Cover Crop Straw Interferes in the Retention and Availability of Diclosulam and Diuron in the Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of Cover Crops and Straw Preparation
2.2. Test Substances
2.3. Sorption–Desorption Studies
2.4. Chemical and Structural Characterization of Straw
2.5. Leaching Study
2.6. Statistical Analysis
3. Results
3.1. Sorption Process of Herbicides in Straw
3.2. Herbicide Desorption from Straw
3.3. Characterization and Structural Changes of Straw in the Sorption Process
3.4. Chemical Interactions between Straw and Herbicide
3.5. Straw Composition and Effect of Fragment Size on Diuron and Diclosulam Retention
3.6. Leaching of Diclosulam and Diuron in Different Straws
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Soltani, N.; Dille, J.A.; Gulden, R.H.; Sprague, C.L.; Zollinger, R.K.; Morishita, D.W.; Lawrence, N.C.; Sbatella, G.M.; Kniss, A.R.; Jha, P.; et al. Potential Yield Loss in Dry Bean Crops Due to Weeds in the United States and Canada. Weed Technol. 2018, 32, 342–346. [Google Scholar] [CrossRef]
- Dille, J.A.; Stahlman, P.W.; Thompson, C.R.; Bean, B.W.; Soltani, N.; Sikkema, P.H. Potential Yield Loss in Grain Sorghum (Sorghum bicolor) with Weed Interference in the United States. Weed Technol. 2020, 34, 624–629. [Google Scholar] [CrossRef]
- Landau, C.A.; Hager, A.G.; Williams, M.M. Diminishing Weed Control Exacerbates Maize Yield Loss to Adverse Weather. Glob. Chang. Biol. 2021, 27, 6156–6165. [Google Scholar] [CrossRef]
- Schramski, J.A.; Sprague, C.L.; Renner, K.A. Integrating Fall-Planted Cereal Cover Crops and Preplant Herbicides for Glyphosate-Resistant Horseweed (Conyza canadensis) Management in Soybean. Weed Technol. 2021, 35, 234–241. [Google Scholar] [CrossRef]
- Ribeiro, V.H.V.; Oliveira, M.C.; Smith, D.H.; Santos, J.B.; Werle, R. Evaluating Efficacy of Preemergence Soybean Herbicides Using Field Treated Soil in Greenhouse Bioassays. Weed Technol. 2021, 35, 830–837. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United States FAOSTAT Statistical Database 2022. Available online: https://www.fao.org/faostat/en/#home (accessed on 20 April 2023).
- Haramoto, E.R.; Lowry, C.J.; Pearce, R. Cover Crops Are Not Affected by Tobacco Soil Residual Herbicides but Also Do Not Provide Consistent Weed Management Benefits. Weed Technol. 2020, 34, 383–393. [Google Scholar] [CrossRef]
- Pittman, K.B.; Barney, J.N.; Flessner, M.L. Horseweed (Conyza canadensis) Suppression from Cover Crop Mixtures and Fall-Applied Residual Herbicides. Weed Technol. 2019, 33, 303–311. [Google Scholar] [CrossRef]
- Agrofit Ministério Da Agricultura, Pecuária e Abastecimento. 2019. Available online: https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 15 October 2022).
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound Databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef] [PubMed]
- Lavorenti, A. Características físico-químicas dos contaminantes orgânicos e implicações ambientais. In Contaminantes Orgânicos: Da Análise à Biorremediação, 1st ed.; Tornisielo, V.L., Vilca, F.Z., Guimarães, A.C.D., Mendes, K.F., Eds.; FEALQ: Piracicaba, Brazil, 2019; pp. 19–46. [Google Scholar]
- Silva, P.V.; Tronquini, S.M.; Barbosa, G.C.; Dias, R.C.; Veiga, J.P.S.; Inacio, E.M. Eficácia Do Herbicida Flumioxazin No Controle de Euphorbia Heterophylla, Na Aplicação Sobre Diferentes Tipos de Palha e Simulações de Chuva. Rev. Ciências Agrárias 2020, 43, 324–332. [Google Scholar] [CrossRef]
- Monquero, P.A.; Amaral, L.R.; Silva, A.C.; Silva, P.V.; Binha, D.P. Efficacy of Herbicides in Different Amounts of Sugar Cane Straw on Euphorbia Heterophylla Control. Planta Daninha 2007, 25, 613–619. [Google Scholar] [CrossRef]
- Clark, S.L.; Da Silva, P.V.; Dayan, F.E.; Nissen, S.J.; Sebastian, D.J. The Influence of Winter Annual Grass Litter on Herbicide Availability. Weed Sci. 2019, 67, 702–709. [Google Scholar] [CrossRef]
- Khalil, Y.; Flower, K.; Siddique, K.H.M.; Ward, P. Rainfall Affects Leaching of Pre-Emergent Herbicide from Wheat Residue into the Soil. PLoS ONE 2019, 14, e0210219. [Google Scholar] [CrossRef]
- Silva, G.S.; Moreira Silva, A.F.; Mendes, K.F.; Pimpinato, R.F.; Tornisielo, V.L. Influence of Sugarcane Straw on Aminocyclopyrachlor Leaching in a Green-Cane Harvesting System. Water Air Soil Pollut. 2018, 229, 156. [Google Scholar] [CrossRef]
- Joshi, V.; Suyal, A.; Srivastava, A.; Srivastava, P.C. Role of Organic Amendments in Reducing Leaching of Sulfosulfuron through Wheat Crop Cultivated Soil. Emerg. Contam. 2019, 5, 4–8. [Google Scholar] [CrossRef]
- Jensen, L.C.; Becerra, J.R.; Escudey, M. Impact of Physical/Chemical Properties of Volcanic Ash-Derived Soils on Mechanisms Involved during Sorption of Ionisable and Non-Ionisable Herbicides. In Advanced Sorption Process Applications; Edebali, S., Ed.; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- García-Jaramillo, M.; Trippe, K.M.; Helmus, R.; Knicker, H.E.; Cox, L.; Hermosín, M.C.; Parsons, J.R.; Kalbitz, K. An Examination of the Role of Biochar and Biochar Water-Extractable Substances on the Sorption of Ionizable Herbicides in Rice Paddy Soils. Sci. Total Environ. 2020, 706, 135682. [Google Scholar] [CrossRef]
- Dorado, J.; Almendros, G. Organo-Mineral Interactions Involved in Herbicide Sorption on Soil Amended with Peats of Different Maturity Degree. Agronomy 2021, 11, 869. [Google Scholar] [CrossRef]
- Tofoli, G.R.; Velini, E.D.; Negrisoli, E.; Cavenaghi, A.L.; Martins, D. Performance of Tebuthiuron Applied on Sugarcane Straw. Planta Daninha 2009, 27, 815–821. [Google Scholar] [CrossRef]
- Dao, T.H. Field Decay of Wheat Straw and Its Effects on Metribuzin and S-Ethyl Metribuzin Sorption and Elution from Crop Residues. J. Environ. Qual. 1991, 20, 203–208. [Google Scholar] [CrossRef]
- Ignatowicz-Owsieniuk, K.; Skoczko, I. Dependence of Sorption of Phenoxyacetic on Their Physico-Chemical. Polish J. Environ. Stud. 2002, 11, 339–344. [Google Scholar]
- Bedmar, F.; Daniel, P.E.; Costa, J.L.; Giménez, D. Sorption of Acetochlor, S-Metolachlor, and Atrazine in Surface and Subsurface Soil Horizons of Argentina. Environ. Toxicol. Chem. 2011, 30, 1990–1996. [Google Scholar] [CrossRef]
- Araldi, R.; Velini, E.D.; Gimenes Cotrick Gomes, G.L.; Tropaldi, L.; de Freitas e Silva, I.P.; Carbonari, C.A. Performance of Herbicides in Sugarcane Straw. Cienc. Rural 2015, 45, 2106–2112. [Google Scholar] [CrossRef]
- Cassigneul, A.; Alletto, L.; Benoit, P.; Bergheaud, V.; Etiévant, V.; Dumény, V.; Le Gac, A.L.; Chuette, D.; Rumpel, C.; Justes, E. Nature and Decomposition Degree of Cover Crops Influence Pesticide Sorption: Quantification and Modelling. Chemosphere 2015, 119, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Pan, B.; Liang, N.; Chang, Z.; Zhou, Y.; Wang, L.; Li, H.; Xing, B. Reactive Mineral Removal Relative to Soil Organic Matter Heterogeneity and Implications for Organic Contaminant Sorption. Environ. Pollut. 2017, 227, 49–56. [Google Scholar] [CrossRef]
- Ren, L.; Lin, D.; Yang, K. Correlations and Nonlinear Partition of Nonionic Organic Compounds by Humus-like Substances Humificated from Rice Straw. Sci. Rep. 2019, 9, 15131. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aty, A.M.; Gad-Allah, T.A.; Ali, M.E.M.; Abdel-Ghafar, H.H. Parametric, Equilibrium, and Kinetic Studies on Biosorption of Diuron by Anabaena Sphaerica and Scenedesmus Obliquus. Environ. Prog. Sustain. Energy 2015, 34, 504–511. [Google Scholar] [CrossRef]
- Mendes, K.F.; Soares, M.B.; de Sousa, R.N.; Mielke, K.C.; da Silva Brochado, M.G.; Tornisielo, V.L. Indaziflam Sorption–Desorption and Its Three Metabolites from Biochars- and Their Raw Feedstock-Amended Agricultural Soils Using Radiometric Technique. J. Environ. Sci. Heal. Part B Pestic. Food Contam. Agric. Wastes 2021, 56, 731–740. [Google Scholar] [CrossRef]
- Angers, D.A.; Recous, S. Decomposition of Wheat Straw and Rye Residues as Affected by Particle Size. Plant Soil 1997, 189, 197–203. [Google Scholar] [CrossRef]
- Bending, G.D.; Turner, M.K. Interaction of Biochemical Quality and Particle Size of Crop Residues and Its Effect on the Microbial Biomass and Nitrogen Dynamics Following Incorporation into Soil. Biol. Fertil. Soils 1999, 29, 319–327. [Google Scholar] [CrossRef]
- Tarafdar, J.C.; Meena, S.C.; Kathju, S. Influence of Straw Size on Activity and Biomass of Soil Microorganisms during Decomposition. Eur. J. Soil Biol. 2001, 37, 157–160. [Google Scholar] [CrossRef]
- Jing, X.; Li, Q.; Qiao, X.; Chen, J.; Cai, X. Effects of Accumulated Straw Residues on Sorption of Pesticides and Antibiotics in Soils with Maize Straw Return. J. Hazard. Mater. 2021, 418, 126213. [Google Scholar] [CrossRef]
- Test, No. 106: Adsorption—Desorption Using a Batch Equilibrium Method; OECD Guidelines for the Testing of Chemicals, Section 1; OECD: Paris, France, 2000; ISBN 9789264069602.
- Takeshita, V.; Mendes, K.F.; Bompadre, T.F.V.; Alonso, F.G.; Pimpinato, R.F.; Tornisielo, V.L. Aminocyclopyrachlor Sorption–Desorption and Leaching in Soil Amended with Organic Materials from Sugar Cane Cultivation. Weed Res. 2020, 60, 363–373. [Google Scholar] [CrossRef]
- Takeshita, V.; Munhoz-Garcia, G.V.; Werk Pinácio, C.; Cardoso, B.C.; Nalin, D.; Tornisielo, V.L.; Fraceto, L.F. Availability of Metribuzin-Loaded Polymeric Nanoparticles in Different Soil Systems: An Important Study on the Development of Safe Nanoherbicides. Plants 2022, 11, 3366. [Google Scholar] [CrossRef]
- Lunardi, V.B.; Edi Soetaredjo, F.; Foe, K.; Nyoo Putro, J.; Permatasari Santoso, S.; Gede Wenten, I.; Irawaty, W.; Yuliana, M.; Ju, Y.H.; Elisa Angkawijaya, A.; et al. Pesticide Elimination through Adsorption by Metal-Organic Framework and Their Modified Forms. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100638. [Google Scholar]
- Barriuso, E.; Laird, D.A.; Koskinen, W.C.; Dowdy, R.H. Atrazine Desorption from Smectites. Soil Sci. Soc. Am. J. 1994, 58, 1632–1638. [Google Scholar] [CrossRef]
- Obregón Alvarez, D.; Mendes, K.F.; Tosi, M.; Fonseca de Souza, L.; Campos Cedano, J.C.; de Souza Falcão, N.P.; Dunfield, K.; Tsai, S.M.; Tornisielo, V.L. Sorption-Desorption and Biodegradation of Sulfometuron-Methyl and Its Effects on the Bacterial Communities in Amazonian Soils Amended with Aged Biochar. Ecotoxicol. Environ. Saf. 2021, 207, 111222. [Google Scholar] [CrossRef]
- Test No. 312: Leaching in Soil Columns; OECD Guidelines for the Testing of Chemicals, Section 3; OECD: Paris, France, 2004; ISBN 9789264070561.
- Tropaldi, L.; Carbonari, C.A.; de Brito, I.P.F.S.; de Matos, A.K.A.; de Moraes, C.P.; Velini, E.D. Dynamics of Clomazone Formulations Combined with Sulfentrazone in Sugarcane (Saccharum Spp.) Straw. Agriculture 2021, 11, 854. [Google Scholar] [CrossRef]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. 786. Studies in Adsorption. Part XI. A System of Classification of Solution Adsorption Isotherms, and Its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. J. Chem. Soc. 1960, 111, 3973–3993. [Google Scholar] [CrossRef]
- Deng, H.; Feng, D.; He, J.-X.; Li, F.-Z.; Yu, H.-M.; Ge, C.-J. Influence of Biochar Amendments to Soil on the Mobility of Atrazine Using Sorption-Desorption and Soil Thin-Layer Chromatography. Ecol. Eng. 2017, 99, 381–390. [Google Scholar] [CrossRef]
- Smith, B. Infrared Spectral Interpretation: A Systematic Approach; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–304. [Google Scholar] [CrossRef]
- Kalaichelvi, K.; Dhivya, S.M. Screening of Phytoconstituents, UV-VIS Spectrum and FTIR Analysis of Micrococca mercurialis (L.) Benth. Int. J. Herb. Med. 2017, 5, 40–44. [Google Scholar]
- Lavorenti, A.; Rocha, A.A.; Prata, F.; Regitano, J.B.; Tornisielo, V.L.; Pinto, O.B. Comportamento Do Diclosulam Em Amostras de Um Latossolo Vermelho Distroférrico Sob Plantio Direto e Convencional. Rev. Bras. Ciênc. Solo 2003, 27, 183–190. [Google Scholar] [CrossRef]
- Yoder, R.N.; Huskin, M.A.; Kennard, L.M.; Zabik, J.M. Aerobic Metabolism of Diclosulam on U.S. and South American Soils. J. Agric. Food Chem. 2000, 48, 4335–4340. [Google Scholar] [CrossRef]
- Mendes, K.F.; Olivatto, G.P.; de Sousa, R.N.; Junqueira, L.V.; Tornisielo, V.L. Natural Biochar Effect on Sorption–Desorption and Mobility of Diclosulam and Pendimethalin in Soil. Geoderma 2019, 347, 118–125. [Google Scholar] [CrossRef]
- Smernik, R.J.; Kookana, R.S. The Effects of Organic Matter-Mineral Interactions and Organic Matter Chemistry on Diuron Sorption across a Diverse Range of Soils. Chemosphere 2015, 119, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Green, R.E. Chapter 4 Sorption Estimates for Modeling. Pestic. Soil Environ. 1990, 2, 79–101. [Google Scholar]
- Tantarawongsa, P.; Ketrot, D.; Tantarawongsa, P.; Ketrot, D.; Tantarawongsa, P.; Ketrot, D.; Tantarawongsa, P.; Ketrot, D. Adsorption of Herbicide Diuron in Pineapple-Growing Soils of Eastern Thailand. Polish J. Environ. Stud. 2020, 29, 285–292. [Google Scholar] [CrossRef]
- Liyanage, J.A.; Watawala, R.C.; Aravinna, A.G.P.; Smith, L.; Kookana, R.S. Sorption of Carbofuran and Diuron Pesticides in 43 Tropical Soils of Sri Lanka. J. Agric. Food Chem. 2006, 54, 1784–1791. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.S.; Mendes, K.F.; Junqueira, L.V.; Alonso, F.G.; Chitolina, G.M.; Tornisielo, V.L. Diuron Sorption, Desorption and Degradation in Anthropogenic Soils Compared to Sandy Soil. Planta Daninha 2020, 38, e020217146. [Google Scholar] [CrossRef]
- Wauchope, R.D.; Yeh, S.; Linders, J.B.H.J.; Kloskowski, R.; Tanaka, K.; Rubin, B.; Katayama, A.; Kördel, W.; Gerstl, Z.; Lane, M.; et al. Pesticide Soil Sorption Parameters: Theory, Measurement, Uses, Limitations and Reliability. Pest Manag. Sci. 2002, 58, 419–445. [Google Scholar] [CrossRef] [PubMed]
- Lima, É.C.; Dehghani, M.H.; Guleria, A.; Sher, F.; Karri, R.R.; Dotto, G.L.; Tran, H.N. Adsorption: Fundamental Aspects and Applications of Adsorption for Effluent Treatment. Green Technol. Defluorid. Water 2021, 1, 41–88. [Google Scholar] [CrossRef]
- Ding, G.; Novak, J.M.; Herbert, S.; Xing, B. Long-Term Tillage Effects on Soil Metolachlor Sorption and Desorption Behavior. Chemosphere 2002, 48, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Keller, A.A. Sorption and Desorption of Atrazine and Diuron onto Water Dispersible Soil Primary Size Fractions. Water Res. 2009, 43, 1448–1456. [Google Scholar] [CrossRef]
- Liu, Y.; Lonappan, L.; Brar, S.K.; Yang, S. Impact of Biochar Amendment in Agricultural Soils on the Sorption, Desorption, and Degradation of Pesticides: A Review. Sci. Total Environ. 2018, 645, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Sakulthaew, C.; Watcharenwong, A.; Chokejaroenrat, C.; Rittirat, A. Leonardite-Derived Biochar Suitability for Effective Sorption of Herbicides. Water Air Soil Pollut. 2021, 232, 36. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Z.; Wu, X.; Gui, W.; Zhu, G. Adsorption and Desorption Behavior of Herbicide Diuron on Various Chinese Cultivated Soils. J. Hazard. Mater. 2010, 178, 462–468. [Google Scholar] [CrossRef]
- Ogeda, T.L.; Petri, D.F.S. Hidrólise Enzimática de Biomassa. Quim. Nova 2010, 33, 1549–1558. [Google Scholar] [CrossRef]
- Sopeña, F.; Semple, K.; Sohi, S.; Bending, G. Assessing the Chemical and Biological Accessibility of the Herbicide Isoproturon in Soil Amended with Biochar. Chemosphere 2012, 88, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Sun, W.; Xu, Y.; Wang, H.; Xu, N. Sorption of Mercury (II) and Atrazine by Biochar, Modified Biochars and Biochar Based Activated Carbon in Aqueous Solution. Bioresour. Technol. 2016, 211, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, B.; Zheng, Y.; Hu, X.; Creamer, A.E.; Annable, M.D.; Li, Y. Biochar for Volatile Organic Compound (VOC) Removal: Sorption Performance and Governing Mechanisms. Bioresour. Technol. 2017, 245, 606–614. [Google Scholar] [CrossRef]
- Gamiz, B.; Velarde, P.; Spokas, K.A.; Cox, L. Dynamic Effect of Fresh and Aged Biochar on the Behavior of the Herbicide Mesotrione in Soils. J. Agric. Food Chem. 2019, 67, 9450–9459. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, E.; Khapre, A.; Bordoloi, N.; Kumar, S. Sorption of Volatile Organic Compounds on Non-Activated Biochar. Bioresour. Technol. 2020, 297, 122469. [Google Scholar] [CrossRef]
- Pariz, C.M.; Andreotti, M.; Buzetti, S.; Bergamaschine, A.F.; de Araújo Ulian, N.; Furlan, L.C.; de Lima Meirelles, P.R.; Cavasano, F.A. Straw Decomposition of Nitrogen-Fertilized Grasses Intercropped with Irrigated Maize in an Integrated Crop-Livestock System. Rev. Bras. Ciênc. Solo 2011, 35, 2029–2037. [Google Scholar] [CrossRef]
- Petter, F.A.; Nóbrega, J.C.A.; Santos, A.S.; Pacheco, L.P.; Monteiro, M.M.D.S.; Petter, F.A.; Nóbrega, J.C.A.; Santos, A.S. Biomass and Nutrient Cycling By Cover Crops in Brazilian Cerrado in the State of Piaui. Rev. Caatinga 2017, 30, 13–23. [Google Scholar]
- Momesso, L.; Crusciol, C.A.C.; Soratto, R.P.; Vyn, T.J.; Tanaka, K.S.; Costa, C.H.M.; Neto, J.F.; Cantarella, H. Impacts of Nitrogen Management on No-till Maize Production Following Forage Cover Crops. Agron. J. 2019, 111, 639–649. [Google Scholar] [CrossRef]
- Silva, A.G.B.; Lisboa, I.P.; Cherubin, M.R.; Cerri, C.E.P. How Much Sugarcane Straw Is Needed for Covering the Soil? Bioenergy Res. 2019, 12, 858–864. [Google Scholar] [CrossRef]
- Macedo, G. de C.; Carbonari, C.A.; Velini, E.D.; Gomes, G.L.G.C.; De Matos, A.K.A.; De Castro, E.B.; Burgos, N.R. Behavior of Sulfentrazone in the Soil as Influenced by Cover Crop before No-till Soybean Planting. Weed Sci. 2020, 68, 673–680. [Google Scholar] [CrossRef]
- Maciel, C.D.G.; Velini, E.D. Simulação Do Caminhamento Da Água Da Chuva e Herbicidas Em Palhadas Utilizadas Em Sistemas de Plantio Direto. Planta Daninha 2005, 23, 471–481. [Google Scholar] [CrossRef]
- Guerra, N.; Oliveira, R.S.; Constantin, J.; Oliveira Neto, A.M.; Puton, G.; Garrido, T.H.P. Influence of Precipitation and Sugarcane Straw in Aminocyclopyrachlor and Indaziflam Control Efficiency. Planta Daninha 2015, 33, 535–542. [Google Scholar] [CrossRef]
- Malardo, M.R.; Monquero, P.A.; Dos Santos, P.H.V.; Ribeiro, N.M.; Da Silva, P.V.; Hirata, A.C.S. Influence of the Sowing Depth and Amount of Sugarcane Straw on the Emergence of Chloris Polydactyla and Eleusine Indica and Their Control by Herbicides Applied Pre-Emergence. Semin. Agrar. 2017, 38, 1187–1200. [Google Scholar] [CrossRef]
- Silva, P.V.d.; Alves, R.B.; Malardo, M.R.; Duarte, P.H.N.; Ribeiro, N.M.; Dias, R.d.C.; Monquero, P.A.; Christoffoleti, P.J. Efeito Da Palha de Cana-de-Açúcar e Da Precipitação Na Eficácia de Indaziflam. Rev. Ciências Agrárias 2019, 42, 191–200. [Google Scholar]
Parameters | 14C-Diclosulam | 14C-Diuron | |||||
---|---|---|---|---|---|---|---|
FT | BW | BO | FT | BW | BO | ||
Sorption | Sorption (%) a | 22.41 ± 1.69 b * | 27.61 ± 0.73 a | 27.86 ± 0.42 a | 32.90 ± 0.55 c | 39.36 ± 1.36 b | 45.45 ± 0.70 a |
Kd (mL g−1) c | 15.24 ± 1.45 | 20.08 ± 0.74 | 20.33 ± 0.43 | 25.81 ± 0.64 | 34.21 ± 1.76 | 43.86 ± 1.25 | |
KOC (mL g−1) | 37.83 ± 3.69 | 46.16 ± 0.23 | 49.94 ± 0.17 | 81.63 ± 1.64 | 90.48 ± 3.13 | 111.63 ± 0.50 | |
Kf (mL g−1) | 16.06 ± 1.23 | 21.79 ± 0.98 | 22.44 ± 2.41 | 26.27 ± 3.02 | 44.20 ± 2.44 | 44.27 ± 3.47 | |
1/n | 1.047 ± 0.04 | 1.039 ± 0.02 | 1.073 ± 0.06 | 0.98 ± 0.04 | 0.93 ± 0.02 | 0.97 ± 0.04 | |
R2 (adj) | 0.987 | 0.995 | 0.981 | 0.989 | 0.993 | 0.992 | |
Desorption | Desorption (%) b | 45.79 ± 8.69 a * | 27.05 ± 1.08 b | 13.06 ± 2.03 c | 50.56 ± 3.09 a | 41.75 ± 1.26 b | 34.16 ± 1.27 c |
Kd (mL g−1) c | 54.75 ± 14.41 | 93.76 ± 5.94 | 262.41 ± 15.39 | 37.9 ± 3.86 | 48.5 ± 1.39 | 76.4 ± 5.59 | |
KOC (mL g−1) | 135.87 ± 43.09 | 215.54 ± 6.82 | 654.59 ± 37.83 | 94.24 ± 11.65 | 111.57 ± 0.35 | 187.68 ± 14.25 | |
Kf (mL g−1) | 51.24 ± 11.92 | 93.55 ± 16.17 | 63.57 ± 19.78 | 43.3 ± 5.68 | 53.2 ± 1.31 | 75.9 ± 6.32 | |
1/n | 0.97 ± 0.08 | 1.02 ± 0.06 | 0.74 ± 0.10 | 0.98 ± 0.05 | 0.97 ± 0.01 | 0.97 ± 0.06 | |
R2 (adj) | 0.929 | 0.968 | 0.855 | 0.982 | 0.998 | 0.968 | |
H | 0.926 | 0.982 | 0.689 | 0.986 | 1.04 | 0.999 |
Herbicide | Straw | Sorption (%) a | ||
---|---|---|---|---|
<1 mm | Between 1 and 2 mm | >2 mm | ||
14C-diclosulam | FT | 27.39 ± 1.35 a | 22.41 ± 1.69 b | 22.00 ± 0.19 b |
BW | 38.82 ± 0.79 a | 27.60 ± 0.73 b | 21.28 ± 2.47 c | |
BO | 34.99 ± 0.59 a | 27.86 ± 0.42 b | 22.12 ± 0.05 c | |
14C-diuron | FT | 40.81 ± 0.11 a | 32.89 ± 0.78 b | 40.31 ± 0.63 a |
BW | 47.65 ± 1.57 a | 39.36 ± 1.75 b | 42.09 ± 1.03 b | |
BO | 50.13 ± 1.04 a | 45.44 ± 0.98 b | 47.33 ± 0.75 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munhoz-Garcia, G.V.; Takeshita, V.; Pimpinato, R.F.; de Moraes, N.G.; Nalin, D.; Tornisielo, V.L. Cover Crop Straw Interferes in the Retention and Availability of Diclosulam and Diuron in the Environment. Agronomy 2023, 13, 1725. https://doi.org/10.3390/agronomy13071725
Munhoz-Garcia GV, Takeshita V, Pimpinato RF, de Moraes NG, Nalin D, Tornisielo VL. Cover Crop Straw Interferes in the Retention and Availability of Diclosulam and Diuron in the Environment. Agronomy. 2023; 13(7):1725. https://doi.org/10.3390/agronomy13071725
Chicago/Turabian StyleMunhoz-Garcia, Gustavo Vinícios, Vanessa Takeshita, Rodrigo Floriano Pimpinato, Nicoli Gomes de Moraes, Daniel Nalin, and Valdemar Luiz Tornisielo. 2023. "Cover Crop Straw Interferes in the Retention and Availability of Diclosulam and Diuron in the Environment" Agronomy 13, no. 7: 1725. https://doi.org/10.3390/agronomy13071725
APA StyleMunhoz-Garcia, G. V., Takeshita, V., Pimpinato, R. F., de Moraes, N. G., Nalin, D., & Tornisielo, V. L. (2023). Cover Crop Straw Interferes in the Retention and Availability of Diclosulam and Diuron in the Environment. Agronomy, 13(7), 1725. https://doi.org/10.3390/agronomy13071725