Comparison of Selenium Accumulation in Edible Parts of Wheat and Broad Bean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Location and Experimental Design
2.2. Samples Collection and Preparation
2.3. Determination of the Total Concentration Se in Plant and Soil
2.4. Enzymatic Hydrolysis for Se Speciation in Edible Tissues
2.5. Determination of Se Speciation in Edible Tissues via HPLC-ICP-MS
2.6. Statistical Analysis of Data
3. Results
3.1. Se Concentrations in Each Part of Plants
3.2. Se Speciation in Edible Parts of Plants
3.3. Se Fractions in Soil
3.4. The Character of Se Accumulation in Plant
3.5. The Relationship of Se Concentration in Edible Parts with Corresponding Se Concentration in Other Tissues and Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, Z.; Zhou, H.; Liu, K.; Wu, M.; Li, S.; Meng, S.; Meng, H. Dietary Copper and Selenium Intakes and the Risk of Type 2 Diabetes Mellitus: Findings from the China Health and Nutrition Survey. Nutrients 2022, 14, 2055. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, B.M.; Leal, D.F.; Frias-De-Diego, A.; Browning, M.; Odle, J.; Crisci, E. The Health Benefits of Selenium in Food Animals: A Review. J. Anim. Sci. Biotechnol. 2022, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Su, L.; Wang, J.; Wang, F.; Liu, X.; Dou, J. Correlation between Dietary Selenium Intake and Stroke in the National Health and Nutrition Examination Survey 2003–2018. Ann. Med. 2022, 54, 1395–1402. [Google Scholar] [CrossRef]
- Feinberg, A.; Stenke, A.; Peter, T.; Winkel, L.H.E. Constraining Atmospheric Selenium Emissions Using Observations, Global Modeling, and Bayesian Inference. Environ. Sci. Technol. 2020, 54, 7146–7155. [Google Scholar] [CrossRef] [PubMed]
- Bhadwal, S.; Sharma, S. Selenium Alleviates Physiological Traits, Nutrient Uptake and Nitrogen Metabolism in Rice under Arsenate Stress. Environ. Sci. Pollut. Res. 2022, 29, 70862–70881. [Google Scholar] [CrossRef]
- Giacconi, R.; Piacenza, F.; Aversano, V.; Zampieri, M.; Bürkle, A.; Villanueva, M.; Dollé, M.; Jansen, E.; Grune, T.; Gonos, E.; et al. Uncovering the Relationship between Selenium Status, Age, Health, and Dietary Habits: Insights from a Large Population Study including Nonagenarian Offspring from the MARK-AGE Project. Nutrients 2023, 15, 2182. [Google Scholar] [CrossRef]
- Deng, X.; Liu, K.; Li, M.; Zhang, W.; Zhao, X.; Zhao, Z.; Liu, X. Difference of Selenium Uptake and Distribution in the Plant and Selenium Form in the Grains of Rice with Foliar Spray of Selenite or Selenate at Different Stages. Field Crops Res. 2017, 211, 165–171. [Google Scholar] [CrossRef]
- Premarathna, L.; McLaughlin, M.J.; Kirby, J.K.; Hettiarachchi, G.M.; Stacey, S.; Chittleborough, D.J. Selenate-Enriched Urea Granules Are a Highly Effective Fertilizer for Selenium Biofortification of Paddy Rice Grain. J. Agric. Food Chem. 2012, 60, 6037–6044. [Google Scholar] [CrossRef] [Green Version]
- Alfthan, G.; Eurola, M.; Ekholm, P.; Venäläinen, E.-R.; Root, T.; Korkalainen, K.; Hartikainen, H.; Salminen, P.; Hietaniemi, V.; Aspila, P.; et al. Effects of Nationwide Addition of Selenium to Fertilizers on Foods, and Animal and Human Health in Finland: From Deficiency to Optimal Selenium Status of the Population. J. Trace. Elem. Med. Biol. 2015, 31, 142–147. [Google Scholar] [CrossRef]
- Wu, Z.; Bañuelos, G.S.; Lin, Z.-Q.; Liu, Y.; Yuan, L.; Yin, X.; Li, M. Biofortification and Phytoremediation of Selenium in China. Front Plant Sci. 2015, 6, 136. [Google Scholar] [CrossRef]
- Ramkissoon, C.; Degryse, F.; da Silva, R.C.; Baird, R.; Young, S.D.; Bailey, E.H.; McLaughlin, M.J. Improving the Efficacy of Selenium Fertilizers for Wheat Biofortification. Sci. Rep. 2019, 9, 19520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieliszek, M.; Błażejak, S. Selenium: Significance, and Outlook for Supplementation. Nutrition 2013, 29, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Arı, B.; Öz, E.; Can, S.Z.; Bakırdere, S. Bioaccessibility and Bioavailability of Selenium Species in Se-Enriched Leeks (Allium Porrum) Cultivated by Hydroponically. Food Chem. 2022, 372, 131314. [Google Scholar] [CrossRef]
- Maseko, T.; Callahan, D.L.; Dunshea, F.R.; Doronila, A.; Kolev, S.D.; Ng, K. Chemical Characterisation and Speciation of Organic Selenium in Cultivated Selenium-Enriched Agaricus Bisporus. Food Chem. 2013, 141, 3681–3687. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, S.; Jiang, Z.; Wang, Y.; Zhang, Z. Selenium Biofortification Modulates Plant Growth, Microelement and Heavy Metal Concentrations, Selenium Uptake, and Accumulation in Black-Grained Wheat. Front. Plant Sci. 2021, 12, 748523. [Google Scholar] [CrossRef]
- Cuderman, P.; Kreft, I.; Germ, M.; Kovacevic, M.; Stibilj, V. Selenium Species in Selenium-Enriched and Drought-Exposed Potatoes. J. Agric. Food Chem. 2008, 56, 9114–9120. [Google Scholar] [CrossRef]
- Nasim, M.J.; Zuraik, M.M.; Abdin, A.Y.; Ney, Y.; Jacob, C. Selenomethionine: A Pink Trojan Redox Horse with Implications in Aging and Various Age-Related Diseases. Antioxidants 2021, 10, 882. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, W.; Wang, X. Selenium Speciation and Distribution Characteristics in the Rhizosphere Soil of Rice (Oryza sativa L.) Seedlings. Commun. Soil Sci. Plant Anal. 2010, 41, 1411–1425. [Google Scholar] [CrossRef]
- Versini, A.; Di Tullo, P.; Aubry, E.; Bueno, M.; Thiry, Y.; Pannier, F.; Castrec-Rouelle, M. Influence of Se Concentrations and Species in Hydroponic Cultures on Se Uptake, Translocation and Assimilation in Non-Accumulator Ryegrass. Plant Physiol. Biochem. 2016, 108, 372–380. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, B.; Deng, K.; Gao, X.; Sun, G.; Zhang, Z.; Li, P.; Wang, W.; Li, H.; Zhang, Z.; et al. NRT1.1B Improves Selenium Concentrations in Rice Grains by Facilitating Selenomethinone Translocation. Plant Biotechnol. J. 2019, 17, 1058–1068. [Google Scholar] [CrossRef] [Green Version]
- Cubadda, F.; Aureli, F.; Ciardullo, S.; D’Amato, M.; Raggi, A.; Acharya, R.; Reddy, R.A.V.; Prakash, N.T. Changes in Selenium Speciation Associated with Increasing Tissue Concentrations of Selenium in Wheat Grain. J. Agric. Food Chem. 2010, 58, 2295–2301. [Google Scholar] [CrossRef]
- Szira, F.; Monostori, I.; Galiba, G.; Rakszegi, M.; Bálint, A.F. Micronutrient Contents and Nutritional Values of Commercial Wheat Flours and Flours of Field-Grown Wheat Varieties—A Survey in Hungary. Cereal Res. Commun. 2014, 42, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Xia, Q.; Yang, Z.; Shui, Y.; Liu, X.; Chen, J.; Khan, S.; Wang, J.; Gao, Z. Methods of Selenium Application Differentially Modulate Plant Growth, Selenium Accumulation and Speciation, Protein, Anthocyanins and Concentrations of Mineral Elements in Purple-Grained Wheat. Front. Plant Sci. 2020, 11, 1114. [Google Scholar] [CrossRef]
- Delaqua, D.; Carnier, R.; Berton, R.S.; Corbi, F.C.A.; Coscione, A.R. Increase of Selenium Concentration in Wheat Grains through Foliar Application of Sodium Selenate. J. Food Compos. Anal. 2021, 99, 103886. [Google Scholar] [CrossRef]
- Arvy, M.-P. Translocation of Selenium in the Bean Plant (Phaseolus vulgaris) and the Field Bean (Vicia faba). Physiol. Plant. 1982, 56, 299–302. [Google Scholar] [CrossRef]
- Wang, S.; Liang, D.; Wang, D.; Wei, W.; Fu, D.; Lin, Z. Selenium Fractionation and Speciation in Agriculture Soils and Accumulation in Corn (Zea mays L.) under Field Conditions in Shaanxi Province, China. Sci. Total Environ. 2012, 427–428, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, Z.; Duan, B.; Hu, C.; Zhao, X.; Guo, Z. Effect of Applied Sulphur on the Uptake by Wheat of Selenium Applied as Selenite. Plant Soil 2015, 386, 35–45. [Google Scholar] [CrossRef]
- Yu, X.-Z.; Gu, J.-D. Differences in Uptake and Translocation of Selenate and Selenite by the Weeping Willow and Hybrid Willow. Environ. Sci. Pollut. Res. Int. 2008, 15, 499–508. [Google Scholar] [CrossRef]
- Feng, Z.; Sun, H.; Qin, Y.; Zhou, Y.; Zhu, H.; Yao, Q. A synthetic community of siderophore-producing bacteria increases soil selenium bioavailability and plant uptake through regulation of the soil microbiome. Sci. Total Environ. 2023, 871, 162076. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, I.; Smoleń, S.; Czernicka, M.; Halka, M.; Kęska, K.; Pitala, J. Effect of Selenium Form and Salicylic Acid on the Accumulation of Selenium Speciation Forms in Hydroponically Grown Lettuce. Agriculture 2020, 10, 584. [Google Scholar] [CrossRef]
- Keskinen, R.; Räty, M.; Yli-Halla, M. Selenium Fractions in Selenate-Fertilized Field Soils of Finland. Nutr. Cycl. Agroecosyst. 2011, 91, 17–29. [Google Scholar] [CrossRef]
- Li, J.; Peng, Q.; Liang, D.; Liang, S.; Chen, J.; Sun, H.; Li, S.; Lei, P. Effects of Aging on the Fraction Distribution and Bioavailability of Selenium in Three Different Soils. Chemosphere 2016, 144, 2351–2359. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; He, M. Distribution and Speciation of Selenium, Antimony, and Arsenic in Soils and Sediments Around the Area of Xikuangshan (China). Clean Soil Air Water 2016, 44, 1538–1546. [Google Scholar] [CrossRef]
- Chen, L.; Yang, F.; Xu, J.; Hu, Y.; Hu, Q.; Zhang, Y.; Pan, G. Determination of Selenium Concentration of Rice in China and Effect of Fertilization of Selenite and Selenate on Selenium Content of Rice. J. Agric. Food Chem. 2002, 50, 5128–5130. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Yang, L.; Li, Y.; Wei, B.; Yu, J.; Feng, F. Distribution and Translocation of Selenium from Soil to Highland Barley in the Tibetan Plateau Kashin-Beck Disease Area. Environ. Geochem. Health 2017, 39, 221–229. [Google Scholar] [CrossRef]
- Ducsay, L.; Ložek, O.; Marček, M.; Varényiová, M.; Hozlár, P.; Lošák, T. Possibility of Selenium Biofortification of Winter Wheat Grain. Plant Soil Environ. 2016, 62, 379–383. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-D.; Wang, X.; Wong, Y.-S. Generation of Selenium-Enriched Rice with Enhanced Grain Yield, Selenium Content and Bioavailability through Fertilisation with Selenite. Food Chem. 2013, 141, 2385–2393. [Google Scholar] [CrossRef]
- Sun, G.-X.; Liu, X.; Williams, P.N.; Zhu, Y.-G. Distribution and Translocation of Selenium from Soil to Grain and Its Speciation in Paddy Rice (Oryza sativa L.). Environ. Sci. Technol. 2010, 44, 6706–6711. [Google Scholar] [CrossRef]
- Laffon, B.; Valdiglesias, V.; Pásaro, E.; Méndez, J. The Organic Selenium Compound Selenomethionine Modulates Bleomycin-Induced DNA Damage and Repair in Human Leukocytes. Biol. Trace Elem. Res. 2010, 133, 12–19. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, W.; Wang, S.; Zhang, X.; Zhang, W.; He, M.; Zhang, X.; Wu, T.; Guo, H. Essential Metals Zinc, Selenium, and Strontium Protect against Chromosome Damage Caused by Polycyclic Aromatic Hydrocarbons Exposure. Environ. Sci. Technol. 2016, 50, 951–960. [Google Scholar] [CrossRef]
- Alcântara, D.B.; Dionísio, A.P.; Artur, A.G.; Silveira, B.K.S.; Lopes, A.F.; Guedes, J.A.C.; Luz, L.R.; Nascimento, R.F.; Lopes, G.S.; Hermsdorff, H.H.M.; et al. Selenium in Brazil Nuts: An Overview of Agronomical Aspects, Recent Trends in Analytical Chemistry, and Health Outcomes. Food Chem. 2022, 372, 131207. [Google Scholar] [CrossRef] [PubMed]
- Carey, A.-M.; Scheckel, K.G.; Lombi, E.; Newville, M.; Choi, Y.; Norton, G.J.; Price, A.H.; Meharg, A.A. Grain Accumulation of Selenium Species in Rice (Oryza sativa L.). Environ. Sci. Technol. 2012, 46, 5557–5564. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-G.; Pilon-Smits, E.A.H.; Zhao, F.-J.; Williams, P.N.; Meharg, A.A. Selenium in Higher Plants: Understanding Mechanisms for Biofortification and Phytoremediation. Trends Plant Sci. 2009, 14, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Takahashi, Y. Origin of the Difference in the Distribution Behavior of Tellurium and Selenium in a Soil–Water System. Geochim. Cosmochim. Acta 2008, 72, 1281–1294. [Google Scholar] [CrossRef]
- Rao, S.; Xiao, X.; Wang, Y.; Xiong, Y.; Cheng, H.; Li, L.; Cheng, S. Comparative study of the effects of selenium nanoparticles and selenite on selenium content and nutrient quality in soybean sprouts. Folia Hortic. 2022, 34, 223–234. [Google Scholar] [CrossRef]
Plant | Parts | Treatment | SeCys | SeMet | MeSeCys | Selenite | Selenate | Sum of Species |
---|---|---|---|---|---|---|---|---|
Wheat | Bran | SeL | ND | ND | ND | ND | ND | ND |
SeM | 0.432 | 0.639 | ND | ND | ND | 1.071 | ||
SeH | ND | 1.041 | ND | ND | ND | 1.041 | ||
White flour | SeL | ND | ND | ND | ND | ND | ND | |
SeM | 0.139 | 0.612 | ND | ND | ND | 0.751 | ||
SeH | 0.206 | 1.404 | 0.137 | ND | ND | 1.747 | ||
Broad Bean | Testa | SeL | ND | ND | ND | ND | ND | ND |
SeM | ND | ND | ND | ND | ND | ND | ||
SeH | 0.120 | ND | ND | ND | ND | 0.120 | ||
Cotyledon | SeL | ND | ND | ND | ND | ND | ND | |
SeM | ND | 0.228 | ND | ND | ND | 0.228 | ||
SeH | ND | 0.837 | ND | ND | ND | 0.837 |
Crop | Se Treatment | BF (Bioaccumulation Factor) | TF (Translocation Factor) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Whole Grain (or Bean) | Husk (or Pod) | Leaf | Stem | Root | Whole Grain/Husk (or Bean/Pod) | Husk/Stem (or Pod/Stem) | Leaf/ Stem | Stem/Root | ||
Wheat | SeL | 1.82 a | 0.00 b | 2.19 a | 0.32 a | 0.49 b | 0.00 c | 0.00 b | 6.81 a | 0.65 a |
SeM | 0.68 b | 0.11 a | 0.29 b | 0.06 b | 0.29 c | 6.20 a | 1.78 a | 4.69 b | 0.21 b | |
SeH | 0.46 c | 0.13 a | 0.31 b | 0.07 b | 0.78 a | 3.51 b | 1.80 a | 4.34 b | 0.09 c | |
Broad Bean | SeL | 1.00 a | 0.21 a | 1.29 a | 0.90 a | 0.27 b | 4.88 a | 0.23 b | 1.43 b | 3.40 a |
SeM | 0.46 b | 0.23 a | 0.81 b | 0.67 a | 2.15 a | 1.97 b | 0.34 b | 1.20 b | 0.31 b | |
SeH | 0.18 c | 0.08 b | 0.45 c | 0.14 b | 2.15 a | 2.36 b | 0.55 a | 3.27 a | 0.06 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, K.; Wang, Y.; Du, X.; Wuriyanghan, H.; Wang, X.; Xie, J.; Zhao, X.; Jia, W. Comparison of Selenium Accumulation in Edible Parts of Wheat and Broad Bean. Agronomy 2023, 13, 1939. https://doi.org/10.3390/agronomy13071939
Bao K, Wang Y, Du X, Wuriyanghan H, Wang X, Xie J, Zhao X, Jia W. Comparison of Selenium Accumulation in Edible Parts of Wheat and Broad Bean. Agronomy. 2023; 13(7):1939. https://doi.org/10.3390/agronomy13071939
Chicago/Turabian StyleBao, Keman, Yurong Wang, Xiaoping Du, Hada Wuriyanghan, Xu Wang, Jiatao Xie, Xiaohu Zhao, and Wei Jia. 2023. "Comparison of Selenium Accumulation in Edible Parts of Wheat and Broad Bean" Agronomy 13, no. 7: 1939. https://doi.org/10.3390/agronomy13071939
APA StyleBao, K., Wang, Y., Du, X., Wuriyanghan, H., Wang, X., Xie, J., Zhao, X., & Jia, W. (2023). Comparison of Selenium Accumulation in Edible Parts of Wheat and Broad Bean. Agronomy, 13(7), 1939. https://doi.org/10.3390/agronomy13071939