Growth and Physiological Characteristics of Sour Jujube Seedlings in Different Substrate Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Determination of Physical Properties of Matrix
2.3. Determination of Enzymatic Activity of Matrix
2.4. Determination of Growth Characters, Biomass and Root Parameters
2.5. Determination of Photosynthetic Parameters
2.6. Determination of Chlorophyll Content
2.7. Data Processing and Statistical Analysis
3. Results
3.1. Analysis of Physical Properties of Mixed Substrates
3.2. Effects of Different Formulations on Matrix Enzyme Activity
3.3. Effects of Different Formulas of Vermicompost Substrate on the Growth of Sour Jujube Seedlings
3.3.1. Weight, Cost, and Jujube Seedling Survival Rate in Different Substrates
3.3.2. Growth of Sour Jujube Container Seedlings in Different Substrates
3.3.3. Photosynthetic Parameters of Leaves of Sour Jujube Container Seedlings in Different Substrates
3.3.4. Effects of Different Substrates on the Root Indices of Sour Jujube Seedlings
4. Discussion
4.1. Physicochemical Properties of Different Substrates
4.2. Enzyme Activity of Different Substrates
4.3. Effects of Substrate on the Growth of Sour Jujube Seedlings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Liu, P. Artificial autopolyploidization in jujube. Sci. Hortic. 2023, 314, 111916. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Li, Z.; Qi, A.; Yao, P.; Zhou, Z.; Dong, T.T.X.; Tsim, K.W. A review of dietary Ziziphus jujuba fruit (Jujube): Developing health food supplements for brain protection. Evid.-Based Complement. Altern. Med. 2017, 2017, 3019568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Adamczewska-Sowińska, K.; Sowiński, J.; Jamroz, E.; Bekier, J. Combining willow compost and peat as media for juvenile tomato transplant production. Agronomy 2021, 11, 2089. [Google Scholar] [CrossRef]
- Sendi, H.; Mohamed, M.T.M.; Anwar, M.P.; Saud, H.M. Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. Alboglabra) production. Sci. World J. 2013, 2013, 258562. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.U.; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing plant growth and combating abiotic and biotic stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Gudeta, K.; Bhagat, A.; Julka, J.M.; Sinha, R.; Verma, R.; Kumar, A.; Kumari, S.; Ameen, F.; Bhat, S.A.; Sharma, M.; et al. Vermicompost and Its Derivatives against Phytopathogenic Fungi in the Soil: A Review. Horticulturae 2022, 8, 311. [Google Scholar] [CrossRef]
- Jankauskienė, J.; Laužikė, K.; Kavaliauskaitė, D. Effects of Vermicompost on Quality and Physiological Parameters of Cucumber (Cucumis sativus L.) Seedlings and Plant Productivity. Horticulturae 2022, 8, 1009. [Google Scholar] [CrossRef]
- Messiga, A.J.; Hao, X.; Ziadi, N.; Dorais, M. Reducing peat in growing media: Impact on nitrogen content, microbial activity, and CO2 and N2O emissions. Can. J. Soil Sci. 2021, 102, 77–87. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, Y.; Tang, Y.; Tian, J.; Wu, X. Correlation between plant diversity and the physicochemical properties of soil microbes. Appl. Ecol. Environ. Res. 2019, 17, 10371–10388. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Li, Y. Contrasting effects of nitrogen and phosphorus additions on soil nitrous oxide fluxes and enzyme activities in an alpine wetland of the Tibetan Plateau. PLoS ONE 2019, 14, e0216244. [Google Scholar] [CrossRef]
- Pornaro, C.; Macolino, S.; Menegon, A.; Richardson, M. WinRHIZO technology for measuring morphological traits of bermudagrass stolons. Agron. J. 2017, 109, 3007–3010. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Ashraf, U.; Cheng, S.; Rao, G.; Mo, Z.; Tian, H.; Pan, S.; Tang, X. Short-term water management at early filling stage improves early-season rice performance under high temperature stress in South China. Eur. J. Agron. 2017, 90, 117–126. [Google Scholar] [CrossRef]
- Hu, B.F.; Huang, H.L.; Ji, Y.Z.; Zhao, X.F.; Chi, J.L. Suitable concentrations of extracts for the spectrophotometric determination of chlorophyll content. Grass Sci. 2018, 35, 1965–1974. [Google Scholar]
- Li, C.; Shi, Z.; Cai, J.; Wang, P.; Wang, F.; Ju, M.; Liu, J.; Yu, Q. Synthesis of Phenylboronic Acid-Functionalized Magnetic Nanoparticles for Sensitive Soil Enzyme Assays. Molecules 2022, 27, 6883. [Google Scholar] [CrossRef]
- Rana, M.A.; Mahmood, R.; Ali, S. Soil urease inhibition by various plant extracts. PLoS ONE 2021, 16, e0258568. [Google Scholar] [CrossRef]
- Zheng, L.; Tong, C.; Gao, J.; Xiao, R. Effects of wetland plant biochars on heavy metal immobilization and enzyme activity in soils from the Yellow River estuary. Environ. Sci. Pollut. Res. 2022, 29, 40796–40811. [Google Scholar] [CrossRef]
- Holz, M.; Zarebanadkouki, M.; Carminati, A.; Becker, J.N.; Spohn, M. The effect of root hairs on rhizosphere phosphatase activity. J. Plant Nutr. Soil Sci. 2020, 183, 382–388. [Google Scholar] [CrossRef]
- Deng, J.; Chong, Y.; Zhang, D.; Ren, C.; Zhao, F.; Zhang, X.; Han, X.; Yang, G. Temporal variations in soil enzyme activities and responses to land-use change in the Loess Plateau, China. Appl. Sci. 2019, 9, 3129. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Grimm, B. Connecting chlorophyll metabolism with accumulation of the photosynthetic apparatus. Trends Plant Sci. 2021, 26, 484–495. [Google Scholar] [CrossRef]
- Wang, X.; Gao, W.R.; Xu, G.; Li, D.Z.; Duan, C.L. Analysis of physicochemical properties of soilless substrates using pig fermentation bed waste bedding as the main raw material. Jiangsu Agric. Sci. 2017, 45, 251–254. [Google Scholar] [CrossRef]
- Bungau, S.; Behl, T.; Aleya, L. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. Environ. Sci. Pollut. Res. 2021, 28, 30528–30550. [Google Scholar] [CrossRef] [PubMed]
- Ruan, S.; Wu, F.; Lai, R.; Tang, X.; Luo, H.; He, L. Preliminary application of vermicompost in rice production: Effects of nursery raising with vermicompost on fragrant rice performances. Agronomy 2021, 11, 1253. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, G.; Shang, X. Effect of Different Peat Substitute Substrates on the Growth and Quality of Seedlings of Handroanthus chrysanthus (Jacq.) SO Grose. Forests 2022, 13, 1626. [Google Scholar] [CrossRef]
Substrates | Treatments |
---|---|
A0 | peat: vermiculite = 2:1 |
A1 | peat: vermicompost: vermiculite: garden soil = 0.75:0.25:1:1 |
A2 | peat: vermicompost: vermiculite: garden soil = 0.5:0.5:1:1 |
A3 | vermicompost: vermiculite: garden soil = 1:2:1 |
A4 | vermicompost: vermiculite: decomposed sheep manure = 1:2:1 |
Treatments | Density (g·cm−3) | Total Porosity (%) | pH | EC Value (mS·cm−1) | Organic Matter (g·kg−1) | Humic Acid (%) |
---|---|---|---|---|---|---|
A0 | 0.18 ± 0.01 c | 65.0 ± 4.0 a | 7.64 ± 0.05 c | 0.17 ± 0.01 c | 389.91 ± 22.48 a | 20.42 ± 1.5 a |
A1 | 0.57 ± 0.04 a | 44.0 ± 6.0 d | 7.96 ± 0.05 a | 0.2 ± 0.004 b | 76.53 ± 2.52 c | 2.98 ± 0.61 c |
A2 | 0.53 ± 0.05 a | 51.0 ± 3.0 bc | 7.97 ± 0.06 a | 0.2 ± 0.01 b | 54.05 ± 3.33 d | 1.56 ± 1.21 c |
A3 | 0.54 ± 0.04 a | 47.0 ± 1.0 cd | 7.95 ± 0.05 a | 0.2 ± 0.002 b | 40.39 ± 0.41 d | 2.12 ± 0.27 c |
A4 | 0.33 ± 0.01 b | 54.0 ± 1.0 b | 7.73 ± 0.03 b | 0.51 ± 0.01 a | 109.52 ± 4.00 b | 7.72 ± 2.36 b |
Treatments | Total Nitrogen (g·kg−1) | Total Phosphorus (g·kg−1) | Total Potassium (g·kg−1) | Alkali-Hydrolyzed Nitrogen (mg·kg−1) | Available Phosphorus (mg·kg−1) | Rapidly Available Potassium (mg·kg−1) |
A0 | 4.39 ± 0.13 a | 0.56 ± 0.01 c | 12.82 ± 0.01 c | 368.64 ± 26.95 b | 71.08 ± 4.92 d | 270.23 ± 13.79 d |
A1 | 1.85 ± 0.1 cd | 0.78 ± 0.12 bc | 19.16 ± 0.31 b | 149.89 ± 4.03 c | 109.4 ± 10.68 c | 291.44 ± 5.24 c |
A2 | 1.67 ± 0.12 d | 0.95 ± 0.01 bc | 19.67 ± 0.17 a | 139.75 ± 1.67 c | 137.79 ± 5.74 c | 288.41 ± 10.48 c |
A3 | 1.91 ± 0.06 c | 1.20 ± 0.06 b | 19.75 ± 0.11 a | 154.69 ± 4.62 c | 224.42 ± 9.38 b | 309.59 ± 5.24 b |
A4 | 3.16 ± 0.1 b | 2.03 ± 0.68 a | 19.98 ± 0.13 a | 453.69 ± 49.30 a | 943.7 ± 34.16 a | 357.98 ± 0.00 a |
Treatments | Weight (kg/bag) | Cost (CNY/bag) | Survival Rate of Seedlings (%) |
---|---|---|---|
A0 | 2.77 ± 0.05 e | 8.65 ± 0.05 a | 82.93 ± 3.30 b |
A1 | 7.07 ± 0.04 c | 7.40 ± 0.06 b | 91.73 ± 8.34 a |
A2 | 8.30 ± 0.11 b | 6.77 ± 0.05 c | 93.40 ± 4.13 a |
A3 | 8.49 ± 0.03 a | 5.35 ± 0.05 d | 94.57 ± 4.44 a |
A4 | 6.20 ± 0.10 d | 7.35 ± 0.05 b | 60.62 ± 13.03 c |
Treatments | Chlorophyll a (mg·g−1) | Chlorophyll b (mg·g−1) | Total Chlorophyll (mg·g−1) | Chlorophyll a/b | Carotenoid (mg·g−1) |
---|---|---|---|---|---|
A0 | 1.41 ± 0.31 b | 0.47 ± 0.12 c | 1.89 ± 0.43 b | 3.01 ± 0.19 a | 0.22 ± 0.03 a |
A1 | 1.65 ± 0.13 b | 0.57 ± 0.05 bc | 2.22 ± 0.17 b | 2.88 ± 0.12 ab | 0.22 ± 0.01 a |
A2 | 2.08 ± 0.09 a | 0.69 ± 0.04 ab | 2.77 ± 0.13 a | 3.01 ± 0.07 a | 0.26 ± 0.01 a |
A3 | 1.66 ± 0.13 b | 0.61 ± 0.04 ab | 2.27 ± 0.17 b | 2.72 ± 0.18 b | 0.21 ± 0.05 a |
A4 | 2.07 ± 0.06 a | 0.73 ± 0.02 a | 2.80 ± 0.08 a | 2.84 ± 0.02 ab | 0.26 ± 0.02 a |
Treatments | Root Length (cm) | Projected Area (cm2) | Surface Area (cm2) | Root Diameter (cm) | Root Volume (cm3) |
---|---|---|---|---|---|
A0 | 784.89 ± 218.80 b | 127.91 ± 43.46 b | 401.83 ± 136.53 b | 1.63 ± 0.28 a | 16.76 ± 7.17 a |
A1 | 840.23 ± 280.22 ab | 139.78 ± 45.77 b | 439.14 ± 143.78 b | 1.68 ± 0.36 a | 18.89 ± 7.04 bc |
A2 | 1235.05 ± 242.14 a | 207.50 ± 45.63 a | 651.87 ± 143.78 a | 2.21 ± 0.92 a | 27.69 ± 7.53 ab |
A3 | 929.58 ± 342.44 ab | 160.59 ± 53.47 ab | 504.52 ± 167.99 ab | 1.89 ± 0.36 a | 22.32 ± 8.63 abc |
A4 | 1203.54 ± 757.44 a | 206.96 ± 119.05 a | 650.20 ± 374.00 a | 2.23 ± 1.45 a | 28.80 ± 16.29 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Duan, Y.; Liu, Z.; Liu, M.; Liu, P. Growth and Physiological Characteristics of Sour Jujube Seedlings in Different Substrate Formulations. Agronomy 2023, 13, 1797. https://doi.org/10.3390/agronomy13071797
Zhu Y, Duan Y, Liu Z, Liu M, Liu P. Growth and Physiological Characteristics of Sour Jujube Seedlings in Different Substrate Formulations. Agronomy. 2023; 13(7):1797. https://doi.org/10.3390/agronomy13071797
Chicago/Turabian StyleZhu, Ying, Yanjun Duan, Zhiguo Liu, Mengjun Liu, and Ping Liu. 2023. "Growth and Physiological Characteristics of Sour Jujube Seedlings in Different Substrate Formulations" Agronomy 13, no. 7: 1797. https://doi.org/10.3390/agronomy13071797
APA StyleZhu, Y., Duan, Y., Liu, Z., Liu, M., & Liu, P. (2023). Growth and Physiological Characteristics of Sour Jujube Seedlings in Different Substrate Formulations. Agronomy, 13(7), 1797. https://doi.org/10.3390/agronomy13071797