K.C.; Meinen, R.J.; Cavigelli, M.A.; Kleinman, P.J. Poultry manureshed management: Opportunities and challenges for a vertically integrated industry. J. Environ. Qual. 2022, 51, 540–551. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, T.; Wu, J.; Wu, Z.; Liao, D.; Shah, F.; Wu, W. Effect of combined application of chicken manure and inorganic nitrogen fertilizer on yield and quality of cherry tomato. Agronomy 2022, 12, 1574. [Google Scholar] [CrossRef]
- Bhatnagar, N.; Ryan, D.; Murphy, R.; Enright, A.M. A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential–Global and Irish perspective. Renew. Sustain. Energy Rev. 2022, 154, 111884. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Witek-Krowiak, A.; Mironiuk, M.; Furman, K.; Gramza, M.; Moustakas, K.; Chojnacka, K. Valorization of poultry slaughterhouse waste for fertilizer purposes as an alternative for thermal utilization methods. J. Hazard. Mater. 2022, 424, 127328. [Google Scholar] [CrossRef]
- Mbatha, K.C.; Mchunu, C.N.; Mavengahama, S.; Ntuli, N.R. Effect of poultry and goat manures on the nutrient content of Sesamum alatum leafy vegetables. Appl. Sci. 2021, 11, 11933. [Google Scholar] [CrossRef]
- Adeyemo, A.J.; Akingbola, O.O.; Ojeniyi, S.O. Effects of poultry manure on soil infiltration, organic matter contents and maize performance on two contrasting degraded alfisols in southwestern Nigeria. Int. J. Recycl. Org. Waste Agric. 2019, 8, 73–80. [Google Scholar] [CrossRef] [Green Version]
- De Melo, T.R.; Figueiredo, A.; Machado, W.; Tavares Filho, J. Changes on soil structural stability after in natura and composted chicken manure application. Int. J. Recycl. Org. Waste Agric. 2019, 8, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Adeli, A.; Read, J.; McCarty, J.; Jenkins, J. Consequences of pelletized poultry litter applications on soil physical and hydraulic properties in reduced tillage, continuous cotton system. Soil Tillage Res. 2019, 194, 104309. [Google Scholar] [CrossRef]
- Mau, V.; Arye, G.; Gross, A. Poultry litter hydrochar as an amendment for sandy soils. J. Environ. Manag. 2020, 271, 110959. [Google Scholar] [CrossRef]
- Antonious, G.F. Biochar and animal manure impact on soil, crop yield and quality. In Agricultural Waste and Residues; Aladjadjiyan, A., Ed.; IntechOpen Limited: London, UK, 2018; pp. 45–67. [Google Scholar] [CrossRef] [Green Version]
- Gerber, P.F.; Gould, N.; McGahan, E. Potential contaminants and hazards in alternative chicken bedding materials and proposed guidance levels: A review. Poult. Sci. 2020, 99, 6664–6684. [Google Scholar] [CrossRef]
- Köppen, W.; Geiger, R. Klimate der Erde; Verlag Justus Perthes: Gotha, Germany, 1928. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Cunha, T.J.F.; Oliveira, J.B. Sistema brasileiro de classificação de solos. In Centro Nacional de Pesquisa de Solos, 5th ed.; Embrapa Solos: Brasília, Brazil, 2018; p. 588. [Google Scholar]
- Sousa, D.M.G.; Lobato, E. Cerrado: Correção do Solo e adubação, 2nd ed.; Embrapa Informação Tecnológica/Embrapa-CPA: Brasília, Brazil, 2004; p. 416. [Google Scholar]
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A.D. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações; Potafos: Piracicaba, Brazil, 1997; p. 319. [Google Scholar]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Ciênc. Agrotec. 2011, 35, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Boschiero, B.N.; Mariano, E.; Azevedo, R.A.; Trivelin, P.C.O. Influence of nitrate-ammonium ratio on the growth, nutrition, and metabolism of sugarcane. Plant Physiol. Biochem. 2019, 139, 246–255. [Google Scholar] [CrossRef]
- Erhunmwunse, A.S.; Olayinka, A.; Atoloye, I.A. Nutrient mineralization from nitrogen-and phosphorus-enriched poultry manure compost in an ultisol. Commun. Soil Sci. Plant Anal. 2019, 50, 185–197. [Google Scholar] [CrossRef]
- Farni, Y.; Prijono, S.; Suntari, R.; Handayanto, E. Pattern of N mineralization and nutrient uptake of Tithonia diversifolia and Saccharum officinarum leaves in sandy loam soil. Indian J. Agric. Res. 2022, 56, 65–69. [Google Scholar] [CrossRef]
- Bassi, D.; Menossi, M.; Mattiello, L. Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci. Rep. 2018, 8, 2327. [Google Scholar] [CrossRef] [Green Version]
- Lian, L.; Lin, Y.; Wei, Y.; He, W.; Cai, Q.; Huang, W.; Zheng, Y.; Xu, H.; Wang, F.; Zhu, Y.; et al. PEPC of sugarcane regulated glutathione S-transferase and altered carbon–nitrogen metabolism under different N source concentrations in Oryza sativa. BMC Plant Biol. 2021, 21, 287. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, S.; Su, Y.; Lin, Z.; Guo, J.; Li, M.; Wang, Z.; Que, Y.; Xu, L. Transcripts and low nitrogen tolerance: Regulatory and metabolic pathways in sugarcane under low nitrogen stress. Environ. Exp. Bot. 2019, 163, 97–111. [Google Scholar] [CrossRef]
- Quassi de Castro, S.G.; Graziano Magalhães, P.S.; Coutinho Junqueira Franco, H.; Mutton, M.Â. Harvesting Systems, Soil Cultivation, and Nitrogen Rate Associated with Sugarcane Yield. Bioenerg. Res. 2018, 11, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, K.S.; Rossetto, R.; Vitti, A.C.; Montezano, Z.F.; Soares, J.R.; de Melo Sousa, R.; Carmo, J.B.; Kuramae, E.E.; Cantarella, H. Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Sci. Total Environ. 2019, 650, 1476–1486. [Google Scholar] [CrossRef]
- Otto, R.; Mariano, E.; Mulvaney, R.L.; Khan, S.A.; Boschiero, B.N.; Tenelli, S.; Trivelin, P.C.O. Effect of previous soil management on sugarcane response to nitrogen fertilization. Sci. Agric. 2019, 76, 72–81. [Google Scholar] [CrossRef]
- Santos, R.L.D.; Freire, F.J.; Oliveira, E.C.A.D.; Freire, M.B.G.D.S.; West, J.B.; Barbosa, J.D.A.; Moura, M.J.A.; Bezerra, P.D.C. Nitrate reductase activity and nitrogen and biomass accumulation in sugarcane under molybdenum and nitrogen fertilization. Rev. Bras. Ciênc. Solo 2019, 43, e0180171. [Google Scholar] [CrossRef] [Green Version]
- Gee, C.S.; Pfeffer, J.T.; Suidan, M.T. Nitrosomonas and Nitrobacter interactions in biological nitrification. J. Environ. Eng. 1990, 116, 4–17. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, D.; Zhang, W.; Wang, Y. Ammonia stimulates growth and nitrite-oxidizing activity of Nitrobacter winogradskyi. Biotechnol. Equip. 2014, 28, 27–32. [Google Scholar] [CrossRef]
- Fumasoli, A.; Bürgmann, H.; Weissbrodt, D.G.; Wells, G.F.; Beck, K.; Mohn, J.; Morgenroth, E.; Udert, K.M. Growth of Nitrosococcus-related ammonia oxidizing bacteria coincides with extremely low pH values in wastewater with high ammonia content. Environ. Sci. Technol. 2017, 51, 6857–6866. [Google Scholar] [CrossRef] [Green Version]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Li, Z.; Tian, D.; Wang, B.; Wang, J.; Wang, S.; Chen, H.Y.; Xu, X.; Wang, C.; He, N.; Niu, S. Microbes drive global soil nitrogen mineralization and availability. Glob. Chang. Biol. 2019, 25, 1078–1088. [Google Scholar] [CrossRef] [PubMed]
- Tauqeer, H.M.; Turan, V.; Farhad, M.; Iqbal, M. Sustainable agriculture and plant production by virtue of biochar in the era of climate change. In Managing Plant Production Under Changing Environment; Hasanuzzaman, M., Ahammed, G.J., Nahar, K., Eds.; Springer: Singapore, 2022; pp. 21–42. [Google Scholar] [CrossRef]
- Uddin, S.; Williams, S.W.; Aslam, N.; Fang, Y.; Parvin, S.; Rust, J.; Zwieten, L.V.; Armstrong, R.; Tavakkoli, E. Ameliorating alkaline dispersive subsoils with organic amendments: Are productivity responses due to nutrition or improved soil structure? Plant Soil 2022, 480, 227–244. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Chastain, J.P.; Moore, P.A., Jr. Nutrient characteristics of poultry manure and litter. In Animal Manure: Production, Characteristics, Environmental Concerns, and Management; Waldrip, H.M., Pagliari, P.H., He, Z., Eds.; Springer: Singapore, 2020; pp. 63–87. [Google Scholar] [CrossRef]
- Hoang, H.G.; Thuy, B.T.P.; Lin, C.; Vo, D.V.N.; Tran, H.T.; Bahari, M.B.; Vu, C.T. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere 2022, 300, 134514. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, J.; Yong, X.; Luo, L.; Wong, J.W.; Zhang, Y.; Wu, H.; Zhou, J. Effect of biochar combined with a biotrickling filter on deodorization, nitrogen retention, and microbial community succession during chicken manure composting. Bioresour. Technol. 2022, 343, 126137. [Google Scholar] [CrossRef]
- Christie, K.M.; Smith, A.P.; Rawnsley, R.P.; Harrison, M.T.; Eckard, R.J. Simulated seasonal responses of grazed dairy pastures to nitrogen fertilizer in SE Australia: N loss and recovery. Agric. Syst. 2020, 182, 102847. [Google Scholar] [CrossRef]
- Musyoka, M.W.; Adamtey, N.; Muriuki, A.W.; Bautze, D.; Karanja, E.N.; Mucheru-Muna, M.; Fiaboe, K.K.M.; Cadisch, G. Nitrogen leaching losses and balances in conventional and organic farming systems in Kenya. Nutr. Cycl. Agroecosyst. 2019, 114, 237–260. [Google Scholar] [CrossRef]
- Rossetto, R.; Ramos, N.P.; de Matos Pires, R.C.; Xavier, M.A.; Cantarella, H.; Guimarães de Andrade Landell, M. Sustainability in sugarcane supply chain in Brazil: Issues and way forward. Sugar Tech 2022, 24, 941–966. [Google Scholar] [CrossRef]
- Tischler, A.L.; Jeronimo, E.M.; Lúcio, A.D.C.; Sari, B.G.; Melo, P.J.D.; Boesso, F.F.; Tartaglia, F.D.L. Sugarcane harvest time for processing and technological quality of brown sugar. Pesqui. Agropecuária Bras. 2021, 56, e02435. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, S.; Jiang, Y.; Lin, Z.; Luo, J.; Li, M.; Que, Y. The physiological and agronomic responses to nitrogen dosage in different sugarcane varieties. Front. Plant Sci. 2019, 10, 406. [Google Scholar] [CrossRef] [Green Version]
- Lal, M.A. Nitrogen metabolism. In Plant Physiology, Development and Metabolism; Bhatla, S.C., Lal, M.A., Eds.; Springer: Singapore, 2018; pp. 425–480. [Google Scholar] [CrossRef]
Ca | Mg | Ca + Mg | Al | H + Al | K | P (Resin) | CaCl2 | ||
---|---|---|---|---|---|---|---|---|---|
cmolc dm−3 | mg dm−3 | pH | |||||||
4.14 | 0.87 | 5.01 | 0.0 | 2.32 | 0.17 | 1.60 | 5.25 | ||
Fe | Mn | Cu | Zn | B | CTC a | SB b | V% c | m% d | |
Micronutrients (mg dm−3) | cmolc dm−3 | Sat. Bases | Sat. Al | ||||||
12.64 | 5.95 | 3.60 | 0.81 | 0.51 | 7.50 | 5.18 | 68.23 | 0.0 | |
Clay | M.O. e | Ca/Mg | Ca/K | Mg/K | Ca/CTC | Mg/CTC | K/CTC | ||
(g kg−1) | g dm−3 | Relationship between bases | |||||||
57.39 | 27.10 | 4.75 | 24.35 | 5.12 | 53.95 | 11.89 | 2.85 |
Source of Variation | DF | MS | ||||||
---|---|---|---|---|---|---|---|---|
HEI | NP | SD | LNC | LPC | LKC | YIELD | ||
BLOCK | 3 | 0.087 ** | 46.826 ** | 7.965 * | 0.072 ns | 0.025 ns | 0.83 ns | 2430.748 ** |
MN | 4 | 0.028 ** | 2.474 * | 0.225 ns | 2.925 ns | 0.222 * | 1.212 ns | 181.309 ns |
Residue | 12 | 0.003 | 0.578 | 0.64 | 3.148 | 0.055 | 0.603 | 228.224 |
CV | 2.00 | 5.93 | 3.06 | 9.54 | 8.22 | 5.24 | 10.75 | |
ON | 4 | 0.266 ** | 5.993 ** | 0.939 ns | 2.872 ns | 0.136 ** | 0.67 ns | 1525.515 ** |
MN × ON | 16 | 0.007 ns | 1.483 ns | 0.550 ns | 5.914 ** | 0.146 ** | 1.265 ns | 332.138 ns |
Residue | 12 | 0.008 | 0.818 | 1.09 | 1.401 | 0.01 | 1.441 | 246.678 |
CV | 3.08 | 7.05 | 3.99 | 6.36 | 3.50 | 8.11 | 11.17 | |
CROP SEASON | 1 | 4.545 ** | 413.569 ** | 11.956 ** | 234.766 ** | 7.132 ** | 629.3 ** | 14,809.205 ** |
MN × CROP SEASON | 4 | 0.015 ns | 2.530 ns | 1.423 ns | 8.376** | 0.184 ns | 4.001 ** | 166.117 ns |
ON × CROP SEASON | 4 | 0.029 ** | 1.364 ns | 0.398 ns | 0.659 ns | 0.082 ns | 1.665 ns | 591.820 ** |
ON × ON × CROP SEASON | 16 | 0.005 ns | 1.662 ns | 0.600 ns | 2.117 ns | 0.103 ns | 0.475 ns | 177.177 ns |
Residue | 123 | 0.011 | 1.369 | 0.897 | 1.325 | 0.081 | 0.707 | 160.481 |
CV | 3.75 | 9.12 | 3.62 | 6.19 | 9.96 | 5.68 | 9.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira Junior, A.C.; Silva dos Santos, L.N.; Reis, M.N.O.; Vitorino, L.C.; Bessa, L.A.; Teixeira, M.B.; Soares, F.A.L. Effect of Mineral and Organic Nitrogen Sources on Vegetative Development, Nutrition, and Yield of Sugarcane. Agronomy 2023, 13, 1627. https://doi.org/10.3390/agronomy13061627
de Oliveira Junior AC, Silva dos Santos LN, Reis MNO, Vitorino LC, Bessa LA, Teixeira MB, Soares FAL. Effect of Mineral and Organic Nitrogen Sources on Vegetative Development, Nutrition, and Yield of Sugarcane. Agronomy. 2023; 13(6):1627. https://doi.org/10.3390/agronomy13061627
Chicago/Turabian Stylede Oliveira Junior, Antônio Carlos, Leonardo Nazário Silva dos Santos, Mateus Neri Oliveira Reis, Luciana Cristina Vitorino, Layara Alexandre Bessa, Marconi Batista Teixeira, and Frederico Antônio Loureiro Soares. 2023. "Effect of Mineral and Organic Nitrogen Sources on Vegetative Development, Nutrition, and Yield of Sugarcane" Agronomy 13, no. 6: 1627. https://doi.org/10.3390/agronomy13061627
APA Stylede Oliveira Junior, A. C., Silva dos Santos, L. N., Reis, M. N. O., Vitorino, L. C., Bessa, L. A., Teixeira, M. B., & Soares, F. A. L. (2023). Effect of Mineral and Organic Nitrogen Sources on Vegetative Development, Nutrition, and Yield of Sugarcane. Agronomy, 13(6), 1627. https://doi.org/10.3390/agronomy13061627