Quantitative and Qualitative Traits of Duckweed (Lemna minor) Produced on Growth Media with Pig Slurry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Course of the Experiment
2.2. Data Analyses
2.3. Statistical Analysis
3. Results
3.1. Duckweed Growth
3.2. Growth Medium Analyses
3.3. Chemical Analyses of Duckweed
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kramarz, P. How to feed the world in the era of a closed-ecological climate (chapter 11). In Five to Twelve the End of the World. The Climate and Ecological Crisis as the Voice of Many Sciences; Jasikowska, K., Pałasz, M., Eds.; Jagiellonian University in Krakow, Jagiellonian Library: Krakow, Poland, 2022; pp. 415–454. Available online: https://za512.uj.edu.pl/ (accessed on 25 May 2023).
- Herrero, M.; Thornton, P.K. Livestock and global change: Emerging issues for sustainable food systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20878–20881. [Google Scholar] [CrossRef]
- Komarek, A.M.; Dunston, S.; Enahoro, D.; Godfray, H.C.J.; Herrero, M.; Mason-D’Croz, D.; Rich, K.M.; Scarborough, P.; Springmann, M.; Sulser, T.B.; et al. Income, consumer preferences, and the future of livestock-derived food demand. Glob. Environ. Chang. 2021, 70, 102343. [Google Scholar] [CrossRef] [PubMed]
- Anthis, K.; Anthis, J.R. Global Farmed & Factory Farmed Animals Estimates, Sentience Institute. Available online: https://www.sentienceinstitute.org/global-animal-farming-estimates (accessed on 25 May 2023).
- Parrini, S.; Aquilani, C.; Pugliese, C.; Bozzi, R.; Sirtori, F. Soybean replacement by alternative protein sources in pig nutrition and its effect on meat quality. Animals 2023, 13, 494. [Google Scholar] [CrossRef] [PubMed]
- Sońta, M.; Rekiel, A. Production and use of legumes for fodder. Part II. The use of legumes in animal feeding. Przegl. Hod. 2017, 1, 19–25. [Google Scholar]
- Penakalapati, G.; Swarthout, J.; Delahoy, M.J.; McAliley, L.; Wodnik, B.; Levy, K.; Freeman, M.C. Exposure to animal feces and human health: A systematic review and proposed research priorities. Environ. Sci. Technol. 2017, 51, 11537–11552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psomopoulos, C.S.; Kiskira, K.; Kalkanis, K.; Leligou, H.C.; Themelis, N.J. The role of energy recovery from wastes in the decarbonization efforts of the EU power sector. IET Renew. Power Gener. 2022, 16, 48–64. [Google Scholar] [CrossRef]
- Komorowska, M.; Niemiec, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Findura, P.; Gurgulu, H.; Stuglik, J.; Chowaniak, M.; Atılgan, A. Closed-loop agricultural production and its environmental efficiency: A case study of sheep wool production in northwestern Kyrgyzstan. Energies 2022, 15, 6358. [Google Scholar] [CrossRef]
- Iwano, H.; Hatohara, S.; Tagawa, T.; Tamaki, H.; Li, Y.-Y.; Kubota, K. Effect of treated sewage characteristics on duckweed biomass production and microbial communities. Water Sci. Technol. 2020, 82, 292–302. [Google Scholar] [CrossRef]
- Sońta, M.; Łozicki, A.; Szymańska, M.; Sosulski, T.; Szara, E.; Wąs, A.; van Pruissen, G.W.P.; Cornelissen, R.L. Duckweed from a biorefinery system: Nutrient recovery efficiency and forage value. Energies 2020, 13, 5261. [Google Scholar] [CrossRef]
- Mohan, S.V.; Nikhil, G.N.; Chiranjeevi, P.; Reddy, C.N.; Rohit, M.V.; Kumar, A.N.; Sarkar, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 2020, 215, 2–12. [Google Scholar] [CrossRef]
- Ziegler, P.; Adelmann, K.; Zimmer, S.; Schmidt, C.; Appenroth, K.J. Relative in vitro growth rates of duckweeds (Lemnaceae)—The most rapidly growing higher plants. Plant Biol. 2015, 17, 33–41. [Google Scholar] [CrossRef]
- Baek, G.Y.; Saeed, M.; Choi, H.-K. Duckweeds: Their utilization, metabolites and cultivation. Appl. Biol. Chem. 2021, 64, 73. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Stepanenko, A.; Kishchenko, O.; Xu, J.; Borisjuk, N. Duckweeds for phytoremediation of polluted water. Plants 2023, 12, 589. [Google Scholar] [CrossRef]
- Guo, L.; Jin, Y.; Xiao, Y.; Tan, L.; Tian, X.; Ding, Y.; He, K.; Du, A.; Li, J.; Yi, Z.; et al. Energy-efficient and environmentally friendly production of starch-rich duckweed biomass using nitrogen-limited cultivation. J. Clean. Prod. 2020, 251, 119726. [Google Scholar] [CrossRef]
- FAO. Duckweed–A Tiny Aquatic Plant with Enormous Potential for Agriculture and Environment; FAO Publications: Rome, Italy, 1999; pp. 1–108. [Google Scholar]
- Iqbal, S. Duckweed Aquaculture Potentials, Possibilities and Limitations for Combined Wastewater Treatment and Animal Feed Production in Developing Countries. SANDEC Report No. 6/99. Available online: https://www.susana.org/_resources/documents/default/3-3063-7-1521808227.pdf (accessed on 16 June 2023).
- Sońta, M.; Rekiel, A.; Batorska, M. Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture—A review. Ann. Anim. Sci. 2019, 19, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, R.; Clark, W.D.; Sharma, J.G.; Goswami, R.K.; Shrivastav, A.K.; Tocher, D.R. Mass production of Lemna minor and its amino acid and fatty acid profiles. Front. Chem. 2018, 6, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagliuso, D.; Grandis, A.; Fortirer, J.S.; Camargo, P.; Floh, E.I.S.; Buckeridge, M.S. Duckweeds as promising food feedstocks globally. Agronomy 2022, 12, 796. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.; Yu, C.; Zhou, G. Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis. GCB Bioenergy 2021, 13, 70–82. [Google Scholar] [CrossRef]
- Rauba, M. Sustainable management of natural fertilizers in rural areas based on selected communes of the province Podlasie. Stud. Res. FEM SU 2015, 40, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, M.; Bazaios, E.; Ströbel, B.; Wolf, B.; Ostrler, U.; Gasche, R.; Schlingmann, M.; Kiese, R.; Dannenmann, M. Impacts of slurry acidification and injection on fertilizer nitrogen fates in grassland. Nutr. Cycl. Agroecosyst. 2023, 125, 171–186. [Google Scholar] [CrossRef]
- Zanon, J.A.; Favaretto, N.; Goularte, G.D.; Dieckow, J.; Barth, G. Manure application at long-term in no-till: Effects on runoff, sediment and nutrients losses in high rainfall events. Agri. Water Manag. 2020, 228, 105908. [Google Scholar] [CrossRef]
- O’Neill, E.A.; Stejskal, V.; Clifford, E.; Rowan, N. Novel use of peatlands as future locations for the sustainable intensification of freshwater aquaculture production–A case study from the Republic of Ireland. Sci. Total Environ. 2020, 706, 136044. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and eutrophication: Where do we go from here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, Z.; Li, X.; Yang, J.; Liang, L.; Sui, Q.; Wang, B.; Dong, H. NH3, N2O, and NO emissions from digested pig slurry stored under different temperatures: Characteristics and microbial mechanisms. J. Clean. Prod. 2021, 319, 128560. [Google Scholar] [CrossRef]
- AOAC. Official Analytical Chemists: Methods of Analysis of the AOAC, 18th ed.; AOAC: Rockville, MA, USA, 2007. [Google Scholar]
- ISO 5509:2000; Vegetable and Animal Oils and Fats-Preparation of Fatty Acid Methyl Esters. ISO: Geneva, Switzerland, 2000.
- Puppel, K.; Kuczyńska, B.; Nałęcz-Tarwacka, T.; Grodzki, H. Influence of linseed variety on fatty acid profile in cow’s milk. J. Sci. Food Agric. 2013, 93, 2276–2280. [Google Scholar] [CrossRef] [PubMed]
- Appenroth, K.J.; Sree, K.S.; Bog, M.; Ecker, J.; Seeliger, C.; Böhm, V.; Lorkowski, S.; Sommer, K.; Vetter, W.; Tolzin-Banasch, K.; et al. Nutritional value of the duckweed species of the genus wolffia (Lemnaceae) as human food. Front. Chem. 2018, 6, 483. [Google Scholar] [CrossRef] [Green Version]
- Mir, S.A. Extraction of NOx and determination of nitrate by acid reduction in water, soil, excreta, feed, vegetables and plant materials. J. Appl. Sci. Environ. Manage. 2009, 13, 57–63. [Google Scholar] [CrossRef]
- Körner, S.; Vermaat, J.E.; Veenstra, S. The capacity of duckweed to treat wastewater: Ecological considerations for a sound design. J. Environ. Qual. 2003, 32, 1583–1590. [Google Scholar] [CrossRef]
- Khvatkov, P.; Chernobrovkina, M.; Okuneva, A.; Dolgov, S. Creation of culture media for efficient duckweeds micropropagation (Wolffia arrhiza and Lemna minor) using artificial mathematical optimization models. Plant Cell Tissue Organ Cult. 2019, 136, 85–100. [Google Scholar] [CrossRef]
- Stadtlander, T.; Förster, S.; Rosskothen, D.; Leiber, F. Slurry-grown duckweed (Spirodela polyrhiza) as a means to recycle nitrogen into feed for rainbow trout fry. J. Clean. Prod. 2019, 228, 86–93. [Google Scholar] [CrossRef]
- O’Mahoney, R.; Coughlan, N.E.; Walsh, É.; Jansen, A.K. Cultivation Lemna minor on industry-derived, anaerobically digested, dairy processing wastewater. Plant 2022, 11, 3027. [Google Scholar] [CrossRef] [PubMed]
- Lambert, M.; Devlamynck, R.; de Souza, M.F.; Leenknegt, J.; Raes, K.; Eeckhout, M.; Meers, E. The impact of salt accumulation on the growth of duckweed in a continuous system for sig manure treatment. Plants 2022, 11, 3189. [Google Scholar] [CrossRef] [PubMed]
- Stadtlander, T.; Bandy, J.; Rosskothen, D.; Pietsch, C.; Tschudi, F.; Sigrist, M.; Seits, A.; Leiber, F. Dilution rates of cattle slurry affect ammonia uptake and protein production of duckweed grown in recirculating systems. J. Clean. Prod. 2022, 357, 131916. [Google Scholar] [CrossRef]
- Ullah, H.; Gul, B.; Khan, H.; Manned, I. Effect of pH levels on duckweed’s proximate composition for utilization as poultry and fish feed. Biosci. Res. 2020, 17, 2604–2613. [Google Scholar]
- Jones, G.; Scullion, J.; Dalesman, S.; Robson, P.; Grynn-Jones, D. Lowering pH enables duckweed (Lemna minor L.) growth on toxic concentrations of high-nutrient agricultural wastewater. J. Clean. Prod. 2023, 395, 136392. [Google Scholar] [CrossRef]
- Wendeou, S.P.H.; Aina, M.P.; Crapper, M.; Adjovi, E.; Mama, D. Influence of salinity on duckweed growth and duckweed based wastewater treatment system. J. Water Resour. Prot. 2012, 5, 993–999. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Saleem, M.; Javed, A. Effect of electrical conductivity (EC) on growth performance of duckweed at dumpsite leachate. Int. J. Sci. Environ. 2017, 6, 1989–1999. [Google Scholar]
- Tkalec, M.; Mlinarec, J.; Widaković-Cfirek, Ž.; Jelencić, B.; Regula, I. The effect of salinity and osmotic stress on duckweed Lemna minor L. Acta Bot. Croat. 2001, 60, 237–244. [Google Scholar]
- Yang, J.; Li, G.; Xia, M.; Chen, Y.; Chen, Y.; Kumar, S.; Sun, Z.; Li, X.; Zhao, X.; Hou, H. Combined effects of temperature and nutrients on the toxicity of cadmium in duckweed (Lemna aequinoctialis). J. Hazard. Mater. 2022, 432, 128646. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands, Surface Flow. Encycl. Ecol. 2008, 1, 765–776. [Google Scholar] [CrossRef]
- Nuamah, E. Chemical and nutritional composition of Duckweed and its potential as source of feed in broiler production. Anim. Feed Nutr. 2017, 1–11. [Google Scholar] [CrossRef]
- Devlamynck, R.; de Souza, M.F.; Leenknegt, J.; Jacxsens, L.; Eeckhout, M.; Meers, E. Lemna minor cultivation for treating swine manure and providing micronutrients for animal feed. Plants 2021, 10, 1124. [Google Scholar] [CrossRef] [PubMed]
- Mohedano, R.A.; Costa, R.H.R.; Tavares, F.A.; Filho, P.B. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour. Technol. 2012, 112, 68–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demann, J.; Petersen, F.; Dusel, G.; Bog, M.; Devlamynck, R.; Ulbrich, A.; Olfs, H.-W.; Westendarp, H. Nutritional value of duckweed as protein feed for broiler chickens-digestibility of crude protein, amino acids and phosphorus. Animals 2023, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, N.; Hamdan, N.H.; Zabidi, A.R.; Mohamad, A.M.; Suhaimi, M.L.H.; Johari, M.A.A.M.; Yahya, H.N.; Yahya, H. Duckweed as a future food: Evidence from metabolite profile, nutritional and microbial analyses. Future Food 2022, 5, 100128. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 5–24.
- Pasarin, D.; Rovinaru, C. Sources of carotenoids and their uses as animal feed additives—A review. Sci. Pap. Ser. D. Anim. Sci. 2018, 61, 74–85. [Google Scholar]
- Appenroth, K.J.; Sree, K.S.; Volter, B.; Hammann, S.; Vetter, W.; Leiterer, M.; Jahreis, G. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem. 2017, 217, 266–273. [Google Scholar] [CrossRef]
- Polutchko, S.K.; Stewart, J.J.; McNamara, M.; Garcia, N.D.; López-Pozo, M.; Adams, W.W.; Demmig-Adams, B. Lemna as a Sustainable, Highly Nutritious Crop: Nutrient Production in Different Light Environments. Nutraceuticals 2022, 4, 350–364. [Google Scholar] [CrossRef]
- Stewart, J.J.; Adams, W.W.; Escobar, C.M.; López-Pozo, M.; Demmig-Adams, B. Growth and essential carotenoid micronutrients in Lemna gibba as a function of growth light intensity. Front. Plant Sci. 2020, 11, 480. [Google Scholar] [CrossRef]
- Devlamynck, R.; de Souza, M.F.; Bog, M.; Leenknegt, J.; Eeckhout, M.; Meers, E. Effect of the growth medium composition on nitrate accumulation in the novel protein crop Lemna minor. Ecotoxicol. Environ. Saf. 2020, 206, 111380. [Google Scholar] [CrossRef]
- Lenz, M.E. Risk of Nitrate Toxicity When Grazing Annual Forages. Master’s Thesis, University of Nebraska-Lincoln, Lincoln, UK, 2018; pp. 1–112. [Google Scholar]
Specification | Pig Slurry |
---|---|
pH | 7.52 |
Dry matter (%) | 4.21 ± 0.21 |
Nitrogen total (% fresh weight) | 0.58 ± 0.06 |
N-NH4 (% fresh weight) | 0.390 ± 0.078 |
P total (% fresh weight) | 0.11 ± 0.02 |
P2O5 (% fresh weight) | 0.25 ± 0.04 |
K (% fresh weight) | 0.30 ± 0.06 |
K2O (% fresh weight) | 0.36 ± 0.07 |
Mg (% fresh weight) | <0.10 |
MgO (% fresh weight) | <0.16 |
Ca (% fresh weight) | 0.13 ± 0.03 |
CaO (% fresh weight) | 0.18 ± 0.4 |
Pb (mg/kg d.m.) | <10.2 |
Cd (mg/kg d.m.) | 0.31 ± 0.07 |
Ni (mg/kg d.m.) | <5.1 |
Cr (mg/kg d.m.) | 6.3 ± 1.6 |
Cu (mg/kg d.m.) | 243 ± 49 |
Zn (mg/kg d.m.) | 1083 ± 217 |
Hg (mg/kg d.m.) | <0.010 |
Fe (mg/kg d.m.) | 1601 ± 320 |
Mn (mg/kg d.m.) | 717 ± 143 |
B (mg/kg d.m.) | 44.0 ± 8.8 |
Mo (mg/kg d.m.) | 11.9 ± 2.4 |
Na (% fresh weight) | 0.05 ± 0.01 |
Group | Dry Matter g kg−1 | Total Protein | Crude Fat | Crude Ash | Crude Fiber |
---|---|---|---|---|---|
g kg DM | |||||
2 | 53.5 Ab | 417.5 Ab | 32.5 Ab | 232.4 Ab | 82.3 Ab |
3 | 47.9 b | 360.8 b | 29.9 b | 221.7 b | 87.3 b |
4 | 42.9 Aa | 348.6 Aa | 26.8 Aa | 215.9 Aa | 90.4 Aa |
5 | 49.1 a | 373.1 a | 28.2 a | 224.8 a | 86.6 a |
SE | 0.80 | 5.43 | 0.45 | 1.14 | 0.62 |
p-Value | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Group | Macroelements | Microelements | Heavy Metals | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ca | P | K | Mg | Na | Zn | Cu | Cd | Pb | Al | Cr | |
g kg−1 DM | mg kg−1 DM | ||||||||||
2 | 3.55 A | 3.95 A | 21.85 A | 4.01 A | 7.54 A | 152.12 A | 3.18 A | 0.05 | 1.17 A | 151.12 Aa | 0.71 A |
3 | 4.02 | 4.12 | 19.52 | 3.58 | 6.24 | 148.89 | 4.05 | 0.05 | 1.21 | 142.17 | 0.75 |
4 | 4.41 Aa | 4.68 A | 18.95 A | 3.33 A | 5.98 A | 131.12 A | 4.74 A | 0.04 | 1.27 A | 134.45 A | 0.79 A |
5 | 3.89 a | 4.31 | 19.69 | 3.52 | 6.71 | 138.28 | 3.41 | 0.03 | 1.22 | 139.12 a | 0.73 |
SE | 0.06 | 0.05 | 0.23 | 0.05 | 0.12 | 1.75 | 0.13 | 0.01 | 0.01 | 1.27 | 0.01 |
p-Value | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.060 | 0.001 | 0.001 | 0.001 |
Group | α-Tocopherol | β-Carotene | α-Carotene | Violaxanthin | Zeaxanthin | Lutein |
---|---|---|---|---|---|---|
mg kg−1 DM | ||||||
2 | 67.2 A | 327.2 Aa | 21.1 Aa | 249.8 Aa | 30.7 B | 579.6 Ab |
3 | 66.4 | 324.8 | 20.4 a | 241.2 a | 31.9 | 574.2 b |
4 | 64.9 A | 312.5 A | 19.9 A | 231.8 Ab | 32.8 AB | 568.8 Aa |
5 | 66.5 | 319.5 a | 20.7 | 244.7 b | 30.7 A | 576.5 a |
SE | 0.19 | 1.18 | 0.10 | 1.37 | 0.19 | 0.83 |
p-Value | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Amino Acid | Group | SE | p-Value | |||
---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | |||
Alanine | 2.77 | 2.70 | 2.69 | 2.75 | 0.01 | 0.057 |
Arginine | 3.03 | 3.01 | 3.01 | 3.02 | 0.01 | 0.844 |
Aspartic acid | 3.61 | 3.56 | 3.55 | 3.58 | 0.01 | 0.184 |
Glutamine acid | 6.31 | 6.29 | 6.27 | 6.30 | 0.01 | 0.678 |
Glycine | 2.73 | 2.72 | 2.71 | 2.72 | 0.01 | 0.739 |
Histadine | 0.82 | 0.81 | 0.79 | 0.81 | 0.01 | 0.629 |
Isoleucine | 2.02 | 1.99 | 1.99 | 2.01 | 0.01 | 0.355 |
Leucine | 4.09 A | 4.02 | 4.00 A | 4.05 | 0.01 | 0.009 |
Lysine | 2.58 Ab | 2.33 b | 2.21 Aa | 2.44 a | 0.03 | 0.001 |
Methionine | 0.75 | 0.73 | 0.71 | 0.74 | 0.01 | 0.306 |
Phenylalanine | 2.22 Ab | 2.09 b | 2.01 Aa | 2.19 a | 0.02 | 0.001 |
Proline | 1.16 | 1.13 | 1.12 | 1.15 | 0.01 | 0.276 |
Serine | 2.26 | 2.22 | 2.20 | 2.24 | 0.01 | 0.073 |
Theronine | 1.85 a | 1.78 | 1.75 a | 1.80 | 0.10 | 0.016 |
Tryptophan | 0.31 | 0.28 | 0.27 | 0.30 | 0.01 | 0.384 |
Tyrosine | 1.81 | 1.77 | 1.75 | 1.78 | 0.01 | 0.091 |
Cysteine | 0.37 | 0.35 | 0.34 | 0.36 | 0.01 | 0.602 |
Valine | 2.55 Aa | 2.42 a | 2.40 A | 2.48 | 0.01 | 0.002 |
Items | Group | SE | p-Value | |||
---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | |||
10:0 | 0.8 | 0.6 | 0.4 | 0.5 | 0.06 | 0.055 |
14:0 | 2.4 | 2.3 | 1.9 | 2.1 | 0.07 | 0.079 |
16:0 | 31.1 a | 30.7 | 29.4 a | 30.1 | 0.15 | 0.036 |
17:0 | 15.4 Ab | 14.8 a | 13.2 Aa | 14.1 b | 0.19 | 0.001 |
18:0 | 5.3 Aa | 4.8 | 4.0 A | 4.3 a | 0.13 | 0.002 |
20:0 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
22:0 | 1.1 | 1.0 | 0.6 | 0.8 | 0.07 | 0.087 |
18:1-c9 | 4.3 a | 4.0 | 3.4 a | 3.7 | 0.11 | 0.015 |
18:1-c11 | 1.8 A | 1.4 | 0.9 A | 1.1 | 0.10 | 0.008 |
18:2-c9 | 17.7 Aa | 16.8 b | 15.4 Ab | 16.1 a | 0.20 | 0.001 |
18:3 | 35.2 Aa | 34.1 | 33.0 A | 33.6 a | 0.19 | 0.001 |
20:1 | 1.1 | 0.9 | 0.6 | 0.8 | 0.06 | 0.118 |
20:5 | 0.7 | 0.6 | 0.3 | 0.4 | 0.05 | 0.071 |
Σ SFA | 56.1 Aa | 54.3 b | 49.5 Ab | 51.9 a | 0.54 | 0.001 |
Σ MUFA | 7.2 A | 6.3 a | 4.9 Aa | 5.6 | 0.21 | 0.001 |
Σ PUFA | 53.6 Aa | 51.5 b | 48.7 Ab | 50.1 a | 0.41 | 0.001 |
Group | N-NO3 | N-NH4 |
---|---|---|
mg N/g DM | ||
2 | 0.099 Aa | 0.141 |
3 | 0.056 Ab | 0.074 A |
4 | 0.086 b | 0.141 |
5 | 0.069 a | 0.167 A |
SE | 0.01 | 0.01 |
p-Value | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sońta, M.; Więcek, J.; Szara, E.; Rekiel, A.; Zalewska, A.; Batorska, M. Quantitative and Qualitative Traits of Duckweed (Lemna minor) Produced on Growth Media with Pig Slurry. Agronomy 2023, 13, 1951. https://doi.org/10.3390/agronomy13071951
Sońta M, Więcek J, Szara E, Rekiel A, Zalewska A, Batorska M. Quantitative and Qualitative Traits of Duckweed (Lemna minor) Produced on Growth Media with Pig Slurry. Agronomy. 2023; 13(7):1951. https://doi.org/10.3390/agronomy13071951
Chicago/Turabian StyleSońta, Marcin, Justyna Więcek, Ewa Szara, Anna Rekiel, Anna Zalewska, and Martyna Batorska. 2023. "Quantitative and Qualitative Traits of Duckweed (Lemna minor) Produced on Growth Media with Pig Slurry" Agronomy 13, no. 7: 1951. https://doi.org/10.3390/agronomy13071951
APA StyleSońta, M., Więcek, J., Szara, E., Rekiel, A., Zalewska, A., & Batorska, M. (2023). Quantitative and Qualitative Traits of Duckweed (Lemna minor) Produced on Growth Media with Pig Slurry. Agronomy, 13(7), 1951. https://doi.org/10.3390/agronomy13071951