Growth and Yield Response and Water Use Efficiency of Cotton under Film-Mulched Drip Irrigation to Magnetized Ionized Water and Bacillus subtilis in Saline Soil in Xinjiang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Magnetized Ionized System for Irrigation Water Treatment
2.3. Experimental Design and Treatments
2.4. Measurements and Calculations
2.4.1. Cotton Height (H) and Leaf Area Index (LAI)
2.4.2. Modified Logistic Growth Model
2.4.3. Shoot Dry Matter
2.4.4. Relative Chlorophyll Content
2.4.5. Soil Water Content and Salinity
2.4.6. Crop Evapotranspiration Calculations
2.4.7. Water Use Efficiency (WUE) and Irrigation Water Use Efficiency (IWUE)
2.4.8. Salts Accumulation Calculation
2.4.9. Data Analysis
3. Results
3.1. Plant Height and Leaf Area Index of Cotton
3.1.1. Plant Height of Cotton
3.1.2. Leaf Area Index of Cotton
3.1.3. Modeling Cotton Plant Height and Leaf Area Index
3.2. Shoot Dry Matter of Cotton
3.3. Chlorophyll Content (SPAD) of Cotton
3.4. Soil Water Content and Water Consumption of Cotton
3.4.1. Soil Water Content
3.4.2. Cotton Water Consumption
3.5. Salts Change in Soil
3.6. Seed Cotton Yield, WUE and IWUE
3.6.1. Seed Cotton Yield and Yield Composition
3.6.2. WUE and IWUE
3.6.3. Effect of B. subtilis Amount on Seed Cotton Yield, WUE and IWUE
4. Discussion
4.1. Effects of Magnetized Ionized Water Treatment on Soil Water and Salt Conditions and Cotton Growth
4.2. Effects of B. subtilis Amount on Soil Water and Salt Conditions and Cotton Growth
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, Q.; Xia, J.; Yang, H.; Liu, J.; Shao, P. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Sci. Total Environ. 2021, 756, 143801. [Google Scholar] [CrossRef] [PubMed]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene Expression Profiling of Plants under Salt Stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Tan, S.; Wang, Q.; Xu, D.; Zhang, J.; Shan, Y. Evaluating effects of four controlling methods in bare strips on soil temperature, water, and salt accumulation under film-mulched drip irrigation. Field Crops Res. 2017, 214, 350–358. [Google Scholar] [CrossRef]
- Ning, S.; Shi, J.; Zuo, Q.; Wang, S.; Ben-Gal, A. Generalization of the root length density distribution of cotton under film mulched drip irrigation. Field Crops Res. 2015, 177, 125–136. [Google Scholar] [CrossRef]
- Ning, S.; Chen, C.; Zhou, B.; Wang, Q. Evaluation of normalized root length density distribution models. Field Crops Res. 2019, 242, 107604. [Google Scholar] [CrossRef]
- Ning, S.; Zhou, B.; Shi, J.; Wang, Q. Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in northern Xinjiang. Agric. Water Manag. 2021, 245, 106651. [Google Scholar] [CrossRef]
- Wang, Q.J.; Deng, M.J.; Ning, S.R.; Sun, Y. Reality and problems of controlling soil water and salt in farmland. Adv. Water Sci. 2021, 32, 139–147, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, W.; Wang, Z.; Zhang, J.; Zong, R. Soil salinity variations and cotton growth under long-term mulched drip irrigation in saline-alkali land of arid oasis. Irrig. Sci. 2021, 40, 103–113. [Google Scholar] [CrossRef]
- Wang, Q.J.; Li, Z.Y.; Zhang, J.H.; Xie, J.B.; Wei, K.; Sun, Y. Effect of magnetization intensity on characteristics of soil water and salt transport in magnetization-de-electronic activation water. Trans. Chin. Soc. Agric. Mach. 2020, 51, 278–284, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhu, M.J.; Wang, Q.J.; Sun, Y.; Zhang, J.H. Effects of oxygenated brackish water on germination and growth characteristics of wheat. Agric. Water Manag. 2021, 245, 106520. [Google Scholar] [CrossRef]
- Amiri, M.; Dadkhah, A.A. On reduction in the surface tension of water due to magnetic treatment. Colloids Surf. A 2006, 278, 252–255. [Google Scholar] [CrossRef]
- Toledo, E.J.; Ramalho, T.C.; Magriotis, Z.M. Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. J. Mol. Struct. 2008, 888, 409–415. [Google Scholar] [CrossRef]
- Wei, K.; Zhang, J.; Wang, Q.; Guo, Y.; Mu, W. Irrigation with ionized brackish water affects cotton yield and water use efficiency. Ind. Crops Prod. 2022, 175, 114244–114256. [Google Scholar] [CrossRef]
- Hilal, M.H.; El-Fakhrani, Y.M.; Mabrouk, S.S.; Mohamed, A.I.; Ebead, B.M. Effect of magnetic treated irrigation water on salt removal from a sandy soil and on the availability of certain nutrients. Int. J. Eng. Appl. Sci. 2012, 2, 36–44. [Google Scholar]
- Teixeira da Silva, J.A.; Dobránszki, J. Impact of magnetic water on plant growth. Environ. Exp. Biol. 2014, 12, 137–142. [Google Scholar]
- Teixeira da Silva, J.A.; Dobránszki, J. Magnetic fields: How is plant growth and development impacted? Protoplasma 2016, 253, 231–248. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, H.; Meng, S.; Bi, S.; Zhang, Y.; Wang, H.; Song, C.; Ma, F. The effects of magnetic treatment of irrigation water on seedling growth, photosynthetic capacity and nutrient contents of Populus × euramericana ‘Neva’ under NaCl stress. Acta Physiol. Plant. 2019, 41, 11. [Google Scholar] [CrossRef]
- Niaz, N.; Tang, C.; Zhang, R.; Chu, G. Application of Magnetic Treated Water Irrigation Increased Soil Salt Leachate by Altering Water Property. Eurasian Soil Sci. 2021, 54 (Suppl. S1), S26–S32. [Google Scholar] [CrossRef]
- Lemos, L.T.O.; de Deus, F.P.; Thebaldi, M.S.; Diotto, A.V.; Júnior, V.C.d.A.; de Almeida, R.C. Influence of the soil water retention curve type and magnetic water treatment on lettuce irrigation management responses. Water Supply 2021, 21, 2850–2862. [Google Scholar] [CrossRef]
- Wang, Q.J.; Sun, Y.; Ning, S.R.; Zhang, J.H.; Zhou, B.B.; Su, L.J.; Shan, Y.Y. Effects of activated irrigation water on soil physicochemical properties and crop growth and analysis of the probable pathway. Adv. Earth Sci. 2019, 34, 660–670, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Abedinpour, M.; Rohani, E. Effects of magnetized water application on soil and maize growth indices under different amounts of salt in the water. J. Water Reuse Desalination 2016, 7, 319–325. [Google Scholar] [CrossRef] [Green Version]
- Alkassab, A.; Albach, D. Response of Mexican aster Cosmos bipinnatus and field mustard Sinapis arvensis to irrigation with magnetically treated water (MTW). Biol. Agric. Hortic. 2014, 30, 62–72. [Google Scholar] [CrossRef]
- Maheshwari, B.L.; Grewal, H.S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agric. Water Manag. 2009, 96, 1229–1236. [Google Scholar] [CrossRef]
- Boix, Y.F.; Dubois, A.E.F.; Hendrix, S.; Luna, L.M.G.; Beenaerts, N.; Manrique, C.E.M.; Victório, C.P.; Cuypers, A. Assessment of the Antioxidative Potential of Rosmarinus officinalis L. (Lamiaceae) Irrigated with Static Magnetic Field-Treated Water. Braz. Arch. Biol. Technol. 2020, 63, e20190142. [Google Scholar] [CrossRef]
- Samarah, N.H.; Hani, M.M.I.B.; Makhadmeh, I.M. Effect of Magnetic Treatment of Water or Seeds on Germination and Productivity of Tomato Plants under Salinity Stress. Horticulturae 2021, 7, 220–231. [Google Scholar] [CrossRef]
- Rosić, I.; Nikolić, I.; Ranković, T.; Anteljević, M.; Medić, O.; Berić, T.; Stanković, S. Genotyping-driven diversity assessment of biocontrol potent Bacillus spp. strain collection as a potential method for the development of strain-specific biomarkers. Arch. Microbiol. 2023, 205, 114. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Hashem, A.; Abd_Allah, E.F. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front. Physiol. 2017, 8, 667. [Google Scholar] [CrossRef] [Green Version]
- de Lima, B.C.; Bonifacio, A.; Neto, F.D.A.; de Araujo, F.F.; Araujo, A.S.F. Bacillus subtilis rhizobacteria ameliorate heat stress in the common bean. Rhizosphere 2022, 21, 100472. [Google Scholar] [CrossRef]
- Mumtaz, M.Z.; Malik, A.; Nazli, F.; Latif, M.; Zaheer, A.; Ali, Q.; Jamil, M.; Ahmad, M. Potential of zinc solubilizing bacillus strains to improve growth, yield, and quality of maize (Zea mays). Int. J. Agric. Biol. 2020, 24, 691–698. [Google Scholar]
- Dadnia, M.R. Effect of different strains of Bacillus subtilis on growth and grain yield of corn (Zea mays L.). Res. Crops 2011, 12, 360–363. [Google Scholar]
- Dadnia, M.R. Response of soybean (Glycine max L.) to Bacillus strains and nitrogen fertilization. Res. Crops 2011, 12, 409–412. [Google Scholar]
- Iqbal, Z.; Bushra; Hussain, A.; Dar, A.; Ahmad, M.; Wang, X.; Brtnicky, M.; Mustafa, A. Combined Use of Novel Endophytic and Rhizobacterial Strains Upregulates Antioxidant Enzyme Systems and Mineral Accumulation in Wheat. Agronomy 2022, 12, 551. [Google Scholar] [CrossRef]
- Stamenov, D.; Jarak, M.; Đurić, S.; Milošev, D.; Hajnal-Jafari, T. Plant growth promoting rhizobacteria in the production of English ryegrass. Plant Soil Environ. 2012, 58, 477–480. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.J.; Zeng, S.Q.; Bais, H.; LaManna, J.M.; Hussey, D.S.; Jacobson, D.L. Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention. Water Resour. Res. 2018, 54, 3673–3687. [Google Scholar] [CrossRef]
- Tang, H.; Sha, J.P.; Ouyang, L.; Zhong, D.; Liu, G.Z. Persulfate activated by Fe(II) for oxidation and disintegration of excess sludge. CIESC J. 2015, 66, 785–792, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Meng, Q.Y.; Zou, H.T.; Han, Y.Y.; Zhang, C.F. Effects of straw application rates on soil aggregates, soil organic carbon content and maize yield. Trans. Chin. Soc. Agric. Eng. 2019, 35, 119–125, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Du, Y.J.; Gao, G.L.; Chen, L.H.; Ding, G.D.; Zhang, Y.; Cao, H.Y.; Alasa Liu, Z.T. Effects of soil microbial films on sand fixation and water retention characteristics of aeolian soils. Trans. Chin. Soc. Agric. Eng. 2020, 36, 98–105, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Darouich, H.; Ramos, T.B.; Pereira, L.S.; Rabino, D.; Bagagiolo, G.; Capello, G.; Simionesei, L.; Cavallo, E.; Biddoccu, M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water 2022, 14, 554. [Google Scholar] [CrossRef]
- Abrol, I.P.; Yadav, J.S.P.; Massoud, F.I. Salt-Affected Soils and Their Management. FAO Soils Bulletin 39. 1988. Available online: https://www.fao.org/3/x5871e/x5871e00.htm#Contents (accessed on 30 May 2023).
- Zhao, G.; Mu, Y.; Wang, Y.; Wang, L. Response of winter-wheat grain yield and water-use efficiency to irrigation with activated water on Guanzhong Plain in China. Irrig. Sci. 2020, 39, 263–276. [Google Scholar] [CrossRef]
- Wang, Q.J.; Xu, Z.Y.; Shan, Y.Y.; Zhang, J.H. Effect of salinity of de-electronic brackish water on characteristics of water and salt movement in soil. Trans. Chin. Soc. Agric. Eng. 2018, 34, 125–132, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Jha, S.K.; Ramatshaba, T.S.; Wang, G.; Liang, Y.; Liu, H.; Gao, Y.; Duan, A. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 2019, 217, 292–302. [Google Scholar] [CrossRef]
- Tan, S. Study on Soil Water and Salt Regulation and Cotton Growth Characteristics under Film-Mulched Drip Irrigation with Brackish Water. Ph.D. Thesis, Xi’an University of Technology, Xi’an, China, 2018. [Google Scholar]
- Wang, H.; Wu, L.; Cheng, M.; Fan, J.; Zhang, F.; Zou, Y.; Chau, H.W.; Gao, Z.; Wang, X. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China. Field Crops Res. 2018, 219, 169–179. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, X.; Li, J.; Zhang, C.; Wei, T.; Yang, Z.; Cai, T.; Zhang, P.; Ding, R.; Jia, Z. Photosynthetic characteristics and grain yield of winter wheat (Triticum aestivum L.) in response to fertilizer, precipitation, and soil water storage before sowing under the ridge and furrow system: A path analysis. Agric. For. Meteorol. 2019, 272–273, 12–19. [Google Scholar] [CrossRef]
- Kaddah, M.T.; Rhoades, J.D. Salt and Water Balance in Imperial Valley, California. Soil Sci. Soc. Am. J. 1976, 40, 93–100. [Google Scholar] [CrossRef]
- Khatri, R.S.; Van Dam, J.C.; Jhorar, R.K. Water and salt balances at farmer fields. In Water Productivity of Irrigated Crops in Sirsa District, India; Wageningen UR: Wageningen, The Netherlands, 2003; pp. 41–58. [Google Scholar]
- Phogat, V.; Skewes, M.; Mahadevan, M.; Cox, J. Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions. Agric. Water Manag. 2013, 118, 1–11. [Google Scholar] [CrossRef]
- Kisekka, I.; Kandelous, M.M.; Sanden, B.; Hopmans, J.W. Uncertainties in leaching assessment in micro-irrigated fields using water balance approach. Agric. Water Manag. 2019, 213, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Shi, W.; He, Z.; Pang, L.; Zhang, Y. Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China. Agric. Water Manag. 2019, 218, 48–59. [Google Scholar] [CrossRef]
- Thornley, J.H.; Shepherd, J.J.; France, J. An open-ended logistic-based growth function: Analytical solutions and the power-law logistic model. Ecol. Model. 2007, 204, 531–534. [Google Scholar] [CrossRef]
- Unruh, B.L.; Silvertooth, J.C. Comparisons between an upland and a pima cotton cultivar: I. growth and yield. Agron. J. 1996, 88, 583–589. [Google Scholar] [CrossRef]
- Ai, P.; Ma, Y.; Hai, Y. Influence of jujube/cotton intercropping on soil temperature and crop evapotranspiration in an arid area. Agric. Water Manag. 2021, 256, 107118. [Google Scholar] [CrossRef]
- Cevheri, C. Effects of different chemical and organic fertilizers on plant properties of cotton (Gossypium hirsutum L.) under non-saline and saline soil conditions. Appl. Ecol. Environ. Res. 2021, 19, 3837–3851. [Google Scholar] [CrossRef]
- Mohassel, M.H.R.; Aliverdi, A.; Ghorbani, R. Effects of a magnetic field and adjuvant in the efficacy of cycloxydim and clodinafop-propargyl on the control of wild oat (Avena fatua). Weed Biol. Manag. 2009, 9, 300–306. [Google Scholar] [CrossRef]
- Chang, K.-T.; Weng, C.-I. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J. Appl. Phys. 2006, 100, 43917–43922. [Google Scholar] [CrossRef] [Green Version]
- Khoshravesh-Miangoleh, M.; Kiani, A.-R. Effect of magnetized water on infiltration capacity of different soil textures. Soil Use Manag. 2015, 30, 588–594. [Google Scholar] [CrossRef]
- Mostafazadeh-Fard, B.; Khoshravesh, M.; Mousavi, S.F.; Kiani, A.R. Effects of magnetized water on soil chemical components underneath trickle irrigation. J. Irrig. Drain. Eng. 2012, 138, 1075–1081. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Wei, K.; Guo, Y.; Mu, W.; Sun, Y. Magnetic Water Treatment: An Eco-Friendly Irrigation Alternative to Alleviate Salt Stress of Brackish Water in Seed Germination and Early Seedling Growth of Cotton (Gossypium hirsutum L.). Plants 2022, 11, 1397–1416. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Li, Q.; Song, Z.; Su, L.; Tao, W.; Zhou, B.; Wang, Q. Irrigation with Magnetized Water Alleviates the Harmful Effect of Saline–Alkaline Stress on Rice Seedlings. Int. J. Mol. Sci. 2022, 23, 10048–10095. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.G. Device for magnetic treatment of irrigation water and its effects on quality and yield of banana plants. Int. J. Biol. Sci. Appl. 2014, 4, 152–156. [Google Scholar]
- Suarez, D.L.; Wood, J.D.; Lesch, S.M. Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agric. Water Manag. 2006, 86, 150–164. [Google Scholar] [CrossRef]
- Hou, Y.L.; Zhou, B.B.; Wang, Q.J.; Chen, X.P.; Tao, W.H.; Zhang, J.H. Effects of Bacillus subtilis on water movement and water stable aggregate in saline alkali soil. J. Soil Water Conserv. 2017, 31, 105–111+147, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Castillo-Alfonso, F.; Quintana-Menéndez, A.; Vigueras-Ramírez, G.; Sales-Cruz, A.M.; Rosales-Colunga, L.M.; Olivares-Hernández, R. Analysis of the Propionate Metabolism in Bacillus subtilis during 3-Indolacetic Production. Microorganisms 2022, 10, 2352. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.B.; Hou, Y.L.; Wang, Q.J. Characteristics of water and salt migration in process of improving saline alkali soil with Bacillus subtilis. Trans. Chin. Soc. Agric. Eng. 2018, 34, 104–110, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Roberson, E.B.; Firestone, M.K. Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp. Appl. Environ. Microbiol. 1992, 58, 1284–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chenu, C. Clay- or sand-polysaccharide associations as models for the interface between micro-organisms and soil: Water related properties and microstructure. Geoderma 1993, 56, 143–156. [Google Scholar] [CrossRef]
- Kroener, E.; Zarebanadkouki, M.; Kaestner, A.; Carminati, A. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils. Water Resour. Res. 2014, 50, 6479–6495. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, R.; Shavit, U.; Furman, A. Water Retention Curves of Biofilm-Affected Soils using Xanthan as an Analogue. Soil Sci. Soc. Am. J. 2012, 76, 61–69. [Google Scholar] [CrossRef]
- Volk, E.; Iden, S.C.; Furman, A.; Durner, W.; Rosenzweig, R. Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm. Water Resour. Res. 2016, 52, 5813–5828. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chen, X.; Yang, J.; Luo, Y.; Yao, R.; Wang, X.; Xie, W.; Zhang, X. Coastal Soil Salinity Amelioration and Crop Yield Improvement by Biomaterial Addition in East China. Water 2022, 14, 3266–3278. [Google Scholar] [CrossRef]
- Hou, Y.L.; Zhou, B.B.; Wang, Q.J. Effects of Bacillus subtilis on evaporation of soil surface and water and salt distribution in saline soil. J. Soil Water Conserv. 2018, 32, 306–311, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Natthiya, B.; Kanjana, T.; Mathukorn, S.; Dusit, A.; Sutruedee, P. The FTIR spectroscopy investigation of the cellular components of cassava after sensitization with plant growth promoting rhizobacteria, Bacillus subtilis CaSUT007. Afr. J. Mic. Res. 2012, 6, 603–610. [Google Scholar] [CrossRef]
- Asghar, H.N.; Zahir, Z.A.; Arshad, M. Screening rhizobacteria for improving the growth, yield, and oil content of canola (Brassica napus L.). Crop Pasture Sci. 2004, 55, 187–194. [Google Scholar] [CrossRef]
- Lu, H.; Qi, X.; Rahman, S.U.; Qiao, D.; Li, P.; Han, Y.; Zhao, Z. Rice physiological response with Bacillus subtilis and Saccharomyces cerevisiae inoculation into soil under reclaimed water–fresh water combined irrigation. Water 2021, 13, 773–790. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, Q.; Li, S.; Lu, X.; Dong, L.; Wang, P.; Zhang, X.; Su, Z.; Ma, P. Application of Bacillus subtilis NCD-2 can suppress cotton verticillium wilt and its effect on abundant and rare microbial communities in rhizosphere. Biol. Control 2021, 165, 104812–104822. [Google Scholar] [CrossRef]
- Lyu, D.; Backer, R.; Smith, D.L. Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Ind. Crops Prod. 2022, 178, 114583–114590. [Google Scholar] [CrossRef]
- Witt, T.W.; Ulloa, M.; Schwartz, R.C.; Ritchie, G.L. Response to deficit irrigation of morphological, yield and fiber quality traits of upland (Gossypium hirsutum L.) and Pima (G. barbadense L.) cotton in the Texas High Plains. Field Crops Res. 2020, 249, 107759–107769. [Google Scholar] [CrossRef]
Soil Layer (cm) | Particle Composition | Soil Texture | Bulk Density (g cm−3) | Soil Water Content (cm3 cm−3) | ||||
---|---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | θWP | θFC | θS | |||
0–20 | 12.18 | 79.11 | 8.60 | Silty loam | 1.46 | 0.042 | 0.31 | 0.41 |
20–40 | 12.66 | 81.93 | 5.42 | Silty loam | 1.52 | 0.042 | 0.33 | 0.41 |
40–60 | 11.45 | 85.44 | 3.10 | Silty loam | 1.54 | 0.045 | 0.32 | 0.41 |
60–80 | 11.94 | 84.30 | 3.75 | Silty loam | 1.53 | 0.046 | 0.33 | 0.42 |
80–100 | 8.68 | 81.65 | 9.67 | Silty | 1.55 | 0.060 | 0.34 | 0.40 |
Cotton Growth Stages | Year | |
---|---|---|
2021 | 2022 | |
Sowing | 9 April | 10 April |
Emergence | 20 April | 22 April |
Budding | 12 June | 10 June |
Flowering | 7 July | 3 July |
Boll | 6 August | 6 August |
Boll-opening | 7 September | 5 September |
Harvest | 10 October | 30 September |
Treatment | Irrigation Water Type and B. subtilis Amounts | Treatment | Irrigation Water Type and B. subtilis Amounts |
---|---|---|---|
B0 | NMIW + 0 t ha−1 B. subtilis | M | MIW + 0 t ha−1 B. subtilis |
B1 | NMIW + 15 t ha−1 B. subtilis | MB1 | MIW + 15 t ha−1 B. subtilis |
B2 | NMIW + 30 t ha−1 B. subtilis | MB2 | MIW + 30 t ha−1 B. subtilis |
B3 | NMIW + 45 t ha−1 B. subtilis | MB3 | MIW + 45 t ha−1 B. subtilis |
B4 | NMIW + 60 t ha−1 B. subtilis | MB4 | MIW + 60 t ha−1 B. subtilis |
Treatment | 2021 | 2022 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Hm | a1 | b1 | R2 | RMSEH | Hm | a1 | b1 | R2 | RMSEH | |
M | 73.09 | 0.46 | −0.08 | 0.98 | 1.87 | 71.42 | 0.25 | −0.05 | 0.96 | 2.90 |
MB1 | 76.20 | 0.52 | −0.09 | 0.98 | 2.41 | 76.49 | 0.24 | −0.08 | 0.98 | 2.06 |
MB2 | 78.31 | 0.60 | −0.10 | 0.98 | 2.49 | 79.88 | 0.28 | −0.09 | 0.99 | 0.91 |
MB3 | 80.79 | 0.65 | −0.10 | 0.99 | 2.96 | 82.07 | 0.37 | −0.10 | 0.99 | 1.08 |
MB4 | 83.66 | 0.71 | −0.11 | 0.98 | 2.98 | 84.32 | 0.39 | −0.11 | 0.99 | 1.14 |
Treatment | 2021 | 2022 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LAIm | a2 | b2 | c | R2 | RMSELAI | LAIm | a2 | b2 | c | R2 | RMSELAI | |
M | 3.056 | 0.047 | 0.024 | −0.003 | 0.99 | 0.09 | 2.972 | 0.024 | −0.006 | −0.003 | 0.98 | 0.05 |
MB1 | 3.458 | 0.305 | 0.003 | −0.002 | 0.98 | 0.14 | 3.374 | 0.254 | 0.001 | −0.003 | 0.98 | 0.04 |
MB2 | 3.688 | 0.515 | −0.029 | −0.001 | 0.99 | 0.05 | 3.658 | 0.369 | −0.021 | −0.002 | 0.99 | 0.04 |
MB3 | 4.081 | 0.683 | −0.043 | −0.001 | 0.99 | 0.06 | 3.950 | 0.526 | −0.052 | −0.001 | 0.99 | 0.05 |
MB4 | 4.142 | 0.753 | −0.060 | −0.001 | 0.99 | 0.07 | 4.098 | 0.634 | −0.088 | −0.001 | 0.99 | 0.03 |
Year | Treatment | Seed Cotton Yield (kg ha−1) | Boll Number Per Plant | Single Boll Weight (g) | WUE (kg ha−1 mm−1) | IWUE (kg ha−1 mm−1) |
---|---|---|---|---|---|---|
2021 | B0 | 6304.82 e ± 48.70 | 4.48 c ± 0.10 | 6.17 b ± 0.12 | 11.27 c ± 0.09 | 12.57 e ± 0.05 |
M | 6558.18 de ± 23.89 | 4.67 bc ± 0.12 | 6.15 b ± 0.12 | 11.57 c ± 0.04 | 13.07 de ± 0.05 | |
MB1 | 6922.32 cd ± 290.34 | 4.87 b ± 0.15 | 6.23 ab ± 0.12 | 12.31 b ± 0.52 | 13.80 cd ± 0.58 | |
MB2 | 7270.68 bc ± 210.82 | 4.77 b ± 0.12 | 6.68 a ± 0.10 | 12.79 a ± 0.37 | 14.49 bc ± 0.42 | |
MB3 | 7666.45 a ± 140.59 | 5.20 a ± 0.17 | 6.47 ab ± 0.55 | 13.39 a ± 0.25 | 15.28 a ± 0.28 | |
MB4 | 7470.14 ab ± 145.11 | 4.83 b ± 0.15 | 6.78 a ± 0.32 | 13.28 a ± 0.26 | 14.89 ab ± 0.29 | |
2022 | B0 | 6597.05 c ± 600.98 | 4.78 c ± 0.18 | 5.74 ab ± 0.34 | 11.68 b ± 1.08 | 12.71 c ± 1.16 |
M | 7026.08 bc ± 166.52 | 5.12 bc ± 0.14 | 5.71 ab ± 0.09 | 12.30 ab ± 0.29 | 13.54 bc ± 0.32 | |
B1 | 6651.05 c ± 500.051 | 4.88 c ± 0.53 | 5.69 ab ± 0.17 | 11.76 b ± 0.88 | 12.82 c ± 0.96 | |
B2 | 7290.00 abc ± 439.80 | 5.39 ab ± 0.19 | 5.64 b ± 0.21 | 12.92 ab ± 0.80 | 14.05 abc ± 0.85 | |
B3 | 7685.96 ab ± 108.00 | 5.72 a ± 0.05 | 5.71 ab ± 0.10 | 13.36 a ± 0.19 | 14.81 ab ± 0.21 | |
B4 | 7646.94 ab ± 180.67 | 5.53 ab ± 0.19 | 5.75 ab ± 0.21 | 13.23 a ± 0.31 | 14.74 ab ± 0.35 | |
MB1 | 7461.05 ab ± 544.56 | 5.17 bc ± 0.37 | 6.03 a ± 0.54 | 12.82 ab ± 0.94 | 14.38 ab ± 1.05 | |
MB2 | 7707.02 ab ± 122.85 | 5.46 ab ± 0.17 | 5.87 ab ± 0.18 | 13.22 a ± 0.21 | 14.85 ab ± 0.24 | |
MB3 | 7952.99 a ± 275.79 | 5.78 a ± 0.11 | 5.75 ab ± 0.14 | 13.39 a ± 0.46 | 15.33 a ± 0.53 | |
MB4 | 7808.94 a ± 414.03 | 5.69 a ± 0.34 | 5.71 ab ± 0.15 | 13.32 a ± 0.71 | 15.05 a ± 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Wang, Q.; Ning, S.; Hu, X.; Yuan, S. Growth and Yield Response and Water Use Efficiency of Cotton under Film-Mulched Drip Irrigation to Magnetized Ionized Water and Bacillus subtilis in Saline Soil in Xinjiang. Agronomy 2023, 13, 1644. https://doi.org/10.3390/agronomy13061644
Jiang Z, Wang Q, Ning S, Hu X, Yuan S. Growth and Yield Response and Water Use Efficiency of Cotton under Film-Mulched Drip Irrigation to Magnetized Ionized Water and Bacillus subtilis in Saline Soil in Xinjiang. Agronomy. 2023; 13(6):1644. https://doi.org/10.3390/agronomy13061644
Chicago/Turabian StyleJiang, Zhanbo, Quanjiu Wang, Songrui Ning, Xiaoqin Hu, and Shuai Yuan. 2023. "Growth and Yield Response and Water Use Efficiency of Cotton under Film-Mulched Drip Irrigation to Magnetized Ionized Water and Bacillus subtilis in Saline Soil in Xinjiang" Agronomy 13, no. 6: 1644. https://doi.org/10.3390/agronomy13061644
APA StyleJiang, Z., Wang, Q., Ning, S., Hu, X., & Yuan, S. (2023). Growth and Yield Response and Water Use Efficiency of Cotton under Film-Mulched Drip Irrigation to Magnetized Ionized Water and Bacillus subtilis in Saline Soil in Xinjiang. Agronomy, 13(6), 1644. https://doi.org/10.3390/agronomy13061644