Effects of Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil Organic Carbon Transformation in Citrus Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Design
2.2.1. Soil Incubation Setting
2.2.2. Soil Mineralization Test Setting
2.3. Determination Indicators and Methods
2.4. Data Processing
3. Results
3.1. Effects of Adding Different Proportions of Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil pH, Soil Cation Exchange Capacity, and Available-K
3.2. Effects of Adding Different Proportions of Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil Carbon Sequestration
3.3. Effects of Adding Different Proportions of Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil Enzyme Activities
3.4. The Correlation of Soil Indexes in the Study
4. Discussion
4.1. Effects of Adding Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil Basic Properties
4.2. Effects of Adding Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil Organic Carbon Transformation
4.3. Effects of Adding Different Proportions of Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil Enzyme Activities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerke, J. Carbon Accumulation in Arable Soils: Mechanisms and the Effect of Cultivation Practices and Organic Fertilizers. Agronomy 2021, 11, 1079. [Google Scholar] [CrossRef]
- Wei, X.X.; Xiong, J.F.; Li, T.; Wen, J.; Zeng, X.B.; Yu, D.H. Effects of different organic amendments on soil organic carbon and its labile fractions in the paddy soil of a double rice cropping system. Chin. J. Appl. Ecol. 2020, 31, 8. [Google Scholar] [CrossRef]
- Luo, L.; Bai, J.; Gao, Y.; Lai, X.; Li, A.; Wang, B.; Fang, H.; Wang, S.; Zhang, L. Effects of Camellia oleifera leaf litter and fruit shell-derived biochar on soil greenhouse gas emissions. Acta Agric. Univ. Jiangxiensis 2022, 44, 1177–1187. [Google Scholar] [CrossRef]
- Mo, F.; Ren, C.J.; Yu, K.L.; Zhou, Z.H.; Phillips, R.P.; Luo, Z.K.; Zhang, Y.Y.; Dang, Y.T.; Han, J.; Ye, J.S.; et al. Global pattern of soil priming effect intensity and its environmental drivers. Ecology 2022, 103, e3790. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, T.; Chen, B. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon. Acta Pedol. Sin. 2004, 41, 544–552. [Google Scholar] [CrossRef]
- Luo, L.; Gu, J.D. Alteration of extracellular enzyme activity and microbial abundance by biochar addition: Implication for carbon sequestration in subtropical mangrove sediment. J. Environ. Manag. 2016, 182, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liu, J.; Wang, Y. Effects of biochar on microbial ecology in agriculture soil: A review. Chin. J. Appl. Ecol. 2013, 24, 7. [Google Scholar] [CrossRef]
- Zeng, X.; Xiao, Z.; Zhang, G.; Wang, A.; Li, Z.; Liu, Y.; Wang, H.; Zeng, Q.; Liang, Y.; Zou, D. Speciation and bioavailability of heavy metals in pyrolytic biochar of swine and goat manures. J. Anal. Appl. Pyrolysis 2018, 132, 82–93. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Lin, Y.; Munroe, P.; Joseph, S.; Henderson, R.; Ziolkowski, A. Water extractable organic carbon in untreated and chemically treated biochars. Chemosphere 2012, 87, 151–157. [Google Scholar] [CrossRef]
- Demisie, W.; Liu, Z.; Zhang, M. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 2014, 121, 214–221. [Google Scholar] [CrossRef]
- Lu, W.W.; Ding, W.X.; Zhang, J.H.; Li, Y.; Luo, J.F.; Bolan, N.; Xie, Z.B. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biol. Biochem. 2014, 76, 12–21. [Google Scholar] [CrossRef]
- Li, Z.; Sun, B.; Lin, X. Density of Soil Organic Carbon and the Factors Controlling Its Turnover in East China. Sci. Geogr. Sin. 2001, 21, 301–307. [Google Scholar] [CrossRef]
- Abd El-Azeem, S.; Ahmad, M.; Usman, A.; Kim, K.R.; Oh, S.E.; Lee, S.; Ok, Y. Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials. Environ. Earth Sci. 2013, 70, 3411–3420. [Google Scholar] [CrossRef]
- Wieczorek, A.S.; Schmidt, O.; Chatzinotas, A.; Bergen, M.V.; Gorissen, A.; Kolb, S. Ecological Functions of Agricultural Soil Bacteria and Microeukaryotes in Chitin Degradation: A Case Study. Front. Microbiol. 2019, 10, 1293. [Google Scholar] [CrossRef]
- Russell, A.E. Unexpected Effects of Chitin, Cellulose, and Lignin Addition on Soil Dynamics in a Wet Tropical Forest. Ecosystems 2014, 17, 918–930. [Google Scholar] [CrossRef]
- Hui, C.; Jiang, H.; Liu, B.; Wei, R.; Zhang, Y.; Zhang, Q.; Liang, Y.; Zhao, Y. Chitin degradation and the temporary response of bacterial chitinolytic communities to chitin amendment in soil under different fertilization regimes. Sci. Total Environ. 2020, 705, 136003. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Current applications of citrus fruit processing waste: A scientific outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Huang, J.; Peng, L.; Lei, T. Research Advance in Resource Utilization of Citrus Dregs. Chin. Agric. Sci. Bull. 2014, 30, 38–41. [Google Scholar] [CrossRef]
- Sial, T.A.; Lan, Z.L.; Khan, M.N.; Zhao, Y.; Kumbhar, F.; Liu, J.; Zhang, A.F.; Hill, R.L.; Lahori, A.H.; Memon, M. Evaluation of orange peel waste and its biochar on greenhouse gas emissions and soil biochemical properties within a loess soil. Waste Manag. 2019, 87, 125–134. [Google Scholar] [CrossRef]
- Bao, S.D. Soil, and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Zhang, T.; Wang, X.; Pang, M.; Liu, E.; Bai, R.; Li, N.; Wang, Y. Impacts of Biochar and Straw Application on Soil Organic Carbon Transformation. Environ. Sci. 2016, 37, 2298–2303. [Google Scholar] [CrossRef]
- Johnson, J.L.; Temple, K.L. Some Variables Affecting the Measurement of “Catalase Activity” in Soil. Soil Sci. Soc. Am. J. 1964, 28, 207–209. [Google Scholar] [CrossRef]
- Shen, H.; Cao, Z.-h.; Hu, Z. Characteristics and Ecological Effects of the Active Organic Carbon in Soil. Chin. J. Ecol. 1999, 18, 7. [Google Scholar] [CrossRef]
- Deng, J.; Chong, Y.J.; Zhang, D.; Ren, C.J.; Zhao, F.Z.; Zhang, X.X.; Han, X.H.; Yang, G.H. Temporal Variations in Soil Enzyme Activities and Responses to Land-Use Change in the Loess Plateau, China. Appl. Sci. 2019, 9, 3129. [Google Scholar] [CrossRef]
- Sun, K.; Liu, J.; Ling, W. A review on Determination of Soil Microbial Biomass. Chin. J. Soil Sci. 2013, 44, 7. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Luo, H.; Zhou, L.; Guiyin, W.; Yichang, S. Concentration Characteristics and Dynamic Changes of Water Soluble Organic Carbon in Soil Under Different Fertilization Treatments. J. Agro-Environ. Sci. 2013, 32, 6. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Zeng, G.M.; Wu, H.P.; Liang, J.; Guo, S.L.; Huang, L.; Xu, P.; Liu, Y.Y.; Yuan, Y.J.; He, X.X.; He, Y. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Adv. 2015, 5, 34541–34548. [Google Scholar] [CrossRef]
- Yong, S.O.; Oh, S.E.; Ahmad, M.; Hyun, S.; Kim, K.R.; Moon, D.H.; Sang, S.L.; Lim, K.J.; Jeon, W.T.; Yang, J.E. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ. Earth Sci. 2010, 61, 1301–1308. [Google Scholar] [CrossRef]
- Nelissen, V.; Rutting, T.; Huygens, D.; Staelens, J.; Ruysschaert, G.; Boeckx, P. Maize biochars accelerate short-term soil nitrogen dynamics in loamy sand soil. Soil Biol. Biochem. 2012, 55, 20–27. [Google Scholar] [CrossRef]
- Alvarez, E.F.-S.; Seco, M.J.; Nunez, A.N. Use of mussel shells as a soil amendment: Effects on bulk and rhizosphere soil and pasture production. Pedosphere 2012, 22, 152–164. [Google Scholar] [CrossRef]
- Liu, Z.; Lan, Y.; Yang, T.; Zhang, Y.; Meng, J. Effect of biochar application pattern on soil fertility and enzyme activity under limited fertilization conditions. J. Agric. Resour. Environ. 2020, 37, 544–551. [Google Scholar] [CrossRef]
- Nie, X.; Chen, F. Advances of the effects of biochar application on soil potassium bioavailability. Soil Fertil. Sci. China 2016, 2, 1–6. [Google Scholar] [CrossRef]
- Zhao, L.; Huan, P.; Yang, C.; Lu, S. Effects of Oyster Shell Powder and Lime on Availability and Forms of Phosphorus and Enzyme Activity in Acidic Paddy Soil. Environ. Sci. 2022, 43, 10. [Google Scholar] [CrossRef]
- Ge, Y.; Su, Y.; Zou, D.; Hu, L.; Feng, S.; Xiao, W.; Xunyang, H. Organic carbon mineralization in lime soils in Karst region of Guangxi, South China in response to the exogenous organic substrate and calcium carbonate. Chin. J. Ecol. 2012, 31, 7. [Google Scholar] [CrossRef]
- Bertrand, I.; Delfosse, O.; Mary, B. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biol. Biochem. 2007, 39, 276–288. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Duan, J.; Luo, A.; Chen, L.; Jia, C. Effects of calcium carbonate on organic carbon mineralization and its temperature sensitivity in yellow soil. J. Agro-Environ. Sci. 2022, 41, 8. [Google Scholar] [CrossRef]
- Cross, A.; Sohi, S.P. The priming potential of biochar products about labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Li, Z.; Wei, B.; Wang, X.; Zhang, Y.; Zhang, A. Response of soil organic carbon fractions and CO2 emissions to exogenous composted manure and calcium carbonate. J. Soils Sediments 2018, 18, 1832–1843. [Google Scholar] [CrossRef]
- Luo, M.; Tian, D.; Gao, M.; Huan, R. Soil Organic Carbon of Purple Soil as Affected by Different Applications of Biochar. Environ. Sci. 2018, 39, 11. [Google Scholar] [CrossRef]
- Li, S. Effect and Mechanism of Potassium-Modified Bagasse Biochar on the Carbon Sequestration of Sugarcane Field and Manganese-Contaminated Soil. Master’s Thesis, Guangxi Normal University, Guilin, China, 2021. [Google Scholar] [CrossRef]
- Lu, P.; Guo, J.; Zhu, L. Soil catalase activity of main plant communities in Leymus chinensis Grassl and northeast China. Chin. J. Appl. Ecol. 2002, 13, 675–679. [Google Scholar] [CrossRef]
- Xie, X.; Pu, L.; Wang, Q.; Zhu, M.; Xu, Y.; Zhang, M. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China. Sci. Total Environ. 2017, 607–608, 1419–1427. [Google Scholar] [CrossRef]
- Lv, G.; Zhou, G.; Zhao, X.; Zhou, L. Research progress on the correlation between soil carbon and nitrogen and soil enzymes. J. Meteorol. Environ. 2005, 2, 6–8. [Google Scholar] [CrossRef]
- Ren, L.; Cai, Z.; Wang, G.; Ye, Z.; Zhang, Y.; Cao, M. Effects of minerals with different immobilization mechanisms on heavy metals availability and soil microbial response. J. Agro-Environ. Sci. 2021, 40, 1470–1480. [Google Scholar] [CrossRef]
- Song, X.Y.; Yang, J.K.; Hussain, Q.; Liu, X.W.; Zhang, J.J.; Cui, D.J. Stable isotopes reveal the formation diversity of humic substances derived from different cotton straw-based materials. Sci. Total Environ. 2020, 740, 140202. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Li, K.Y.; Yang, H.; Deng, C.J.; Liang, H.; Song, L.H. Effects of Biochar Application on Yellow Soil Nutrients and Enzyme Activities. Environ. Sci. 2022, 43, 4655–4661. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Kelly, A.; Oldham, T.; Rogers, R.D. Agricultural uses of chitin polymers. Environ. Chem. Lett. 2020, 18, 53–60. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Wang, X.J.; Zhao, Y.M.; Zhang, C.A.; Jin, Z.W.; Shan, S.D.; Ping, L.F. Effects of Biochar Application on Enzyme Activities in Tea Garden Soil. Front. Bioeng. Biotechnol. 2021, 9, 8. [Google Scholar] [CrossRef]
- He, J.; Zhao, Y.; Guan, l. Effect of Free Calcium Carbonate on Soil pH and Enzyme Activities. J. Shenyang Agric. Univ. 2011, 42, 4. [Google Scholar] [CrossRef]
- Chen, H.; Yang, X.; Wang, H.; Sarkar, B.; Shaheen, S.M.; Gielen, G.; Bolan, N.; Guo, J.; Che, L.; Sun, H.; et al. Animal carcass- and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: A trial for reclamation and improvement of degraded soils. J. Environ. Manag. 2020, 261, 110246. [Google Scholar] [CrossRef]
Type | pH | SOC (g·kg−1) | CEC (cmol·kg−1) | AK (mg·kg−1) |
---|---|---|---|---|
Soil | 3.73 ± 0.02 | 2 ± 0.05 | 4.89 ± 0.06 | 58.2 ± 0.31 |
Orange peel biochar | 9.6 ± 0.02 | 3.31 ± 0.07 | 30.96 ± 0.14 | 404.9 ± 0.24 |
Cipangopaludina chinensis shell powder | 8.53 ± 0.04 | 0.46 ± 0.001 | 440.3 ± 0.22 | 18.3 ± 0.12 |
Addition Amount | Sample Identification |
---|---|
control | CK |
4% Orange peel biochar | g4k0 |
4% Cipangopaludina chinensis shell powder | g0k4 |
2% Orange peel biochar + 2% Cipangopaludina chinensis shell powder | g2k2 |
1.3% Orange peel biochar + 2.6% Cipangopaludina chinensis shell powder | g1k2 |
2.6% Orange peel biochar + 1.3% Cipangopaludina chinensis shell powder | g2k1 |
1% Orange peel biochar + 3% Cipangopaludina chinensis shell powder | g1k3 |
3% Orange peel biochar + 1% Cipangopaludina chinensis shell powder | g3k1 |
CEC | AK | SOC | Sucrase | Catalase | Urease | DOC | ROC | MBC | |
---|---|---|---|---|---|---|---|---|---|
pH | 0.35 ** | 0.21 | 0.40 ** | 0.23 | 0.22 | 0.34 * | 0.05 | 0.03 | 0.32 * |
CEC | 0.12 | −0.11 | 0.62 ** | −0.13 | 0.18 | −0.19 | −0.08 | 0.12 | |
AK | 0.55 ** | 0.14 | 0.32 * | 0.31 * | 0.08 | 0.02 | 0.04 | ||
SOC | −0.18 | 0.52 ** | 0.18 | 0.12 | 0.11 | 0.26 | |||
Sucrase | −0.04 | 0.22 | −0.40 ** | 0.12 | 0.01 | ||||
Catalase | 0.20 | 0.04 | 0.20 | 0.07 | |||||
Urease | 0.13 | 0.31 * | 0.35 ** | ||||||
DOC | 0.25 | 0.01 | |||||||
ROC | −0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Qin, R.; Zhou, L.; Deng, H.; Li, K.; He, X. Effects of Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil Organic Carbon Transformation in Citrus Orchards. Agronomy 2023, 13, 1801. https://doi.org/10.3390/agronomy13071801
Hu L, Qin R, Zhou L, Deng H, Li K, He X. Effects of Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil Organic Carbon Transformation in Citrus Orchards. Agronomy. 2023; 13(7):1801. https://doi.org/10.3390/agronomy13071801
Chicago/Turabian StyleHu, Lening, Rui Qin, Liming Zhou, Hua Deng, Ke Li, and Xunyang He. 2023. "Effects of Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil Organic Carbon Transformation in Citrus Orchards" Agronomy 13, no. 7: 1801. https://doi.org/10.3390/agronomy13071801
APA StyleHu, L., Qin, R., Zhou, L., Deng, H., Li, K., & He, X. (2023). Effects of Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil Organic Carbon Transformation in Citrus Orchards. Agronomy, 13(7), 1801. https://doi.org/10.3390/agronomy13071801