Allelopathic Potential of Tropical Plants—A Review
Abstract
:1. Introduction
2. Allelopathy in Sustainable Agriculture
3. Selected Tropical Species and Their Allelopathic Potential
Tropical Plants | Native | Allelochemicals | Allelopathic Activities | Sensitive Plants | Reference |
---|---|---|---|---|---|
A. gangetica | Tropical Asia | Indole-3-carboxaldehyde and (6R,9S)-3-oxo-α-ionol | Cause 10% yield reduction | Cucumis sativus L. | [83,84] |
Artemisia annua L. | China | Artemisinin | Inhibit growth and root enlargement | Ipomoea lacunose L., L. sativa, P. oleracea, A. retroflexux | [85] |
Bidens pilosa L. | America | Polyacetylenes, flavonoids, phenolic acids, terpenes, and fatty acids, | Inhibit the growth | O. sativa, L. sativa, V. radiata, Z. mays, S. bicolor | [86] |
Brachiaria mutica (Forssk.) Stapf | northern and central Africa | Tannin, saponin | Germination and growth suppression | Mimosa pudica L. | [87] |
Brassica nigra (L.) K.Koch | North Africa, Asia | Sinigrin | Germination and radicle length inhibition | Avena fatua L. | [88] |
C. rutidosperma | Tropical America | Gallic acid, quercetin | Yield reduction | S. officinarum | [57] |
C. odorata | Central America | Fatty acids, phenols | Yield loss | Vigna radiata (L.) R.Wilczek, Solanum melongena L., Capsicum annuum L., Phaseolus vulgaris L. | [89] |
Cyperus sp. | Tropical Asia | Chlorogenic acid, myricitrin, catechin, apigenin, quercetin, luteolin, chrysin, rutin | Reduces yield by 86% and 93% | O. sativa | [90,91] |
Chrysanthemoides monilifera (L.) Norl. | Southern Africa | β-maaliene, α-isocomene, β-isocomene, δ-cadinene, 5-hydroxycalamenene, 5-methoxycalamenene | Reduced emergence and growth performances | Acacia mearnsii De Wild., Isotoma axillaris Lindl. | [92,93] |
Conyza bonariensis (L.) Cronquist | South America | (4Z)-lachnophyllum lactone | Suppression of growth | Cuscuta campestris Yunck. | [94] |
C. sativus | Southern Asia | Gallic acid, coumaric acid, p-hydroxybenzoic acid, caffeic acid, syringic acid | Inhibition of germination, radicle and hypocotyle length | E. crus-galli | [95] |
Cymbopogon citratus (DC.) Stapf | Southeast Asia | Monoterpenes, sesquterpenes | Emergence and growth reduc-tion | E. crus-galli | [96,97] |
Datura metel L. | America, Mexico | Scopolamine, hyoscyamine, atropine | Low emergence and growth | P. hysterophorus | [98,99] |
Eucalyptus camaldulensis Dehnh. | Australia | p-coumaric, gallic, gentisic, p-hydroxybenzoic, syringic acid, vanillic acid, catechol | Suppression of germination and growth | P. oleracea | [100,101] |
E. crassipes | South America | Loliolide | Inhibit emergence and growth | E. crus-galli | [102] |
E. colona | Asia | Tricin | Inhibit germination and seedling growth | O. sativa, Glycine max (L.) Merr. | [103] |
Eucalyptus globulus Labill | South-eastern Australia | Hyperoside, kaempferol 3-O-glucoside, shikimic-succinic acids | Inhibit germination, growth and physiological parameters | L. sativa, Agrostis stolonifera L. | [104] |
F. miliaceae | South America | Hexanedioic acid dioctyl ester, di-n-octyl phthalate | Cause 44% and 96% yield loss | Ludwigia hyssopifolia (G.Don) Exell., Echinochloa colonum (L.) Link., Cyperus iria L., Paspalum dilatatum Poir. | [66,105] |
L. chinensis | Tropical Asia | Alkaloids compounds, organic acids | Cause 10–35% yield loss | Ruellia tuberosa L., Brassica chinensis L., B. oleracea, E. crus-galli, Amaranthus viridis L., Z. mays | [106,107] |
Leptospermum scoparium J.R.Forst. & G.Forst. | Australia, New Zealand | Leptospermone | Inhibit germination and growth | A. retroflexus, A. theophrasti, C. arvensis, Cannabis sativa L., Sesbania grandiflora (L.) Pers., D. sanguinalis, E. crus-galli | [108] |
M. micrantha | South and Central America | Dihydromikanolide, deoxymikanolide, 2,3-epoxy-1-hydroxy-4,9-germacradiene-12,8:15,6-diolide. | Inhibit radicle and shoot length | R. sativus, Lolium perenne L., Trifolium repens L. | [74] |
M. sativa | Asia | Salicylic acid, p-hydroxybenzoic acid | Growth suppression | Digitaria ciliaris (Retz.) Koeler, C. album, Amaranthus lividus L., Portulaca oleracea L., Commelina communis L. | [109] |
P. hysterophorus | America | Caffeic acid, parthenin | Suppress germination and seedling growth | Eleusine indica (L.) Gaertn., Digitaria sanguinalis (L.) Scop | [110] |
Peganum harmala L. | Morocco, Iran, Spain, Italy | Galllic acid, vanillic acid, syringic acid, cinnamic acid, caffeic acid, trans-ferulic acid, 3,4 hydroxybenzoic acid | Suppress germination and seedling growth | A. fatua, C. arvensis | [111] |
Piper longum L. | Indo-Malaya region | Sarmentine | Inhibit growth | L. chinensis, Convolvulus arvensis L., Conyza canadensis (L.) Cronquist, Sinapis arvensis L., | [112] |
Sphenoclea zeylanica Gaertn. | Africa | Zeylanoxide A,B, epi-zeylanoxide A,B, secologanic acid, 7-epi-vogeloside, secologanoside, vogeloside | Inhibit seedlings growth | Lactuca sativa L., O. sativa | [113] |
Sesbania virgata (Cav.) Pers. | Bolivia, Brazil, Argentina | Catechin | Inhibit growth | S. lycopersicum, R. sativus, L. sativa, and O. sativa | [114] |
Solanum forskalii Dunal | Arabic nations | Vanillic acid, salicylic acid, protocatechuic acid | Inhibit germination | Z. mays, Brassica compestris L., T. aestivum | [115] |
S. bicolor | Africa | Sorgoleone | Inhibit germination and growth | Coronopus didymus L., Phalaris minor Retz., C. rotundus, S. nigrum., A. retroflexus, Ambrosia artemisiifolia L., Cassia obtusifolia L. | [46] |
Salvia leucophylla Greene | California | Camphor, 1,8-cineole, β-pinene, α-pinene, and camphene | Germination and growth reduction | B. campestris, Papaver rhoeas L. | [116,117] |
Stylosanthes guianensis (Aubl.) Sw. | Central and South America | Phenolic acids, coumarin and long-chain fatty acids | Suppress germination and growth | Monochoria vaginalis (Burm.f.) C.Presl, E. crus-galli | [118] |
Tagetes minuta L. | Southern South America | Alkaloid, saponin, flavonoid and terpenoid | Germination and growth inhibition | E. crus-galli, C. rotundus | [119] |
4. Bactericidal Efficacy of Tropical Plants
5. Insecticidal Efficacy of Tropical Plants
6. Fungicidal Efficacy of Tropical Plants
7. Herbicidal Efficacy of Tropical Plants
8. Mechanism Underlying Allelopathy
8.1. Changes in the Structure of Cells
8.2. Increases in the Antioxidant System
8.3. Increase in Cell Membrane Permeability
8.4. Plant Growth Regulators System
8.5. Functions and Activities of Various Enzymes
8.6. Influence on Respiration
8.7. Effect on Plant Photosynthesis
8.8. Influence on Water and Nutrient Uptake
9. Limitations and Future Prospective
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schandry, N.; Becker, C. Allelopathic plants: Models for studying plant–interkingdom interactions. Trends Plant Sci. 2020, 25, 176–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushtaq, W.; Siddiqui, M.B.; Hakeem, K.R. Mechanism of Action of Allelochemicals. In Allelopathy; Springer: Cham, Germany, 2020; pp. 61–66. [Google Scholar]
- Cheng, F.; Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 2015, 6, 1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, C.; Monnier, Y.; Santonja, M.; Gallet, C.; Weston, L.A.; Prévosto, B.; Bousquet-Mélou, A. The impact of competition and allelopathy on the trade-off between plant defense and growth in two contrasting tree species. Front. Plant Sci. 2016, 7, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahadur, S.; Verma, S.K.; Prasad, S.K.; Madane, A.J.; Maurya, S.P. Eco-friendly weed management for sustainable crop production-A review. J. Crop Weed 2015, 11, 181–189. [Google Scholar]
- Del Fabbro, C.; Güsewell, S.; Prati, D. Allelopathic effects of three plant invaders on germination of native species: A field study. Biol. Invasions 2014, 16, 1035–1042. [Google Scholar] [CrossRef]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.M.; Hasan, M. Assessment of allelopathic compounds to develop new natural herbicides: A review. Allelopath. J. 2021, 52, 19–37. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Widhalm, J.R. Agricultural uses of juglone: Opportunities and challenges. Agronomy 2020, 10, 1500. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Suttiyut, T.; Anwar, M.P.; Juraimi, A.S.; Kato-Noguchi, H. Allelopathic properties of lamiaceae species: Prospects and challenges to use in agriculture. Plants 2022, 11, 1478. [Google Scholar] [CrossRef]
- Uddin, M.N.; Robinson, R.W. Allelopathy and resource competition: The effects of Phragmites australis invasion in plant communities. Bot. Stud. 2017, 58, 29. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Mokhtar, A.S.; Mahmud, K.; Berahim, Z.; Rosli, A.M.; Hamdan, H.; Motmainna, M.; Ahmad-Hamdani, M.S. Physiological and biochemical responses of selected weed and crop species to the plant-based bioherbicide WeedLock. Sci. Rep. 2022, 12, 19602. [Google Scholar] [CrossRef]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.M.; Ahmad-Hamdani, M.S.; Berahim, Z.; Hasan, M. Physiological and biochemical responses of Ageratum conyzoides, Oryza sativa f spontanea (weedy rice) and Cyperus iria to Parthenium hysterophorus methanol extract. Plants 2021, 10, 1205. [Google Scholar]
- de Mello Prado, R. Mineral Nutrition of Tropical Plants; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Henry, J. Tropical and Equatorial Climates. In Encyclopedia of World Climatology; Encyclopedia of Earth Sciences Series; Oliver, J.E., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 742–750. [Google Scholar]
- Shukla, S.K.; Singh, K.K.; Pathak, A.D.; Jaiswal, V.P.; Solomon, S. Crop diversification options involving pulses and sugarcane for improving crop productivity, nutritional security and sustainability in India. Sugar Tech 2017, 19, 1–10. [Google Scholar] [CrossRef]
- Koch, K.; Bhushan, B.; Barthlott, W. Multifunctional surface structures of plants: An inspiration for biomimetics. Prog. Mater. Sci. 2009, 54, 137–178. [Google Scholar] [CrossRef]
- Radhamoni, H.V.N.; Queenborough, S.A.; Arietta, A.A.; Suresh, H.S.; Dattaraja, H.S.; Kumar, S.S.; Sukumar, R.; Comita, L.S. Local-and landscape-scale drivers of terrestrial herbaceous plant diversity along a tropical rainfall gradient in Western Ghats, India. J. Ecol. 2023, 111, 1021–1036. [Google Scholar] [CrossRef]
- Peguero-Pina, J.J.; Vilagrosa, A.; Alonso-Forn, D.; Ferrio, J.P.; Sancho-Knapik, D.; Gil-Pelegrín, E. Living in drylands: Functional adaptations of trees and shrubs to cope with high temperatures and water scarcity. Forests 2020, 11, 1028. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, M.; Chen, X.; Qu, B. Review on allelopathy of exotic invasive plants. Procedia Eng. 2011, 18, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Ain, N.; Nornasuha, Y.; Ismail, B. Evaluation of the allelopathic potential of fifteen common Malaysian weeds. Sains Malays. 2017, 46, 1413–1420. [Google Scholar]
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellù, L.; Sims, R. The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, B.S. Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol. 2012, 26, 1–13. [Google Scholar] [CrossRef]
- Hasan, M.; Ahmad-Hamdani, M.S.; Rosli, A.M.; Hamdan, H. Bioherbicides: An eco-friendly tool for sustainable weed management. Plants 2021, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Juraimi, A.S.; Norhidayati, B.S.; Ahmad, S.; Azmi, M. Plant spacing influence on weed competitiveness in aerobic rice [Conference poster]. The role of weed science in supporting food security by 2020. In Proceedings of the 24th Asian-Pacific Weed Science Society Conference, Bandung, Indonesia, 22–25 October 2013; pp. 571–577. [Google Scholar]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Yaduraju, N.T.; Rao, A.N. Implications of weeds and weed management on food security and safety in the Asia-Pacific region. In Proceedings of the 24th Asian-Pacific Weed Science Society Conference, Bandung, Indonesia, 22–25 October 2013. [Google Scholar]
- Lushchak, V.I.; Matviishyn, T.M.; Husak, V.V.; Storey, J.M.; Storey, K.B. Pesticide toxicity: A mechanistic approach. EXCLI J. 2018, 17, 1101–1136. [Google Scholar]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.M.; Hasan, M. Bioherbicidal properties of Parthenium hysterophorus, Cleome rutidosperma and Borreria alata extracts on selected crop and weed species. Agronomy 2021, 11, 643. [Google Scholar] [CrossRef]
- Hasan, M.; Mokhtar, A.S.; Rosli, A.M.; Hamdan, H.; Motmainna, M.; Ahmad-Hamdani, M.S. Weed control efficacy and crop-weed selectivity of a new bioherbicide WeedLock. Agronomy 2021, 11, 1488. [Google Scholar] [CrossRef]
- Korres, N.E.; Burgos, N.R.; Travlos, I.; Vurro, M.; Gitsopoulos, T.K.; Varanasi, V.K.; Salas-Perez, R. New directions for integrated weed management: Modern technologies, tools and knowledge discovery. Adv. Agron. 2019, 155, 243–319. [Google Scholar]
- Medic, A.; Zamljen, T.; Slatnar, A.; Hudina, M.; Grohar, M.C.; Veberic, R. Effect of Juglone and Other Allelochemicals in Walnut Leaves on Yield, Quality and Metabolites of Snack Cucumber (Cucumis sativus L.). Foods 2023, 12, 371. [Google Scholar] [CrossRef] [PubMed]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Mancinelli, R. Cover Crops for Sustainable Cropping Systems: A Review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Hussain, W.S.; Abbas, M.M. Application of Allelopathy in Crop Production. In Agricultural Development in Asia-Potential Use of Nano-Materials and Nano-Technology; IntechOpen: London, UK, 2021. [Google Scholar]
- Nornasuha, Y.; Ismail, B.S. Sustainable weed management using allelopathic approach. Malays. Appl. Biol. 2017, 46, 1–10. [Google Scholar]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.M.; Hasan, M. Allelopathic potential of Malaysian invasive weed species on Weedy rice (Oryza sativa f. spontanea Roshev). Allelopath. J. 2021, 53, 53–68. [Google Scholar] [CrossRef]
- Muhammad, Z.; Inayat, N.; Majeed, A.; Ali, H.; Ullah, K. Allelopathy and Agricultural Sustainability: Implication in weed management and crop protection—An overview. Eur. J. Ecol. 2019, 5, 54–61. [Google Scholar]
- Bhadoria, P.B.S. Allelopathy: A natural way towards weed management. Am. J. Exp. Agric. 2011, 1, 7–20. [Google Scholar] [CrossRef]
- Jabran, K.; Chauhan, B.S. Weed management in aerobic rice systems. Crop Prot. 2015, 78, 151–163. [Google Scholar]
- Wang, R.L.; Liu, S.W.; Xin, X.W.; Chen, S.; Peng, G.X.; Su, Y.J.; Song, Z.K. Phenolic acids contents and allelopathic potential of 10-cultivars of alfalfa and their bioactivity. Allelopath. J. 2017, 40, 63–70. [Google Scholar] [CrossRef]
- Gealy, D.R.; Yan, W. Weed suppression potential of ‘Rondo’ and other indica rice germplasm lines. Weed Technol. 2012, 26, 517–524. [Google Scholar] [CrossRef]
- Scavo, A.; Abbate, C.; Mauromicale, G. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant Soil 2019, 442, 23–48. [Google Scholar]
- Soltys, D.; Krasuska, U.; Bogatek, R.; Gniazdowska, A. Allelochemicals as bioherbicides—Present and perspectives. In Herbicides-Current Research and Case Studies in Use; IntechOpen: London, UK, 2013; pp. 517–542. [Google Scholar]
- Cheema, Z.A.; Khaliq, A.; Akhtar, S. Use of sorgaab (sorghum water extract) as a natural weed inhibitor in spring mungbean. Int. J. Agric. Biol. 2001, 3, 515–518. [Google Scholar]
- Anjum, T.; Bajwa, R. Field appraisal of herbicide potential of sunflower leaf extract against Rumex dentatus. Field Crops Res. 2007, 100, 139–142. [Google Scholar] [CrossRef]
- Weston, L.A.; Alsaadawi, I.S.; Baerson, S.R. Sorghum allelopathy-from ecosystem to molecule. J. Chem. Ecol. 2013, 39, 142–153. [Google Scholar] [CrossRef]
- Iqbal, J.; Cheema, Z.A.; Mushtaq, M.N. Allelopathic crop water extracts reduce the herbicide dose for weed control in cotton (Gossypium hirsutum). Int. J. Agric. Biol. 2009, 11, 360–366. [Google Scholar]
- Mobli, A.; Rinwa, A.; Sahil; Chauhan, B.S. Effects of sorghum residue in presence of pre-emergence herbicides on emergence and biomass of Echinochloa colona and Chloris virgata. PLoS ONE 2020, 15, e0229817. [Google Scholar]
- Kim, Y.O.; Lee, E.J. Comparison of phenolic compounds and the effects of invasive and native species in East Asia: Support for the novel weapons hypothesis. Ecol. Res. 2011, 26, 87–94. [Google Scholar] [CrossRef]
- Horvitz, N.; Wang, R.; Wan, F.H.; Nathan, R. Pervasive human-mediated large-scale invasion: Analysis of spread patterns and their underlying mechanisms in 17 of China’s worst invasive plants. J. Ecol. 2017, 105, 85–94. [Google Scholar]
- Satyal, P.; Poudel, A.; Setzer, W.N. Variation in the volatiles phytochemistry of Ageratum conyzoides. Am. J. Essent. Oils Nat. Prod. 2018, 6, 7–10. [Google Scholar]
- Lehoczky, E.; Gólya, G.; Szabó, R.; Szalai, A. Allelopathic effects of ragweed (Ambrosia artemisiifolia L.) on cultivated plants. Commun. Agric. Appl. Biol. Sci. 2011, 76, 545–549. [Google Scholar] [PubMed]
- Kong, C.H.; Xuan, T.D.; Khanh, T.D.; Tran, H.D.; Trung, N.T. Allelochemicals and signaling chemicals in plants. Molecules 2019, 24, 1–19. [Google Scholar]
- Chew, W.; Yap, C.K.; Ismail, A.; Zakaria, M.P.; Tan, S.G. Mercury distribution in an invasive species (Asystasia gangetica) from Peninsular Malaysia. Sains Malays. 2012, 41, 395–401. [Google Scholar]
- Ngah, N.; Omar, D.; Juraimi, A.S.; Hailmi, M.S. Leaf surface characteristics of selected Malaysian weed species of oil palm. J. Agrobiotec. 2011, 2, 53–65. [Google Scholar]
- Baruah, P.P.; Goswami, P.K. Allelopathic effects of Borreria hispida on seedling growth and yield in Brassica campestris L. Int. J. Agric. Environ. Biotechnol. 2009, 2, 328–331. [Google Scholar]
- Ghosh, P.; Chatterjee, S.; Das, P.; Karmakar, S.; Mahapatra, S. Natural habitat, phytochemistry and pharmacological properties of a medicinal weed–Cleome rutidosperma DC. (Cleomaceae): A comprehensive review. Int. J. Pharm. Sci. Res. 2019, 10, 1605–1612. [Google Scholar]
- Upadhyay, R.K. Cleome viscosa Linn: A natural source of pharmaceuticals and pesticides. Int. J. Green Pharm. 2015, 9, 71–85. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Rajkumar, J.; Seyed, M.A. Phytochemical screening, free radical scavenging and antimicrobial potential of Chromolaena odorata leaf extracts against pathogenic bacterium in wound infections–a multispectrum perspective. Biocatal. Agric. Biotechnol. 2018, 15, 103–112. [Google Scholar]
- Sahid, I.; Yusoff, N. Allelopathic effects of Chromolaena odorata’(L.) King and Robinson and Mikania micrantha HBK on three selected weed species. Aust. J. Crop Sci. 2014, 8, 1024–1028. [Google Scholar]
- Forero-Doria, O.; Astudillo, L.; Castro, R.I.; Lozano, R.; Oscar, D.Í.A.Z.; Guzman-Jofre, L.; Gutierrez, M. Antioxidant activity of bioactive extracts obtained from rhizomes of Cyperus digitatus Roxb. Boletín Latinoam. Caribe Plantas Med. Aromáticas 2014, 13, 344–350. [Google Scholar]
- Ikram, S.; Bhatti, K.H.; Parvaiz, M. Ethnobotanical studies of aquatic plants of district Sialkot, Punjab (Pakistan). J. Med. Plant Res. 2014, 2, 58–63. [Google Scholar]
- Rawat, L.S.; Maikhuri, R.K.; Bahuguna, Y.M.; Maletha, A.; Phondani, P.C.; Jha, N.K.; Pharswan, D.S. Interference of Eupatorium adenophorum (Spr.) and its allelopathic effect on growth and yield attributes of traditional food crops in Indian Himalayan Region. Ecol. Res. 2019, 34, 587–599. [Google Scholar]
- Shanab, S.M.; Shalaby, E.A.; Lightfoot, D.A.; El-Shemy, H.A. Allelopathic effects of water hyacinth (Eichhornia crassipes). PLoS ONE 2010, 5, e13200. [Google Scholar] [CrossRef]
- Chu, C.; Mortimer, P.E.; Wang, H.; Wang, Y.; Liu, X.; Yu, S. Allelopathic effects of Eucalyptus on native and introduced tree species. For. Ecol. Manag. 2014, 323, 79–84. [Google Scholar] [CrossRef]
- Ismail, B.S.; Siddique, A.B. Allelopathic inhibition by Fimbristylis miliacea on the growth of the rice plants. Adv. Environ. Biol. 2012, 6, 2423–2428. [Google Scholar]
- Lim, C.A.A.; Awan, T.H.; Sta. Cruz, P.C.; Chauhan, B.S. Influence of environmental factors, cultural practices, and herbicide application on seed germination and emergence ecology of Ischaemum rugosum Salisb. PLoS ONE 2015, 10, e0137256. [Google Scholar]
- Shekhawat, K.; Rathore, S.S.; Chauhan, B.S. Weed management in dry direct-seeded rice: A review on challenges and opportunities for sustainable rice production. Agronomy 2020, 10, 1264. [Google Scholar] [CrossRef]
- Mishra, A. Allelopathic properties of Lantana camara: A review article. Int. J. Innov. Res. Rev. 2014, 2, 32–52. [Google Scholar]
- Khatun, M.M.; Mia, M.A.; Sarwar, A.G. Taxonomic diversity of broad-leaf weeds at Bangladesh Agricultural University campus and their ethno-botanical uses. J. Bangladesh Agric. Univ. 2019, 17, 526–538. [Google Scholar] [CrossRef]
- Kumar, V.; Ladha, J.K. Direct seeding of rice: Recent developments and future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Ma, H.; Chen, Y.; Chen, J.; Zhang, Y.; Zhang, T.; He, H. Comparison of allelopathic effects of two typical invasive plants: Mikania micrantha and Ipomoea cairica in Hainan island. Sci. Rep. 2020, 10, 11332. [Google Scholar] [CrossRef]
- Ismail, B.S.; Chong, T.V. Effects of aqueous extracts and decomposition of Mikania micrantha HBK debris on selected agronomic crops. Weed Biol. Manag. 2002, 2, 31–38. [Google Scholar] [CrossRef]
- Shao, H.; Peng, S.; Wei, X.; Zhang, D.; Zhang, C. Potential allelochemicals from an invasive weed Mikania micrantha HBK. J. Chem. Ecol. 2005, 31, 1657–1668. [Google Scholar] [CrossRef]
- Muñoz, M.; Torres-Pagán, N.; Peiró, R.; Guijarro, R.; Sánchez-Moreiras, A.M.; Verdeguer, M. Phytotoxic effects of three natural compounds: Pelargonic acid, carvacrol, and cinnamic aldehyde, against problematic weeds in Mediterranean crops. Agronomy 2020, 10, 791. [Google Scholar]
- Maszura, C.M.; Karim, S.M.R.; Norhafizah, M.Z.; Kayat, F.; Arifullah, M. Distribution, Density, and Abundance of Parthenium Weed (Parthenium hysterophorus L.) at Kuala Muda, Malaysia. Int. J. Agron. 2018, 2018, 1046214. [Google Scholar] [CrossRef] [Green Version]
- Safdar, M.E.; Tanveer, A.; Khaliq, A.; Riaz, M.A. Yield losses in maize (Zea mays) infested with parthenium weed (Parthenium hysterophorus L.). Crop Prot. 2015, 70, 77–82. [Google Scholar]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, M.; Ahmad-Hamdani, M.S.; Hasan, M. Phytochemical constituents and allelopathic potential of Parthenium hysterophorus L. in comparison to commercial herbicides to control weeds. Plants 2021, 10, 1445. [Google Scholar] [PubMed]
- Azizan, K.A.; Ibrahim, S.; Abdul Ghani, N.H.; Nawawi, M.F. Metabolomics approach to investigate phytotoxic effects of Wedelia trilobata leaves, litter and soil. Plant Biosyst. 2019, 153, 691–699. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Hu, B.Q.; Hu, G. Assessment of allelopathic potential of Wedelia trilobata on the germination, seedling growth and chlorophyll content of rape. In Advanced Materials Research; Trans Tech Publications Ltd.: Zuric, Switzerland, 2013; pp. 719–722. [Google Scholar]
- Bharti, R.; Ahuja, G.; Sujan, G.P.; Dakappa, S.S. A review on medicinal plants having antioxidant potential. J. Pharm. Res. 2012, 5, 4278–4287. [Google Scholar]
- Kamboj, A.; Saluja, A.K. Phytopharmacological review of Xanthium strumarium L. (Cocklebur). Int. J. Green Pharm. 2010, 4, 129–139. [Google Scholar] [CrossRef]
- Suzuki, M.; Chozin, M.A.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Phytotoxic activity of Chinese violet (Asystasia gangetica (L.) T. Anderson) and two phytotoxic substances. Weed Biol. Manag. 2019, 19, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarty, T.; Sarker, U.; Hasan, M.; Rahman, M.M. Variability in mineral compositions, yield and yield contributing traits of stem amaranth (Amaranthus lividus). Genetika 2018, 50, 995–1010. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.H.; Su, X. Artemisinin: Discovery from the Chinese herbal garden. Cell 2011, 146, 855–858. [Google Scholar] [CrossRef] [Green Version]
- Stevens, G.A.; Tang, C.S. Inhibition of crop seedling growth by hydrophobic root exudates of the weed Bidens pilosa. J. Trop. Ecol. 1987, 3, 91–94. [Google Scholar] [CrossRef]
- Souza, F.; Mourao, J. Response pattern of Mimosa pudica and Senna obtusifolia to potentially allelopathic activity of Poaceae species. Planta Daninha 2010, 28, 927–938. [Google Scholar]
- Tsiamis, K.; Gervasini, E.; D’Amico, F.; Backeljau, T. The EASIN Editorial Board: Quality assurance, exchange and sharing of alien species information in Europe. Manag. Biol. Invasions 2016, 7, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Sangakkara, U.R.; Attanayake, K.B.; Dissanayake, U.; Bandaranayake, P.R.S.D. Allelopathic impact of Chromolaena odorata (L.) King and Robinson on germination and growth of selected tropical crops. J. Plant Dis. Prot. 2008, 1, 323–326. [Google Scholar]
- Bezerra, J.J.L.; do Nascimento, T.G.; Kamiya, R.U.; do Nascimento Prata, A.P.; de Medeiros, P.M.; de MendonÃ, C.N. Phytochemical screening, chromatographic profile and evaluation of antimicrobial and antioxidant activities of three species of the Cyperaceae Juss. Family. J. Med. Plant Res. 2019, 13, 312–320. [Google Scholar]
- Suria, A.J.; Juraimi, A.S.; Rahman, M.; Man, A.B.; Selamat, A. Efficacy and economics of different herbicides in aerobic rice system. Afr. J. Biotechnol. 2011, 10, 8007–8022. [Google Scholar]
- Harun, M.A.Y.; Robinson, R.W.; Johnson, J.; Uddin, M.N. Allelopathic potential of Chrysanthemoides monilifera subsp. monilifera (boneseed): A novel weapon in the invasion processes. S. Afr. J. Bot. 2014, 93, 157–166. [Google Scholar]
- Ens, E.J.; Bremner, J.B.; French, K.; Korth, J. Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol. Invasions 2009, 11, 275–287. [Google Scholar]
- Fernández-Aparicio, M.; Soriano, G.; Masi, M.; Carretero, P.; Vilariño-Rodríguez, S.; Cimmino, A. (4 Z)-Lachnophyllum Lactone, an Acetylenic Furanone from Conyza bonariensis, Identified for the First Time with Allelopathic Activity against Cuscuta campestris. Agriculture 2022, 12, 790. [Google Scholar]
- Thi, H.L.; Lan, P.T.P.; Chin, D.V.; Kato-Noguchi, H. Allelopathic potential of cucumber (Cucumis sativus) on barnyardgrass (Echinochloa crus-galli). Weed Biol. Manag. 2008, 8, 129–132. [Google Scholar]
- Poonpaiboonpipat, T.; Pangnakorn, U.; Suvunnamek, U.; Teerarak, M.; Charoenying, P.; Laosinwattana, C. Phytotoxic effects of essential oil from Cymbopogon citratus and its physiological mechanisms on barnyardgrass (Echinochloa crus-galli). Ind. Crops Prod. 2013, 41, 403–407. [Google Scholar]
- Almarie, A.A.; Mamat, A.S.; Wahab, Z. Allelopathic potentil of Cymbopogon citratus against different weed species. Indian J. Pharm. Sci. 2016, 3, 324–330. [Google Scholar]
- Javaid, A.; Shafique, S.; Shafique, S. Herbicidal effects of extracts and residue incorporation of Datura metel against parthenium weed. Nat. Prod. Res. 2010, 24, 1426–1437. [Google Scholar] [CrossRef]
- Elisante, F.; Ndakidemi, P.A. Allelopathic effect of Datura stramonium on the survival of grass and legume species in the conservation areas. Am. J. Res. Commun. 2014, 2, 27–43. [Google Scholar]
- Sasikumar, K.; Vijayalakshmi, C.; Parthiban, K.T. Allelopathic effects of Eucalyptus on blackgram (Phaseolus mungo L.). Allelopath. J. 2002, 9, 205–214. [Google Scholar]
- Dadkhah, A. Phytotoxic potential of sugar beet (Beta vulgaris) and eucalyptus (Eucalyptus camaldulensis) to control purslane (Portulaca oleracea) weed. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 46–51. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Moriyasu, M.; Ohno, O.; Suenaga, K. Growth limiting effects on various terrestrial plant species by an allelopathic substance, loliolide, from water hyacinth. Aquat. Bot. 2014, 117, 56–61. [Google Scholar] [CrossRef]
- Chopra, N.; Tewari, G.; Tewari, L.M.; Upreti, B.; Pandey, N. Allelopathic effect of Echinochloa colona L. and Cyperus iria L. weed extracts on the seed germination and seedling growth of rice and soyabean. Adv. Agric. 2017, 2017, 5748524. [Google Scholar] [CrossRef] [Green Version]
- Puig, C.G.; Reigosa, M.J.; Valentao, P.; Andrade, P.B.; Pedrol, N. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. PLoS ONE 2018, 13, e0192872. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, M.L.R.; Andrade, L.A.D.; Pereira, W.E. Floristic diversity of the soil weed seed bank in a rice-growing area of Brazil: In-situ and ex-situ evaluation. Acta Bot. Bras. 2013, 27, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Sanit, S. Herbicidal Potential of Red Spragle (Leptochloa chinensis) on Seed Germination and Seedling Growth against Some Tested Plants. Int. J. Sci. 2020, 9, 18–24. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, Z.; Shen, J.; Mao, Y.; Wei, S.; Wei, J.; Qiang, S. Weed seed bank dynamics responses to long-term chemical control in rice-wheat cropping system. Pest Manag. Sci. 2020, 76, 1993–2003. [Google Scholar] [CrossRef]
- Dayan, F.E.; Howell, J.L.; Marais, J.P.; Ferreira, D.; Koivunen, M. Manuka oil, a natural herbicide with preemergence activity. Weed Sci. 2011, 59, 464–469. [Google Scholar] [CrossRef]
- Ghimire, B.K.; Ghimire, B.; Yu, C.Y.; Chung, I.M. Allelopathic and autotoxic effects of Medicago sativa—Derived allelochemicals. Plants 2019, 8, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashar, H.K.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Uddin, M.K.; Asib, N.; Anwar, M.P.; Hossain, A. Documentation of Phytotoxic Compounds Existing in Parthenium hysterophorus L. Leaf and Their Phytotoxicity on Eleusine indica (L.) Gaertn. and Digitaria sanguinalis (L.) Scop. Toxins 2022, 14, 561. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Huang, X.; Zhang, Y.; Zhang, C. Main alkaloids of Peganum harmala L. and their different effects on dicot and monocot crops. Molecules 2013, 18, 2623–2634. [Google Scholar] [CrossRef]
- Hussain, M.I.; Abideen, Z.; Danish, S.; Asghar, M.A.; Iqbal, K. Integrated Weed Management for Sustainable Agriculture. In Sustainable Agriculture Reviews; Springer: Cham, Germany, 2021; pp. 367–393. [Google Scholar]
- Hirai, N.; Sakashita, S.I.; Sano, T.; Inoue, T.; Ohigashi, H.; Premasthira, C.U.; Asakawa, Y.; Harada, J.; Fujii, Y. Allelochemicals of the tropical weed Sphenoclea zeylanica. Phytochemistry 2000, 55, 131–140. [Google Scholar] [CrossRef]
- El Id, V.L.; da Costa, B.V.; Mignoni, D.S.B.; Veronesi, M.B.; Simões, K.; Braga, M.R.; dos Santos Junior, N.A. Phytotoxic effect of Sesbania virgata (Cav.) Pers. on seeds of agronomic and forestry species. J. For. Res. 2015, 26, 339–346. [Google Scholar] [CrossRef]
- Tajuddin, Z.; Shaukat, S.S.; Siddiqui, I.A. Allelopathic potential of Solanum forskalii dunal: A tropical ruderal weed. Pak. J. Biol. Sci. 2002, 5, 866–868. [Google Scholar]
- Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 2005, 31, 1187–1203. [Google Scholar] [CrossRef]
- Bisio, A.; Fraternale, D.; Giacomini, M.; Giacomelli, E.; Pivetti, S.; Russo, E.; De Tommasi, N. Phytotoxicity of Salvia spp. exudates. Crop Prot. 2010, 29, 1434–1446. [Google Scholar] [CrossRef]
- Khanh, T.D.; Hong, N.H.; Nhan, D.Q.; Kim, S.L.; Chung, I.M.; Xuan, T.D. Herbicidal activity of Stylosanthes guianensis and its phytotoxic components. J. Agron. Crop Sci. 2006, 192, 427–433. [Google Scholar] [CrossRef]
- Sadia, S.; Qureshi, R.; Khalid, S.; Nayyar, B.G.; Zhang, J.T. Role of secondary metabolites of wild marigold in suppression of Johnson grass and Sun spurge. Asian Pac. J. Trop. Biomed. 2015, 5, 733–737. [Google Scholar] [CrossRef]
- Jubair, N.; Rajagopal, M.; Chinnappan, S.; Abdullah, N.B.; Fatima, A. Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evid.-Based Complement. Altern. Med. 2021, 2021, 3663315. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.V.; Pant, S.; Khan, M.H.; Shah, A.A.; Siddiqui, S.; Jeridi, M.; Alhamdi, H.W.S.; Ahmad, S. Phytochemicals as Antimicrobials: Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance. Pharmaceuticals 2023, 16, 881. [Google Scholar] [CrossRef] [PubMed]
- Chassagne, F.; Samarakoon, T.; Porras, G.; Lyles, J.T.; Dettweiler, M.; Marquez, L.; Quave, C.L. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Front. Pharmacol. 2021, 11, 2069. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.S.; Musa, N.; Sengm, C.T.; Wee, W.; Shazili, N.A.M. Antimicrobial properties of tropical plants against 12 pathogenic bacteria isolated from aquatic organisms. Afr. J. Biotechnol. 2008, 7, 2275–2278. [Google Scholar]
- Verma, S. A study on a highly medicinal plant Murraya koenigii: Rutaceae. Pharma Innov. J. 2018, 7, 283–285. [Google Scholar]
- Rahman, M.M.; Gray, A.I. A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemistry 2005, 66, 1601–1606. [Google Scholar] [CrossRef]
- Othman, M.; Genapathy, S.; Liew, P.S.; Ch’ng, Q.T.; Loh, H.S.; Khoo, T.J.; Wiart, C.; Ting, K.N. Search for antibacterial agents from Malaysian rainforest and tropical plants. Nat. Prod. Res. 2011, 25, 1857–1864. [Google Scholar] [CrossRef]
- Okigbo, R.N.; Mmeka, E.C. Antimicrobial effects of three tropical plant extracts on Staphylococcus aureus, Escherichia coli and Candida albicans. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 226–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Devrnja, N.; Milutinović, M.; Savić, J. When scent becomes a weapon—Plant essential oils as potent bioinsecticides. Sustainability 2022, 14, 6847. [Google Scholar] [CrossRef]
- Kulkarni, J.; Kapse, N.; Kulnarni, D.K. Plant based pesticide for control of Helicoverpa armigera on Cucumis sativus. Asian Agri-Hist. 2009, 13, 327–332. [Google Scholar]
- Nicoletti, M.; Murugan, K.; Canale, A.; Benelli, G. Neem-borne molecules as eco-friendly control tools against mosquito vectors of economic importance. Curr. Org. Chem. 2016, 20, 2681–2689. [Google Scholar] [CrossRef]
- Abdel-Ghaffar, F.; Al-Quraishy, S.; Al-Rasheid, K.A.S.; Mehlhorn, H. Efficacy of a single treatment of head lice with a neem seed extract: An in vivo and in vitro study on nits and motile stages. Parasitol. Res. 2012, 110, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Murugan, K.; Panneerselvam, C.; Madhiyazhagan, P.; Conti, B.; Nicoletti, M. Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol. Res. 2015, 114, 391–397. [Google Scholar] [CrossRef]
- Mehlhorn, H.; Walldorf, V.; Abdel-Ghaffar, F.; Al-Quraishy, S.; Al-Rasheid, K.A.S.; Mehlhorn, J. Biting and bloodsucking lice of dogs—Treatment by means of a neem seed extract (MiteStop®, Wash Away Dog). Parasitol. Res. 2012, 110, 769–773. [Google Scholar] [CrossRef]
- Ratnayake, S.; Rupprecht, J.K.; Potter, W.M.; McLaughlin, J.L. Evaluation of the pawpaw tree, Asimina triloba (Annonaceae), as a commercial source of the pesticidal annonaceous acetogenins. In New Crops; Wiley: New York, NY, USA, 1993; pp. 644–648. [Google Scholar]
- Okwute, S.K. Plants as potential sources of pesticidal agents: A review. Pestic. Adv. Chem. Bot. Pestic. 2012, 10, 208–232. [Google Scholar]
- Kaur, N.; Bains, A.; Kaushik, R.; Dhull, S.B.; Melinda, F.; Chawla, P. A review on antifungal efficiency of plant extracts entrenched polysaccharide-based nanohydrogels. Nutrients 2021, 13, 2055. [Google Scholar] [CrossRef]
- Coleman, J.J.; Okoli, I.; Tegos, G.P.; Holson, E.B.; Wagner, F.F.; Hamblin, M.R.; Mylonakis, E. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem. Biol. 2010, 5, 321–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awuah, R.T. Fungitoxic effects of extracts from some West African plants. Ann. Appl. Biol. 1989, 115, 451–453. [Google Scholar] [CrossRef]
- Alabi, D.A.; Oyero, I.A.; Amusa, N.A. Fungitoxic and phytotoxic effect of Vernonia amygdalina (L.), Bryophyllum pinnantus Kurz, Ocimum gratissimum (Closium) L. and Eucalyptna globules (Caliptos) Labill water extracts on cowpea and cowpea seedling pathogens in Ago-Iwoye, South Western Nigeria. World J. Agric. Sci. 2005, 1, 70–75. [Google Scholar]
- Enikuomehin, O.A.; Oyedeji, E.O. Fungitoxic effect of some plant extracts against tomato fruit rot pathogens. Arch. Phytopathol. Plant Prot. 2010, 43, 233–240. [Google Scholar] [CrossRef]
- Ismail, A.; Habiba, K.; Yassine, M.; Mohsen, H.; Bassem, J.; Lamia, H. Essential oils of Tunisian Pinus radiata D. Don, chemical composition and study of their herbicidal activity. Vietnam J. Chem. 2021, 59, 247–252. [Google Scholar]
- Dziedziński, M.; Kobus-Cisowska, J.; Stachowiak, B. Pinus species as prospective reserves of bioactive compounds with potential use in functional food—Current state of knowledge. Plants 2021, 10, 1306. [Google Scholar] [CrossRef] [PubMed]
- Amri, I.; Khammassi, M.; Gargouri, S.; Hanana, M.; Jamoussi, B.; Hamrouni, L.; Mabrouk, Y. Tunisian pine essential oils: Chemical composition, herbicidal and antifungal properties. J. Essent. Oil-Bear. Plants 2022, 25, 430–443. [Google Scholar] [CrossRef]
- Amri, I.; Hanana, M.; Gargouri, S.; Jamoussi, B.; Hamrouni, L. Comparative study of two coniferous species (Pinus pinaster Aiton and Cupressus sempervirens L. var. dupreziana [A. Camus] Silba) essential oils: Chemical composition and biological activity. Chil. J. Agric. Res. 2013, 73, 259–266. [Google Scholar]
- Appelhans, M.S.; Bayly, M.J.; Heslewood, M.M.; Groppo, M.; Verboom, G.A.; Forster, P.I.; Duretto, M.F. A new subfamily classification of the Citrus family (Rutaceae) based on six nuclear and plastid markers. Taxon 2021, 70, 1035–1061. [Google Scholar] [CrossRef]
- Rahman, M.M.; Jahan, F.I.; Mim, S.A. A brief phytochemical investigation and pharmacological uses of citrus seed—A review. PharmacologyOnLine 2019, 1, 94–103. [Google Scholar]
- Khan, U.M.; Sameen, A.; Aadil, R.M.; Shahid, M.; Sezen, S.; Zarrabi, A.; Butnariu, M. Citrus genus and its waste utilization: A review on health-promoting activities and industrial application. Evid.-Based Complement. Altern. Med. 2021, 2021, 2488804. [Google Scholar] [CrossRef]
- Krenchinski, F.H.; Albrecht, L.P.; Albrecht, A.J.P.; Costa Zonetti, P.; Tessele, A.; Barroso, A.A.M.; Placido, H.F. Allelopathic potential of ‘Cymbopogon citratus’ over beggarticks (‘Bidens’ sp.) germination. Aust. J. Crop Sci. 2017, 11, 277–283. [Google Scholar] [CrossRef]
- Aćimović, M.; Kiprovski, B.; Gvozdenac, S. Application of Cymbopogon citratus in Agro-Food Industry. J. Agron. Technol. Eng. Manag. 2020, 3, 423–436. [Google Scholar]
- Haramoto, E.R.; Gallandt, E.R. Brassica cover cropping for weed management: A review. Renew. Agric. Food Syst. 2004, 19, 187–198. [Google Scholar] [CrossRef]
- Yasumoto, S.; Suzuki, K.; Matsuzaki, M.; Hiradate, S.; Oose, K.; Hirokane, H.; Okada, K. Effects of plant residue, root exudate and juvenile plants of rapeseed (Brassica napus L.) on the germination, growth, yield, and quality of subsequent crops in successive and rotational cropping systems. Plant Prod. Sci. 2011, 14, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Jafariehyazdi, E.; Javidfar, F. Comparison of allelopathic effects of some brassica species in two growth stages on germination and growth of sunflower. Plant Soil Environ. 2011, 57, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef] [PubMed]
- Travlos, I.; Rapti, E.; Gazoulis, I.; Kanatas, P.; Tataridas, A.; Kakabouki, I.; Papastylianou, P. The herbicidal potential of different pelargonic acid products and essential oils against several important weed species. Agronomy 2020, 10, 1687. [Google Scholar] [CrossRef]
- Novak, M.; Novak, N. Allelopathic effect of tree of heaven (Ailanthus altissima (Mill.) Swingle) on initial growth of the barnyard grass (Echinochloa crusgalli (L.) P. Beauv.). Fragm. Phytomed. 2019, 33, 58–72. [Google Scholar]
- Shah, A.N.; Iqbal, J.; Ullah, A.; Yang, G.; Yousaf, M.; Fahad, S.; Tanveer, M.; Hassan, W.; Tung, S.A.; Wang, L.; et al. Allelopathic potential of oil seed crops in production of crops: A review. Environ. Sci. Pollut. Res. 2016, 23, 14854–14867. [Google Scholar] [CrossRef]
- Latif, S.; Chiapusio, G.; Weston, L.A. Allelopathy and the role of allelochemicals in plant defence. In Advances in Botanical Research; Academic Press: Cambridge, UK, 2017; pp. 19–54. [Google Scholar]
- Yankova-Tsvetkova, E.; Nikolova, M.; Aneva, I.; Stefanova, T.; Berkov, S. Germination inhibition bioassay of extracts and essential oils from plant species. C. R. Acad. Bulg. Sci. 2020, 73, 1254–1259. [Google Scholar]
- Graña, E.; Sotelo, T.; Díaz-Tielas, C.; Araniti, F.; Krasuska, U.; Bogatek, R.; Sánchez-Moreiras, A.M. Citral induces auxin and ethylene-mediated malformations and arrests cell division in Arabidopsis thaliana roots. J. Chem. Ecol. 2013, 39, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Y.; Liu, S.J.; Zhou, S.W.; Wu, H.F.; Yu, J.B.; Xia, C.H. Allelochemical ethyl 2-methyl acetoacetate (EMA) induces oxidative damage and antioxidant responses in Phaeodactylum tricornutum. Pestic. Biochem. Physiol. 2011, 100, 93–103. [Google Scholar] [CrossRef]
- Sullivan, M.L.; Zeller, W.E. Efficacy of various naturally occurring caffeic acid derivatives in preventing post-harvest protein losses in forages. J. Sci. Food Agric. 2013, 93, 219–226. [Google Scholar] [CrossRef]
- Shearer, T.; Rasher, D.; Snell, T.; Hay, M. Gene expression patterns of the coral Acropora millepora in response to contact with macroalgae. Coral Reefs 2012, 31, 1177–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunmonu, T.O.; Van Staden, J. Phytotoxicity evaluation of six fast-growing tree species in South Africa. S. Afr. J. Bot. 2014, 90, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.M.; Lu, Z.Y.; Liu, B.Y.; Zhou, Q.H.; Zhang, Y.Y.; Wu, Z.B. Allelopathic effects of pyrogallic acid secreted by submerged macrophytes on Microcystis aeruginosa: Role of ROS generation. Allelopath. J. 2014, 33, 121–129. [Google Scholar]
- Labeeuw, L.; Khey, J.; Bramucci, A.R.; Atwal, H.; de la Mata, A.P.; Harynuk, J.; Case, R.J. Indole-3-acetic acid is produced by Emiliania huxleyi coccolith-bearing cells and triggers a physiological response in bald cells. Front. Microbiol. 2016, 7, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.Z.; Guo, J.; Shao, H.; Yang, G.Q. Effects of allelochemicals from Ageratina adenophora (Spreng.) on its own autotoxicity. Allelopath. J. 2014, 34, 253. [Google Scholar]
- Soltys, D.; Rudzińska-Langwald, A.; Gniazdowska, A.; Wiśniewska, A.; Bogatek, R. Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression. Planta 2012, 236, 1629–1638. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Sun, Y.; Li, D.; Chen, Y. Chrysanthemum indicum L.: A Comprehensive Review of its Botany, Phytochemistry and Pharmacology. Am. J. Chin. Med. 2020, 48, 871–897. [Google Scholar] [CrossRef]
- Cheng, T.S.; Hung, M.J.; Cheng, Y.I.; Cheng, L.J. Calcium-induced proline accumulation contributes to amelioration of NaCl injury and expression of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.). Aquat. Toxicol. 2013, 144, 265–274. [Google Scholar] [CrossRef]
- Pergo, É.M.; Ishii-Iwamoto, E.L. Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species Ipomoea triloba L. and the responses to allelochemicals. J. Chem. Ecol. 2011, 37, 500–513. [Google Scholar] [CrossRef]
- Yuan, X.K.; Yang, Z.Q.; Li, Y.X.; Liu, Q.; Han, W. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica 2016, 54, 28–39. [Google Scholar] [CrossRef]
- Wang, C.M.; Chen, H.T.; Li, T.C.; Weng, J.H.; Jhan, Y.L.; Lin, S.X.; Chou, C.H. The role of pentacyclic triterpenoids in the allelopathic effects of Alstonia scholaris. J. Chem. Ecol. 2014, 40, 90–98. [Google Scholar] [CrossRef] [PubMed]
- de Morais, C.S.B.; Silva Dos Santos, L.A.; Vieira Rossetto, C.A. Oil radish development agronomic affected by sun flower plants reduces. Biosci. J. 2014, 30, 117–128. [Google Scholar]
- Singh, V. Environmental Plant Physiology: Botanical Strategies for a Climate Smart Planet; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Mohammadkhani, N.; Servati, M. Nutrient concentration in wheat and soil under allelopathy treatments. J. Plant Res. 2018, 131, 143–155. [Google Scholar] [CrossRef]
- Albuquerque, M.B.; Santos, R.C.; Lima, L.M.; Melo-Filho, P.D.A.; Nogueira, R.J.M.C.; Câmara, C.A.G. Allelopathy, an alternative tool to improve cropping systems. Agron. Sustain. Dev. 2010, 31, 379–395. [Google Scholar] [CrossRef] [Green Version]
- Zimdahl, R.L. Fundamentals of Weed Science; Academic Press: Cambridge, UK, 2018; pp. 756–758. [Google Scholar]
- Hagan, D.L.; Jose, S.; Lin, C.H. Allelopathic exudates of cogongrass (Imperata cylindrica): Implications for the performance of native pine savanna plant species in the southeastern US. J. Chem. Ecol. 2013, 39, 312–322. [Google Scholar] [CrossRef]
- Imatomi, M.; Novaes, P.; Gualtieri, S.C.J. Inter specific variation in the allelopathic potential of the family Myrtaceae. Acta Bot. Bras. 2013, 27, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Manahan, S.E. Environmental Chemistry; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
Biopesticides | Manufacture | Source of a.i. | Sensitive Weeds | References |
---|---|---|---|---|
Avenger Weed Killer | Avenger Organics, Gainesville, GA, USA | Citrus limon (L.) Osbeck | D. sanguinalis | [154] |
Beloukha | Belchim Crop Protection, Londerzeel, Belgium | B. napus | Amaranthus retroflexus L. | [75] |
BioWeed | Barmac PTY Ltd., Stapylton, Australia | P. radiata | Ochna serrulata Walp. | [155] |
GreenMatch | Marrone Bio Innovations, Inc., Davis, CA, USA | Citrus sinensis (L.) Osbeck | Solanum nigrum L. | [154] |
GreenMatch EX | Marrone Bio Innovations, Davis, CA, USA | C. citratus | Euphorbia spp. | [154] |
WeedZap | JH Biotech Inc., Ventura, CA, USA | Cinnamomum verum J. Presl and Syzygium aromaticum (L.) Merr. & L.M.Perry | E. crus-galli | [154] |
WeedLock | EntoGenex Industries, Kuala Lumpur, Malaysia | S. habrochaites | A. conyzoides | [11,29] |
Weed Slayer | Agro Research International, Sorrento, FL, USA | S. aromaticum | E. crus-galli | [154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motmainna, M.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Hasan, M.; Yeasmin, S.; Anwar, M.P.; Islam, A.K.M.M. Allelopathic Potential of Tropical Plants—A Review. Agronomy 2023, 13, 2063. https://doi.org/10.3390/agronomy13082063
Motmainna M, Juraimi AS, Ahmad-Hamdani MS, Hasan M, Yeasmin S, Anwar MP, Islam AKMM. Allelopathic Potential of Tropical Plants—A Review. Agronomy. 2023; 13(8):2063. https://doi.org/10.3390/agronomy13082063
Chicago/Turabian StyleMotmainna, Mst., Abdul Shukor Juraimi, Muhammad Saiful Ahmad-Hamdani, Mahmudul Hasan, Sabina Yeasmin, Md. Parvez Anwar, and A. K. M. Mominul Islam. 2023. "Allelopathic Potential of Tropical Plants—A Review" Agronomy 13, no. 8: 2063. https://doi.org/10.3390/agronomy13082063
APA StyleMotmainna, M., Juraimi, A. S., Ahmad-Hamdani, M. S., Hasan, M., Yeasmin, S., Anwar, M. P., & Islam, A. K. M. M. (2023). Allelopathic Potential of Tropical Plants—A Review. Agronomy, 13(8), 2063. https://doi.org/10.3390/agronomy13082063