In Vitro Assessment of Salt Stress Tolerance in Wild Potato Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Salinity Tolerance Evaluation
2.3. Phenotyping
- Shoot height, SH (mm): the length of the main stem from the base to the tip of the plantlet;
- Root length, RL (mm): the maximum length of the root produced per plantlet;
- Leaf number, LN: the total number of new leaves produced by each plantlet;
- Root number, RN: the total number of roots (all types of roots) produced at approximately one cm from the basal tip of the plantlet;
- Total fresh weight, TFW (mg): plantlet weight;
- Root fresh weight, RFW (mg): root weight;
- Shoot fresh weight, SFW (mg): shoot weight;
- Root dry weight, RDW (mg): root weight after freeze-drying;
- Shoot dry weight, SDW (mg): shoot weight after freeze-drying;
- Total dry weight, TDW (mg): plantlet weight after freeze-drying;
- Days of roots (DR) and shoots (DS) emission: number of roots and shoots differentiated from the beginning of the salt stress.
2.4. Determination of Proline and Total Phenol Content
2.5. Data Analysis
3. Results
3.1. Evaluation Index (EI)
3.2. Root Plasticity and Correlation Analyses
3.3. Proline and Total Phenol Content
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hernández, J.A. Salinity Tolerance in Plants: Trends and Perspectives. Int. J. Mol. Sci. 2019, 20, 2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solis, C.A.; Yong, M.T.; Vinarao, R.; Jena, K.; Holford, P.; Shabala, L.; Zhou, M.; Shabala, S.; Chen, Z.H. Back to the Wild: On a Quest for Donors toward Salinity Tolerant Rice. Front. Plant Sci. 2020, 11, 323. [Google Scholar] [CrossRef]
- Pierik, R.; Fankhauser, C.; Strader, L.C.; Sinha, N. Architecture and Plasticity: Optimizing Plant Performance in Dynamic Environments. Plant Physiol. 2021, 187, 1029–1032. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F.; et al. Plant Phenotypic Plasticity in a Changing Climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Gröne, F.; Przesdzink, F. ‘Root of All Success’: Plasticity in Root Architecture of Invasive Wild Radish for Adaptive Bene Fit. Front. Plant Sci. 2022, 13, 1035089. [Google Scholar] [CrossRef]
- Yichie, Y.; Brien, C.; Berger, B.; Roberts, T.H.; Atwell, B.J. Salinity Tolerance in Australian Wild Oryza Species Varies Widely and Matches That Observed in O. sativa. Rice 2018, 11, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahim, F.; Arzani, A.; Rahimmalek, M.; Sun, D.; Peng, J. Salinity Tolerance of Wild Barley Hordeum vulgare ssp. spontaneum. Plant Breed. 2020, 139, 304–316. [Google Scholar] [CrossRef]
- Ahmadi, J.; Pour-Aboughadareh, A.; Fabriki-Ourang, S.; Mehrabi, A.A.; Siddique, K.H.M. Screening Wild Progenitors of Wheat for Salinity Stress at Early Stages of Plant Growth: Insight into Potential Sources of Variability for Salinity Adaptation in Wheat. Crop Pasture Sci. 2018, 69, 649–658. [Google Scholar] [CrossRef]
- Pailles, Y.; Awlia, M.; Julkowska, M.; Passone, L.; Zemmouri, K.; Negrão, S.; Schmöckel, S.M.; Tester, M. Diverse Traits Contribute to Salinity Tolerance of Wild Tomato Seedlings from the Galapagos Islands. Plant Physiol. 2020, 182, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Daneshmand, F.; Arvin, M.J.; Kalantari, K.M. Physiological Responses to NaCl Stress in Three Wild Species of Potato in Vitro. Acta Physiol. Plant. 2010, 32, 91–101. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Joseph Kumar, T. Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits. Int. J. Food Sci. 2016, 2016, 3631647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.W.M.; Abdeldaym, E.A.; Abdelaziz, S.M.; El-Sawy, M.B.I.; Mottaleb, S.A. Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity. Agronomy 2020, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.A.A.; Şahin, N.K.; Akdoğan, G.; Yaman, C.; Köm, D.; Uranbey, S. Variability in Salinity Stress Tolerance of Potato (Solanum tuberosum L.) Varieties Using in Vitro Screening. Cienc. Agrotecnol. 2020, 44, 1–14. [Google Scholar] [CrossRef]
- Machida-Hirano, R. Diversity of Potato Genetic Resources. Breed. Sci. 2015, 65, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Spooner, D.M.; Alvarez, N.; Peralta, I.E.; Clausen, A.M. Taxonomy of wild potatoes and their relatives in southern South America (Solanum sects. Petota and Etuberosum). Syst. Bot. Monogr. 2016, 100, 240. [Google Scholar]
- Spooner, D.M.; Ghislain, M.; Simon, R.; Jansky, S.H.; Gavrilenko, T. Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Bot. Rev. 2014, 80, 283–383. [Google Scholar] [CrossRef]
- Bradshaw, J.E. Potato-Breeding Strategy. In Potato Biology and Biotechnology: Advances and Perspectives; Elsevier: Amsterdam, The Netherlands, 2007; pp. 157–177. [Google Scholar] [CrossRef]
- Carputo, D.; Alioto, D.; Aversano, R.; Garramone, R.; Miraglia, V.; Villano, C.; Frusciante, L. Genetic Diversity among Potato Species as Revealed by Phenotypic Resistances and SSR Markers. Plant Genet. Resour. Charact. Util. 2013, 11, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Carputo, D.; Barone, A.; Frusciante, L. 2n Gametes in the Potato: Essential Ingredients for Breeding and Germplasm Transfer. Theor. Appl. Genet. 2000, 101, 805–813. [Google Scholar] [CrossRef]
- Naess, S.K.; Bradeen, J.M.; Wielgus, S.M.; Haberlach, G.T.; McGrath, J.M.; Helgeson, J.P. Resistance to Late Blight in Solanum Bulbocastanum Is Mapped to Chromosome 8. Theor. Appl. Genet. 2000, 101, 697–704. [Google Scholar] [CrossRef]
- Solomon-Blackburn, R.M.; Barker, H. A Review of Host Major-Gene Resistance to Potato Viruses X, Y, A and V in Potato: Genes, Genetics and Mapped Locations. Heredity 2001, 86, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Sanwal, S.K.; Kumar, P.; Kesh, H.; Gupta, V.K.; Kumar, A.; Kumar, A.; Meena, B.L.; Colla, G.; Cardarelli, M.; Kumar, P. Salinity Stress Tolerance in Potato Cultivars: Evidence from Physiological and Biochemical Traits. Plants 2022, 11, 1842. [Google Scholar] [CrossRef] [PubMed]
- Aydogan, C.; Turhan, E. Evaluation of Nineteen Potato Cultivars for Salt Tolerance and Determination of Reliable Parameters in Tolerance (A On Dokuz Patates Çeşidinin Tuza Toleranslarının Değerlendirilmesi ve Toleransta Güvenilir Parametrelerin Belirlenmesi). Bursa Uludağ Üniv. Ziraat Fak. Derg. 2020, 34, 365–384. [Google Scholar]
- Zaki, H.E.M.; Yokoi, S. A Comparative in Vitro Study of Salt Tolerance in Cultivated Tomato and Related Wild Species. Plant Biotechnol. 2016, 33, 361–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.; Kaur, A.; Kaur, M.; Kumar, A. In Vitro Screening of Indian Potato Cultivars for the Salt Stress and Associated Physio-Biochemical Changes. Biologia 2022, 77, 627–639. [Google Scholar] [CrossRef]
- Zaki, H.E.M.; Radwan, K.S.A. Response of Potato (Solanum tuberosum L.) Cultivars to Drought Stress under In Vitro and Field Conditions. Chem. Biol. Technol. Agric. 2022, 9, 1. [Google Scholar] [CrossRef]
- Turhan, H.; Baser, I. In Vitro and in Vivo Water Stress in Sunflower (Helianthus annuus L.). Helia 2004, 27, 227–236. [Google Scholar] [CrossRef]
- Zaman, M.S.; Ali, G.M.; Muhammad, A.; Farooq, K.; Hussain, I. In Vitro Screening of Salt Tolerance in Potato (Solanum tuberosum L.) Varieties. Sarhad J. Agric. 2015, 31, 106–113. [Google Scholar] [CrossRef]
- Murshed, R.; Najla, S.; Albiski, F.; Kassem, I.; Jbour, M.; Al-Said, H. Using Growth Parameters for in-Vitro Screening of Potato Varieties Tolerant to Salt Stress. J. Agric. Sci. Technol. 2015, 17, 483–494. [Google Scholar]
- Gelmesa, D.; Dechassa, N.; Mohammed, W.; Gebre, E.; Monneveux, P.; Bündig, C.; Winkelmenn, T. In Vitro Screening of Potato Genotypes for Osmotic Stress Tolerance. Open Agric. 2017, 2, 308–316. [Google Scholar] [CrossRef]
- Reddy, P.J.; Vaidyanath, K. Note on the Salt Tolerance of Some Rice Varieties of Andhra Pradesh during Germination and Early Seedling Growth [Oryza sativa]. Indian J. Agric. Sci. 1982, 52, 472–474. [Google Scholar]
- Wishart, J.; George, T.S.; Brown, L.K.; Ramsay, G.; Bradshaw, J.E.; White, P.J.; Gregory, P.J. Measuring Variation in Potato Roots in Both Field and Glasshouse: The Search for Useful Yield Predictors and a Simple Screen for Root Traits. Plant Soil 2013, 368, 231–249. [Google Scholar] [CrossRef]
- Sithtisarn, S.; Harinasut, P.; Pornbunlualap, S.; Cha-Um, S.; Carillo, P.; Gibon, Y. PROTOCOL: Extraction and Determination of Proline. Kasetsart J. Nat. Sci. 2009, 43, 146–152. [Google Scholar]
- Celano, R.; Lisa, A.; Pagano, I.; Roscigno, G.; Campone, L.; De Falco, E.; Russo, M.; Rastrelli, L. Oil Distillation Wastewaters from Aromatic Herbs as New Natural Source of Antioxidant Compounds. Food Res. Int. 2017, 99, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Chourasia, K.N.; More, S.J.; Kumar, A.; Kumar, D.; Singh, B.; Bhardwaj, V.; Kumar, A.; Das, S.K.; Singh, R.K.; Zinta, G.; et al. Salinity Responses and Tolerance Mechanisms in Underground Vegetable Crops: An Integrative Review. Planta 2022, 255, 68. [Google Scholar] [CrossRef] [PubMed]
- Mawa, M.J.; Haque, M.A.; Saikat, M.M.H.; Islam, S.M.N. Screening of Salt Tolerant Potato Genotypes Using Salt Stress and Molecular Markers. Int. J. Plant Soil Sci. 2021, 33, 49–56. [Google Scholar] [CrossRef]
- Mauricio, R.; Stahl, E.A.; Korves, T.; Tian, D.; Kreitman, M.; Bergelson, J. Natural Selection for Polymorphism in the Disease Resistance Gene Rps2 of Arabidopsis thaliana. Genetics 2003, 163, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Aversano, R.; Bradeen, J.; D’Amelia, V.; Villano, C.; Carputo, D. Coexpression Gene Network Analysis of Cold-Tolerant Solanum commersonii Reveals New Insights in Response to Low Temperatures. Crop Sci. 2021, 61, 3538–3550. [Google Scholar] [CrossRef]
- Chourasia, K.N.; Lal, M.K.; Tiwari, R.K.; Dev, D.; Kardile, H.B.; Patil, V.U.; Kumar, A.; Vanishree, G.; Kumar, D.; Bhardwaj, V.; et al. Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses. Life 2021, 11, 545. [Google Scholar] [CrossRef]
- Jansky, S. Breeding for Disease Resistance in Plants; John Wiley & Sons, Inc.: New York, NY, USA, 2000; Volume 81, ISBN 0471387878. [Google Scholar]
- Wolters, P.J.; Wouters, D.; Kromhout, E.J.; Huigen, D.J.; Visser, R.G.F.; Vleeshouwers, V.G.A.A. Qualitative and Quantitative Resistance against Early Blight Introgressed in Potato. Biology 2021, 10, 892. [Google Scholar] [CrossRef]
- Leisner, C.P.; Hamilton, J.P.; Crisovan, E.; Manrique-Carpintero, N.C.; Marand, A.P.; Newton, L.; Pham, G.M.; Jiang, J.; Douches, D.S.; Jansky, S.H.; et al. Genome Sequence of M6, a Diploid Inbred Clone of the High-Glycoalkaloid-Producing Tuber-Bearing Potato Species Solanum Chacoense, Reveals Residual Heterozygosity. Plant J. 2018, 94, 562–570. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.P.; Robin Buell, C. Advances in Plant Genome Sequencing. Plant J. 2012, 70, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Pham, G.M.; Hamilton, J.P.; Wood, J.C.; Burke, J.T.; Zhao, H.; Vaillancourt, B.; Ou, S.; Jiang, J.; Robin Buell, C. Construction of a Chromosome-Scale Long-Read Reference Genome Assembly for Potato. Gigascience 2020, 9, giaa100. [Google Scholar] [CrossRef] [PubMed]
- Van Lieshout, N.; van der Burgt, A.; de Vries, M.E.; ter Maat, M.; Eickholt, D.; Esselink, D.; van Kaauwen, M.P.W.; Kodde, L.P.; Visser, R.G.F.; Lindhout, P.; et al. Solyntus, the New Highly Contiguous Reference Genome for Potato (Solanum tuberosum). G3 Genes Genomes Genet. 2020, 10, 3489–3495. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Tang, D.; Huang, W.; Yang, Z.; Zhang, Y.; Hamilton, J.P.; Visser, R.G.F.; Bachem, C.W.B.; Robin Buell, C.; Zhang, Z.; et al. Haplotype-Resolved Genome Analyses of a Heterozygous Diploid Potato. Nat. Genet. 2020, 52, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Jia, Y.; Zhang, J.; Li, H.; Cheng, L.; Wang, P.; Bao, Z.; Liu, Z.; Feng, S.; Zhu, X.; et al. Genome Evolution and Diversity of Wild and Cultivated Potatoes. Nature 2022, 606, 535–541. [Google Scholar] [CrossRef]
- Aversano, R.; Contaldi, F.; Ercolano, M.R.; Grosso, V.; Iorizzo, M.; Tatino, F.; Xumerle, L.; Molin, A.D.; Avanzato, C.; Ferrarini, A.; et al. The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives. Plant Cell 2015, 27, 954–968. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garramone, R.; Coppola, G.P.; Aversano, R.; Docimo, T.; Sedlák, P.; Carputo, D. In Vitro Assessment of Salt Stress Tolerance in Wild Potato Species. Agronomy 2023, 13, 1784. https://doi.org/10.3390/agronomy13071784
Garramone R, Coppola GP, Aversano R, Docimo T, Sedlák P, Carputo D. In Vitro Assessment of Salt Stress Tolerance in Wild Potato Species. Agronomy. 2023; 13(7):1784. https://doi.org/10.3390/agronomy13071784
Chicago/Turabian StyleGarramone, Raffaele, Giuseppe Paolo Coppola, Riccardo Aversano, Teresa Docimo, Petr Sedlák, and Domenico Carputo. 2023. "In Vitro Assessment of Salt Stress Tolerance in Wild Potato Species" Agronomy 13, no. 7: 1784. https://doi.org/10.3390/agronomy13071784
APA StyleGarramone, R., Coppola, G. P., Aversano, R., Docimo, T., Sedlák, P., & Carputo, D. (2023). In Vitro Assessment of Salt Stress Tolerance in Wild Potato Species. Agronomy, 13(7), 1784. https://doi.org/10.3390/agronomy13071784