Genome Assemblies of Two Ormosia Species: Gene Duplication Related to Their Evolutionary Adaptation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Sequencing
2.2. Data Pre-Processing
2.3. Genome Assembly
2.4. Repeat Annotation
2.5. Gene Prediction and Annotation
2.6. Gene Families and Comparative Genomics
2.7. Gene Duplications
3. Results and Discussion
3.1. Genome Sequencing
3.2. Genome Assembly
3.3. Repeat Annotation
3.4. Gene Prediction and Annotation
3.5. Gene Families
3.6. Gene Duplications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Torke, B.M.; Cardoso, D.; Chang, H.; Li, S.-J.; Niu, M.; Pennington, R.T.; Stirton, C.H.; Xu, W.B.; Zartman, C.E.; Chung, K.-F. A dated molecular phylogeny and biogeographical analysis reveals the evolutionary history of the trans-pacifically disjunct tropical tree genus Ormosia (Fabaceae). Mol. Phylogenet. Evol. 2022, 166, 107329. [Google Scholar] [CrossRef]
- Cardoso, D.B.O.S.; Stirton, C.H.; Torke, B.M. Taxonomy of South American Ormosia (Leguminosae, Papilionoideae): Recircumscription of O. costulata, reinstatement of O. trifoliolata, and the new species O. lewisii from the Brazilian Atlantic forest. Syst. Bot. 2014, 39, 1132–1141. [Google Scholar] [CrossRef]
- Li, X.C.; Manchester, S.R.; Xiao, L.; Wang, Q.; Hu, Y.; Sun, B.N. Ormosia (Fabaceae: Faboideae) from the Miocene of southeastern China support historical expansion of the tropical genus in East Asia. Hist. Biol. 2021, 33, 3561–3578. [Google Scholar] [CrossRef]
- Liu, H.; Su, Z.; Yu, S.; Liu, J.; Yin, X.; Zhang, G.; Liu, W.; Li, B. Genome comparison reveals mutation hotspots in the chloroplast genome and phylogenetic relationships of Ormosia species. Biomed. Res. Int. 2019, 2019, 7265030. [Google Scholar] [CrossRef]
- Li, L.; Lei, M.; Wang, H.; Yang, X.; Andargie, M.; Huang, S. First report of dieback caused by Lasiodiplodia pseudotheobromae on Ormosia pinnata in China. Plant Dis. 2020, 104, 2551–2555. [Google Scholar] [CrossRef]
- Liu, D.; Liu, D.-D.; Ma, L.; Yun, X.-L.; Xiang, Y.; Nie, P.; Zeng, G.-R.; Guo, J.-S. Ormosia henryi prain leaf extract alleviates cognitive impairment in chronic unpredictable mild stress mice. Prog. Biochem. Biophys. 2020, 47, 768–779. [Google Scholar]
- Joshi, N.A.; Fass, J.N. Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files (Version 1.33). Available online: https://github.com/najoshi/sickle (accessed on 24 August 2022).
- Długosz, M.; Deorowicz, S. RECKONER: Read error corrector based on KMC. Bioinformatics 2017, 33, 1086–1089. [Google Scholar] [CrossRef]
- Chikhi, R.; Medvedev, P. Informed and automated k-mer size selection for genome assembly. Bioinformatics 2014, 30, 31–37. [Google Scholar] [CrossRef]
- Vurture, G.W.; Sedlazeck, F.J.; Nattestad, M.; Underwood, C.J.; Fang, H.; Gurtowski, J.; Schatz, M.C. GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics 2017, 33, 2202–2204. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Ding, J.; Piednoël, M.; Schneeberger, K. findGSE: Estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics 2018, 34, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Porchop v0.2.4. Available online: https://github.com/rrwick/Porechop (accessed on 4 November 2022).
- NextDenovo v2.3.1. Available online: https://github.com/Nextomics/NextDenovo (accessed on 24 January 2023).
- Pseudohaploid. Available online: https://github.com/schatzlab/pseudohaploid (accessed on 26 January 2023).
- Guan, D.F.; McCarthy, S.A.; Wood, J.; Howe, K.; Wang, Y.D. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 2020, 36, 2896–2898. [Google Scholar] [CrossRef] [PubMed]
- Vaser, R.; Sović, I.; Nagarajan, N.; Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017, 27, 737–746. [Google Scholar] [CrossRef]
- Aury, J.M.; Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genom Bioinform. 2021, 3, lqab034. [Google Scholar] [CrossRef]
- Wick, R.R.; Holt, K.E. Polypolish: Short-read polishing of long-read bacterial genome assemblies. PLoS Comput. Biol. 2022, 18, e1009802. [Google Scholar] [CrossRef]
- Depthcharge v0.2.0. Available online: https://github.com/slimsuite/depthcharge (accessed on 30 January 2023).
- Manni, M.; Berkeley, M.R.; Seppey, M.; Zdobnov, E.M. BUSCO: Assessing genomic data quality and beyond. Curr. Protoc. 2021, 1, e323. [Google Scholar] [CrossRef]
- Ou, S.; Su, W.; Liao, Y.; Chougule, K.; Agda, J.R.A.; Hellinga, A.J.; Lugo, C.S.B.; Elliott, T.A.; Ware, D.; Peterson, T.; et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 2019, 20, 275. [Google Scholar] [CrossRef] [PubMed]
- Girgis, H.Z. Red: An intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinform. 2015, 16, 227. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Rivera-Vicéns, R.E.; Garcia-Escudero, C.A.; Conci, N.; Eitel, M.; Wörheide, G. TransPi-a comprehensive TRanscriptome ANalysiS PIpeline for de novo transcriptome assembly. Mol. Ecol. Resour. 2022, 22, 2070–2086. [Google Scholar] [CrossRef] [PubMed]
- Funannotate v1.8.13. Available online: https://github.com/nextgenusfs/funannotate (accessed on 12 March 2023).
- Zhang, H.; Tanner, Y.; Huang, L.; Entwistle, S. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018, 46, W95–W101. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Forslund, K.; Coelho, L.P.; Damian, P.C.; Szklarczyk, D.; Jensen, L.J. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 2017, 34, 2115–2122. [Google Scholar] [CrossRef]
- The Gene Ontology Consortium. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 2019, 47, D330–D338. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Soto, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.L.; Attwood, T.K.; Babbitt, P.C.; Blum, M.; Bork, P.; Bridge, A.; Brown, S.D.; Chang, H.Y.; El-Gebali, S.; Fraser, M.I.; et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019, 47, D351–D360. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.S.; Bateman, A.; Finn, R.D. The merops database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.M.; Kelly, S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. STAG: Species tree inference from all genes. bioRxiv 2018. Available online: https://www.biorxiv.org/content/10.1101/267914v1.abstract (accessed on 31 March 2023).
- Emms, D.M.; Kelly, S. STRIDE: Species tree root inference from gene duplication events. Mol. Biol. Evol. 2017, 34, 3267–3278. [Google Scholar] [CrossRef]
- dos Reis, M.; Zhu, T.; Yang, Z. The impact of the rate prior on Bayesian estimation of divergence times with multiple Loci. System Biol. 2014, 63, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Han, M.V.; Thomas, G.W.C.; Jose, L.M.; Hahn, M.W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using cafe 3. Mol. Biol. Evol. 2013, 30, 1987–1997. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools- an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Zwaenepoel, A.; de Peer, Y.V. Wgd-simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 2019, 35, 2153–2155. [Google Scholar] [CrossRef]
- Almeida-Silva, F.; Van de Peer, Y. Doubletrouble: Identification and Classification of Duplicated Genes. R package Version 0.99.1. 2022. Available online: https://github.com/almeidasilvaf/doubletrouble (accessed on 28 March 2023).
- Qiao, X.; Li, Q.H.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef] [PubMed]
- Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? New Phytol. 2016, 220, 655–658. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Jin, J.J.; Sarojam, R.; Ramachandran, S. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome Biol. Evol. 2019, 11, 2078–2098. [Google Scholar] [CrossRef]
- Chen, A.-X.; Lou, Y.-G.; Mao, Y.-B.; Lu, S.; Wang, L.-J.; Chen, X.-Y. Plant terpenoids: Biosynthesis and ecological functions. J. Integr. Plant Biol. 2007, 49, 179–186. [Google Scholar] [CrossRef]
- Zhang, L.-J.; Zhou, W.-J.; Ni, L.; Huang, M.-Q.; Zhang, X.-Q.; Xu, H.-Y. A review on chemical constituents and pharmacological activities of Ormosia. Chin. Tradit. Herb. Drugs 2021, 52, 4433–4442. [Google Scholar]
- Zhang, G.; Ahmad, M.Z.; Chen, B.; Manan, S.; Zhang, Y.; Jin, H.; Wang, X.; Zhao, J. Lipidomic and transcriptomic profiling of developing nodules reveals the essential roles of active glycolysis and fatty acid and membrane lipid biosynthesis in soybean nodulation. Plant J. 2020, 103, 1351–1371. [Google Scholar] [CrossRef] [PubMed]
- Piya, S.; Pantalone, V.; Zadegan, S.B.; Shipp, S.; Lakhssassi, N.; Knizia, D.; Krishnan, H.B.; Meksem, K.; Hewezi, T. Soybean gene co-expression network analysis identifies two co-regulated gene modules associated with nodule formation and development. Mol. Plant Pathol. 2023, 24, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.; Dudchenko, O.; Wang, J.; Khan, A.W.; Gupta, S.; Han, P.K.K.; Saxena, R.K.; Kale, S.M.; Pham, M.; Yu, J.; et al. Chromosome-length genome assemblies of six legume species provide insights into genome organization; evolution; and agronomic traits for crop improvement. J. Adv. Res. 2022, 42, 315–329. [Google Scholar] [CrossRef]
- Kreplak, J.; Madoui, M.A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, X.; Han, K.; Li, R.; Xu, G.; Han, Y.; Cui, F.; Fan, S.; Seim, I.; Fan, G.; et al. Insights into amphicarpy from the compact genome of the legume Amphicarpaea edgeworthii. Plant Biotechnol. J. 2020, 19, 952–965. [Google Scholar] [CrossRef]
- Chang, D.; Gao, S.; Zhou, G.; Deng, S.; Jia, J.; Wang, E.; Cao, W. The chromosome-level genome assembly of Astragalus sinicus and comparative genomic analyses provide new resources and insights for understanding legume-rhizobial interactions. Plant Comm. 2022, 3, 100263. [Google Scholar] [CrossRef] [PubMed]
- Rittenour, W.R.; Harris, S.D. Glycosylphosphatidylinositol-anchored proteins in Fusarium graminearum: Inventory, variability, and virulence. PLoS ONE 2013, 8, e81603. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Garcia, E.; Deising, H.B. The glycosylphosphatidylinositol anchor biosynthesis genes GPI12, GAA1, and GPI8 are essential for cell-wall integrity and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. Mol. Plant Microbe. Interact. 2016, 29, 889–901. [Google Scholar] [CrossRef]
- Mei, J.; Ning, N.; Wu, H.; Chen, X.; Li, Z.; Liu, W. Glycosylphosphatidylinositol anchor biosynthesis pathway-related protein GPI7 is required for the vegetative growth and pathogenicity of Colletotrichum graminicola. Int. J. Mol. Sci. 2022, 23, 2985. [Google Scholar] [CrossRef]
- Waadt, R.; Seller, C.A.; Hsu, P.K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef] [PubMed]
- McSteen, P.; Zhao, Y. Plant hormones and signaling: Common themes and new developments. Dev. Cell 2008, 14, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.-S.; Sintaha, M.; Cheung, M.-Y.; Lam, H.-M. Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int. J. Mol. Sci. 2018, 19, 3206. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Khanale, V.; Char, B. Plant circadian rhythm in stress signaling. Ind. J. Plant Physiol. 2017, 22, 147–155. [Google Scholar] [CrossRef]
- Srivastava, D.; Shamim, M.; Kumar, M.; Mishra, A.; Maurya, R.; Sharma, D.; Pandey, P.; Singh, K.N. Role of circadian rhythm in plant system: An update from development to stress response. Environ. Exp. Bot. 2019, 162, 256–271. [Google Scholar] [CrossRef]
- Singh, K.B.; Foley, R.C.; Oñate-Sánchez, L. Transcription factors in plant defense and stress responses. Curr. Opin. Plant Bio. 2002, 5, 430–436. [Google Scholar] [CrossRef]
- Strader, L.; Weijers, D.; Wagner, D. Plant transcription factors—being in the right place with the right company. Curr. Opin. Plant Bio. 2022, 65, 102136. [Google Scholar] [CrossRef]
- Gaikwad, K.; Ramakrishna, G.; Srivastava, H.; Saxena, S.; Kaila, T.; Tyagi, A.; Sharma, P.; Sharma, S.; Sharma, R.; Mahla, H.R.; et al. The chromosome-scale genome assembly of cluster bean provides molecular insight into edible gum (galactomannan) biosynthesis family genes. Sci. Rep. 2023, 13, 9941. [Google Scholar] [CrossRef]
- Shi, T.; Rahmani, R.S.; Gugger, P.F.; Wang, M.; Li, H.; Zhang, Y.; Li, Z.; Wang, Q.; de Peer, Y.V.; Marchal, K.; et al. Distinct expression and methylation patterns for genes with different fates following a single whole-genome duplication in flowering plants. Mol. Biol. Evol. 2020, 37, 2394–2413. [Google Scholar] [CrossRef]
- Singh, S.; Pathak, N.; Fatima, E.; Negi, A.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur. J. Med. Chem. 2021, 226, 113839. [Google Scholar] [CrossRef] [PubMed]
- Carréra, J.C.; Ucella-Filho, J.G.M.; de Andrade, C.M.L.; Stein, V.C.; Mori, F.A. Research, inventiveness and biotechnological advances in the production of value-added alkaloids occurring in tropical species. S. Afr. J. Bot. 2022, 150, 1122–1137. [Google Scholar] [CrossRef]
- Matsuura, H.N.; Fett-Neto, A.G. Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action. In Plant Toxins; Toxinology; Gopalakrishnakone, P., Carlini, C., Ligabue-Braun, R., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 1–15. [Google Scholar]
- Ali, A.H.; Abdelrahman, M.; El-Sayed, M.A. Alkaloid Role in Plant Defense Response to Growth and Stress. In Bioactive Molecules in Plant Defense; Jogaiah, S., Abdelrahman, M., Eds.; Springer: Cham, Germany, 2019; pp. 145–158. [Google Scholar]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Wang, L.; Chen, M.; Lam, P.Y.; Dini-Andreote, F.; Dai, L.; Wei, Z. Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome 2022, 10, 233. [Google Scholar] [CrossRef] [PubMed]
Ormosia emarginata | Ormosia semicastrata | ||
---|---|---|---|
The Length of Sequence (bp) | The Order of Sequence Length | The Length of Sequence (bp) | The Order of Sequence Length |
N10 = 81,285,628 | L10 = 2 | N10 = 89,031,100 | L10 = 2 |
N20 = 63,464,384 | L20 = 4 | N20 = 79,796,434 | L20 = 3 |
N30 = 43,593,171 | L30 = 7 | N30 = 73,253,298 | L30 = 5 |
N40 = 37,463,220 | L40 = 10 | N40 = 56,807,054 | L40 = 8 |
N50 = 28,195,512 | L50 = 15 | N50 = 48,976,089 | L50 = 11 |
N60 = 25,800,464 | L60 = 20 | N60 = 45,239,136 | L60 = 14 |
N70 = 20,527,781 | L70 = 26 | N70 = 31,722,207 | L70 = 18 |
N80 = 13,438,452 | L80 = 35 | N80 = 22,051,163 | L80 = 23 |
N90 = 7,895,810 | L90 = 49 | N90 = 12,933,450 | L90 = 31 |
N100 = 173,104 | L100 = 90 | N100 = 128,272 | L100 = 63 |
Total length | 1,420,917,605 bp | 1,511,766,959 bp | |
Average length | 15,787,973.39 bp | 23,996,300.94 bp | |
Largest length | 84,853,091 bp | 144,833,628 bp | |
Minimum length | 173,104 bp | 128,272 bp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.-P.; Yu, E.-P.; Tan, Z.-J.; Sun, H.-M.; Zhu, W.-G.; Wang, Z.-F.; Cao, H.-L. Genome Assemblies of Two Ormosia Species: Gene Duplication Related to Their Evolutionary Adaptation. Agronomy 2023, 13, 1757. https://doi.org/10.3390/agronomy13071757
Liu P-P, Yu E-P, Tan Z-J, Sun H-M, Zhu W-G, Wang Z-F, Cao H-L. Genome Assemblies of Two Ormosia Species: Gene Duplication Related to Their Evolutionary Adaptation. Agronomy. 2023; 13(7):1757. https://doi.org/10.3390/agronomy13071757
Chicago/Turabian StyleLiu, Pan-Pan, En-Ping Yu, Zong-Jian Tan, Hong-Mei Sun, Wei-Guang Zhu, Zheng-Feng Wang, and Hong-Lin Cao. 2023. "Genome Assemblies of Two Ormosia Species: Gene Duplication Related to Their Evolutionary Adaptation" Agronomy 13, no. 7: 1757. https://doi.org/10.3390/agronomy13071757
APA StyleLiu, P. -P., Yu, E. -P., Tan, Z. -J., Sun, H. -M., Zhu, W. -G., Wang, Z. -F., & Cao, H. -L. (2023). Genome Assemblies of Two Ormosia Species: Gene Duplication Related to Their Evolutionary Adaptation. Agronomy, 13(7), 1757. https://doi.org/10.3390/agronomy13071757