Comparative Study of Bolting Adaptability between 60Co-Induced Rape and Its Original Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Experimental Methods
2.2.1. Field Layout
2.2.2. Sample Collection
2.2.3. Physiological Index Analysis
2.2.4. Transcriptome Sequencing
2.2.5. Metabolomics Analysis
2.2.6. Association Analysis between Transcriptomics and Metabolomics
2.2.7. Study of the Content of Physiological Indexes and Key Differential Gene Expressions
2.2.8. Data Analysis
3. Results
3.1. Analysis of Agronomic Characteristics
3.2. Physiological Index Analysis
3.2.1. Physiological Indicator Analysis of Fresh Shoots
3.2.2. Analysis of Physiological Indexes of Leaves
3.3. Omics Analysis
3.3.1. Transcriptomic Analysis
KEGG Enrichment Analysis
3.3.2. Metabolomic Analysis
Sugar Content
Screening and KEGG Classification of Differential Metabolites
3.3.3. Association Analysis between Transcriptomics and Metabolomics
3.4. Gene Expression and Correlation Analysis
3.4.1. qRT-PCR Analysis of Key Genes
3.4.2. Correlation Analysis between the Content of the Physiological Indexes and Gene Expression
3.4.3. Field Analysis of Key Genes
4. Discussion
4.1. Effects of the Content of Physiological Indexes on Fresh Shoot Taste
4.2. Key Genes Affecting the Taste of Fresh Shoots
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yue, L.Q.; Kang, Y.Y.; Zhong, M.; Kang, D.J.; Zhao, P.Y.; Chai, X.R.; Yang, X. Melatonin delays postharvest senescence through suppressing the inhibition of BrERF2/BrERF109 on flavonoid biosynthesis in flowering Chinese cabbage. Int. J. Mol. Sci. 2023, 24, 2933. [Google Scholar] [CrossRef]
- Ramirez, D.; Abell’an-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional ingredients from Brassicaceae species: Overview and perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Yin, Y.; Li, F.; Wang, J.J.; Fu, T.D. Current situation and development countermeasures of Chinese rapeseed multifunctional development and utilization. Chin. J. Oil Crop Sci. 2018, 40, 618–623. [Google Scholar]
- Yue, L.Q.; Kang, Y.Y.; Li, Y.S.; Kang, D.J.; Zhong, M.; Chai, X.R.; Guo, J.X.; Yang, X. 1-Methylcyclopropene promotes glucosinolate biosynthesis through BrWRKY12 mediated jasmonic acid biosynthesis in postharvest flowering Chinese cabbage. Postharvest Biol. Technol. 2023, 203, 112415. [Google Scholar] [CrossRef]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Mithen, R.F.; Dekker, M.; Verkerk, R.; Rabot, S.; Johnson, I.T. The physiological significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric. 2000, 80, 967–984. [Google Scholar] [CrossRef]
- Murillo, G.; Mehta, R.G. Cruciferous vegetables and cancer prevention. Nutr. Cancer 2001, 41, 17–28. [Google Scholar] [CrossRef]
- Tian, Y.; Deng, F.M.; Qing, Z.X.; Zhao, L.Y.; Peng, P. Advances in understanding the structure and function of glucosinolates in Brassicaceae. Shipin Kexue/Food Sci. 2020, 41, 292–303. [Google Scholar]
- Agerbirk, N.; Hansen, C.C.; Kiefer, C.; Hauser, T.P.; Ørgaard, M.; Lange, C.B.A.; Cipollini, D.; Koch, M.A. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. Phytochemistry 2021, 185, 112668. [Google Scholar] [CrossRef]
- Wang, M.; Zang, L.; Jiao, F.; Perez-Garcia, M.D.; Ogé, L.; Hamama, L.; Le Gourrierec, J.; Sakr, S.; Chen, J. Sugar signaling and post-transcriptional regulation in plants: An overlooked or an emerging topic? Front. Plant Sci. 2020, 11, 578096. [Google Scholar]
- Bermejo, C.; Haerizadeh, F.; Takanaga, H.; Chermak, D.; Frommer, W.B. Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nat. Protoc. 2011, 6, 1806–1817. [Google Scholar] [CrossRef] [PubMed]
- Smeekens, S. Sugar-induced signal transduction in plants. Annu. Rev. Plant Biol. 2000, 51, 49–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazzarrini, S.; Mccourt, P. Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr. Opin. Plant Biol. 2001, 4, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, R.R.; Gibson, S.I. ABA and sugar interactions regulating development: Cross-talk or voices in a crowd? Curr. Opin. Plant Biol. 2002, 5, 26–32. [Google Scholar] [CrossRef]
- Chen, L.Q.; Cheung, L.S.; Feng, L.; Tanner, W.; Frommer, W.B. Transport of sugars. Annu. Rev. Biochem. 2015, 84, 865–894. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, L.; Huang, W.; Yuan, M.; Zhou, F.; Li, X.; Lin, Y. Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence. PLoS ONE 2014, 9, e94210. [Google Scholar] [CrossRef] [Green Version]
- Yan, N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem. Sci. 2013, 38, 151–159. [Google Scholar] [CrossRef]
- Julius, B.T.; Leach, K.A.; Tran, T.M.; Mertz, R.A.; Braun, D.M. Sugar transporters in plants: New insights and discoveries. Plant Cell Physiol. 2017, 58, 1442–1460. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, G.; Ishikawa, T.; Pornsaksit, V.; Smirnoff, N. Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. eLife 2015, 4, e06369. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Yang, L.; Zhang, D.; Zhang, D.B.; Shi, J.X. Plant metabolomics: An indispensable system biology tool for plant science. Int. J. Mol. Sci. 2016, 17, 767. [Google Scholar] [CrossRef]
- Shu, P.; Zhang, Z.X.; Wu, Y.; Chen, Y.; Li, K.Y.; Deng, H.; Zhang, J.; Zhang, X.; Wang, J.Y.; Liu, Z.B.; et al. A comprehensive metabolic map reveals major quality regulations in red flesh kiwifruit (Actinidia chinensis). New Phytol. 2023, 238, 2064–2079. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Shang, G.X.; Yin, N.W.; Chen, S.; Shen, S.L.; Jiang, H.Y.; Tang, Y.S.; Sun, F.J.; Zhao, Y.H.; Niu, Y.C.; et al. Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L. Theor. Appl. Genet. 2022, 135, 2083–2099. [Google Scholar] [CrossRef]
- Teng, S.L.; Li, F.; Qi, L.J.; Guo, T.T.; Zhang, S.P.; Tuo, X.Y.; Luo, Y.X. Analysis of transcriptome and Metabolome of light-induced anthocyanin synthesis in Brassica napus L. seedling. Nat. Sci. Ed. 2021, 49, 134–146. [Google Scholar]
- Zhang, T.Y.; Wang, Y.; Liu, Y.; Zhou, T.; Yue, C.P.; Huang, J.Y.; Hua, Y.P. Bioinformatics analysis and core members identification of proline metabolism gene family in Brassica napus L. Acta Crops Sin. 2022, 48, 1977–1995. [Google Scholar]
- Tan, M.; Niu, J.; Peng, D.Z.; Cheng, Q.; Luan, M.B.; Zhang, Z.Q. Clone and function Verification of the OPR gene in Brassica napus related to Linoleic Acid Synthesis. BMC Plant Biol. 2022, 22, 192. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.Q.; Luan, M.B.; Hu, M.L.; Liu, Z.S.; Zhang, Z.Q. Functional study of CYP90A1 and ALDH3F1 gene obtained by transcriptome sequencing analysis of Brassica napus seedlings treated with brassinolide. Front. Plant Sci. 2022, 13, 1040511. [Google Scholar]
- Wang, C.; Kuang, L.Q.; Pan, Y.Y.; Dun, X.L.; Wang, X.F. An efficient and accurate method for the determination of vitamin C in rapeseed. Chin. J. Oil Crop Sci. 2021, 43, 346–352. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding anal. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. A colorimetric method for the determination of sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef]
- Anis, A.S.; Shakil, A.; Muhammad, A.; Nasim, A.Y. Seed priming with 3-epibrassinolide alleviates cadmium stress in cucumis sativus through modulation of antioxidative system and gene expression. Sci. Hortic. 2020, 265, 109203. [Google Scholar]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.H.; Wang, H.; Xie, J.P.; Su, Y. Simultaneous determination of rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, maltose in jujube (Zizyphus jujube Mill.) extract: Comparison of HPLC-ELSD, LC-ESI-MS/MS and GC-MS. Chem. Cent. J. 2016, 10, 25. [Google Scholar] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.C.; Zhao, Y.L.; Li, J.W.; Liu, B.; Wang, C.M.; Zhang, M.; Zhang, L.P.; Jiang, X.X.; Mu, G.J. Transcriptome-metabonomicsjoint combined analysis of kernel sugar metabolism in peanut (Arachis hypogaea L.). J. Plant Genet. Resour. 2022, 23, 1143–1154. [Google Scholar]
- Ashok, K.J.; Craig, L.N. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol. Breed. 2000, 6, 73–78. [Google Scholar]
- Chen, L.Q.; Qu, X.Q.; Hou, B.H.; Davide, S.; Sonia, O.; Alisdair, R.F.; Wolf, B.F. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 2012, 335, 207–211. [Google Scholar] [CrossRef]
- Bin, H.; Hao, W.; Wei, F.H.; Jian, B.S.; Yong, Z.; Yong, J.L. SWEET gene family in medicago truncatula: Genome-wide identification, expression and substrate specificity analysis. Plants 2019, 8, 338. [Google Scholar]
- Zhao, T.T.; Wang, J.G.; Wang, W.Z.; Feng, C.L.; Feng, X.Y.; Zhang, S.Z. Sequence analysis and tissue expression analysis of monosaccharide transporter gene ShSTP7 in sugarcane. Biotechnol. Bull. 2022, 38, 72–78. [Google Scholar]
- Grubb, C.D.; Abel, S. Glucosinolate metabolism and its control. Trends Plant Sci. 2006, 11, 89–100. [Google Scholar] [CrossRef]
- Barbara, A.H.; Jonathan, G. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar]
- Albena, D.K.; Rumen, V.K. Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med. 2012, 18, 337–347. [Google Scholar]
- Maryam, R.; Hossein, A.; Masoud, T.; Hassan, R. Economic micropropagation of Stevia rebaudiana Bertoni and evaluation of in vitro cultures in order to improve steviol glycosides. Sci. Hortic. 2022, 30, 111372. [Google Scholar]
- Zheng, C.; Yang, Y.; Wei, F.; Lv, X.; Xia, Z.R.; Qi, M.; Zhou, Q. Widely targeted metabolomics reveal the glucosinolate profile and odor-active compounds in flowering Chinese cabbage powder. Food Res. Int. 2023, 172, 113121. [Google Scholar] [CrossRef]
- Mao, X.; Zhao, X.; Huyan, Z.; Liu, T.; Yu, X. Relationship of Glucosinolate Thermal Degradation and Roasted Rapeseed Oil Volatile Odor. J. Agric. Food Chem. 2019, 67, 11187–11197. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.F. Seed composition. Soybeans Improv. Prod. Uses 2004, 16, 621–667. [Google Scholar]
- Jahangir, M.; Kim, H.K.; Choi, Y.H.; Verpoorte, R. Health-Affecting Compounds in Brassicaceae. Compr. Rev. Food Sci. Food Saf. 2010, 8, 31–43. [Google Scholar] [CrossRef]
- Theocharis, A.; Clément, C.; Barka, E.A. Physiological and molecular changes in plants grown at low temperatures. Planta 2012, 235, 1091–1105. [Google Scholar] [CrossRef]
- Chen, X.; Hanschen, F.S.; Neugart, S.; Schreiner, M.; Vargas, S.A.; Gutschmann, B.; Baldermann, S. Boiling and steaming induced changes in secondary metabolites in three different cultivars of pakchoi (Brassica rapa subsp. chinensis). J. Food Compos. Anal. 2019, 82, 103232. [Google Scholar] [CrossRef]
- Nagele, T.; Henkel, S.; Hormiller, I.; Sauter, T.; Sawodny, O.; Ederer, M.; Heyer, A.G. Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism. Plant Physiol. 2010, 153, 260–272. [Google Scholar] [CrossRef] [Green Version]
- Kryvoruchko, I.S.; Sinharoy, S.; Torres-Jerez, I.; Sosso, D.; Pislariu, C.I.; Guan, D.; Murray, J.; Benedito, V.A.; Frommer, W.B.; Udvardi, M.K. MtSWEET11, a nodule-specifc sucrose transporter of Medicago truncatula. Plant Physiol. 2016, 171, 554–565. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yao, L.; Hao, X.; Li, N.; Qian, W.; Yue, C.; Ding, C.; Zeng, J.; Yang, Y.; Wang, X. Tea plant SWEET transporters: Expression profifiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Mol. Biol. 2018, 96, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.L.; Yang, L.M.; Fang, Z.Y.; Zhang, Y.Y.; Zhuang, M.; Lv, H.H.; Wang, Y. Plant SWEET family of sugar transporters: Structure, evolution and biological functions. Biomolecules 2022, 12, 205. [Google Scholar] [PubMed]
- Liu, Q.; Dang, H.J.; Chen, Z.J.; Wu, J.Z.; Chen, Y.h.; Chen, S.b.; Luo, L.J. Genome-wide identification, expression, and functional analysis of the sugar transporter gene family in cassava (Manihot esculenta). Int. J. Mol. Sci. 2018, 19, 987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Rape Cultivars | Soluble Sugar (mg/g) | Soluble Protein (mg/g) | Vitamin C (mg/g) | Total Chlorophyll (mg/g) |
---|---|---|---|---|
Fanmingyoutai | 521.44 ± 16.36 a | 57.27 ± 10.23 | 0.14 ± 0.033 | 0.66 ± 0.08 a |
Y1 | 239.92 ± 11.56 de | 28.46 ± 6.18 | 0.19 ± 0.004 | 0.12 ± 0.006 |
Y2 | 328.90 ± 11.29 c | 97.36 ± 3.65 cd | 0.19 ± 0.006 | 0.11 ± 0.005 |
Y3 | 217.31 ± 41.43 | 102.20 ± 4.27 b | 0.18 ± 0.013 | 0.10 ± 0.002 |
Y4 | 173.95 ± 6.40 | 49.77 ± 9.10 | 0.23 ± 0.011 | 0.15 ± 0.002 d |
Y5 | 241.93 ± 8.98 de | 93.56 ± 53.04 cd | 0.25 ± 0.003 | 0.13 ± 0.004 |
Y6 | 259.79 ± 22.78 d | 82.79 ± 6.12 de | 0.16 ± 0.005 | 0.09 ± 0.003 |
Y7 | 222.10 ± 14.70 | 147.43 ± 16.64 a | 0.28 ± 0.008 | 0.11 ± 0.003 |
WH23(CK1) | 252.76 ± 15.08 d | 2.59 ± 1.74 | 0.10 ± 0.005 | 0.09 ± 0.004 |
Ziting No. 2(CK2) | 445.58 ± 19.86 b | 58.78 ± 13.98 | 0.07 ± 0.01 | 0.44 ± 0.01 b |
Youtai 929(CK3) | 185.82 ± 12.94 | 15.27 ± 4.67 | 0.26 ± 0.082 | 0.11 ± 0.001 |
Shishan 2017 | 233.23 ± 11.76 | 44.90 ± 70.56 | 0.32 ± 0.04 | 0.12 ± 0.003 |
Shishan 2019 | 207.02 ± 15.88 | 6.34 ± 0.08 | 1.01 ± 0.031 a | 0.07 ± 0.003 |
Shishancaitai | 234.51 ± 9.95 | 123.48 ± 13.56 b | 0.19 ± 0.006 | 0.10 ± 0.004 |
Xiziyuan No. 1 | 125.65 ± 7.61 | 6.45 ± 4.85 | 0.25 ± 0.025 | 0.15 ± 0.013 d |
Xiziyuan No. 2 | 205.54 ± 3.38 | 20.77 ± 7.41 | 0.50 ± 0.002 e | 0.20 ± 0.031 c |
Nongda No. 1 | 193.29 ± 14.12 | 40.91 ± 1.82 | 0.31± 0.003 | 0.09 ± 0.019 |
Huayouza 652 | 223.75 ± 3.17 | 68.64 ± 13.64 bc | 0.88 ± 0.012 b | 0.10 ± 0.003 |
Fengyou112 | 203.13 ± 8.04 | 17.95 ± 12.50 | 0.98 ± 0.02 a | 0.08 ± 0.001 |
Xiangsui 603 | 173.41 ± 6.15 | 8.66 ± 6.10 | 0.34 ± 0.012 | 0.08 ± 0.003 |
KW | 120.71 ± 6.17 | 30.46 ± 4.57 | 0.28 ± 0.02 | 0.13 ± 0.010 |
K173 | 180.59 ± 19.61 | 33.46 ± 3.94 | 0.78 ± 0.083 c | 0.13 ± 0.003 |
Ganyou 105 | 259.44 ± 5.61 d | 78.38 ± 9.25 | 0.40 ± 0.005 | 0.10 ± 0.016 |
Dadi 95 | 190.07 ± 5.15 | 35.77 ± 6.04 | 0.58 ± 0.006 d | 0.12 ± 0.003 |
20xy1329 | 220.60 ± 15.85 | 24.92 ± 8.26 | 0.38 ± 0.007 | 0.14 ± 0.013 de |
Rape Cultivars | Soluble Sugar (mg/g) | Soluble Protein (mg/g) | Vitamin C (mg/g) | Total Chlorophyll (mg/g) |
---|---|---|---|---|
Fanmingyoutai | 438.10 ± 11.35 a | 36.16 ± 10.45 | 0.08 ± 0.006 | 1.50 ± 0.04 a |
Y1 | 313.28 ± 4.43 c | 186.76 ± 21.92 cde | 0.07 ± 0.006 | 0.51 ± 0.035 |
Y2 | 193.30 ± 14.03 | 281.00 ± 30.20 a | 0.07 ± 0.062 | 0.41 ± 0.022 |
Y3 | 223.82 ± 11.76 | 72.56 ± 7.72 | 0.03 ± 0.012 | 0.44 ± 0.026 |
Y4 | 273.04 ± 21.93 | 61.76 ± 8.62 | 0.005 ± 0.003 | 0.40 ± 0.026 |
Y5 | 199.33 ± 23.02 | 131.58 ± 10.85 | 0.02 ± 0.002 | 0.57 ± 0.065 |
Y6 | 236.19 ± 19.25 | 147.26 ± 14.50 | 0.02 ± 0.005 | 0.31 ± 0.033 |
Y7 | 220.05 ± 8.32 | 246.29 ± 12.25 ab | 0.04 ± 0.001 | 0.57 ± 0.042 |
WH23(CK1) | 155.56 ± 7.85 | 151.27 ± 16.30 | 0.03 ± 0.004 | 0.44 ± 0.033 |
Ziting No. 2(CK2) | 363.81 ± 13.04 b | 116.31 ± 28.99 | 0.07 ± 0.063 | 1.34 ± 0.02 b |
Youtai 929(CK3) | 156.19 ± 8.65 | 97.57 ± 19.03 | 0.03 ± 0.028 | 1.48 ± 0.139 a |
Shishan 2017 | 209.99 ± 54.30 | 108.85 ± 12.09 | 0.05 ± 0.001 | 0.41 ± 0.021 |
Shishan 2019 | 129.56 ± 5.96 | 166.04 ± 11.37 | 0.42 ± 0.036 a | 0.36 ± 0.023 |
Shishancaitai | 211.48 ± 28.45 | 103.93 ± 15.94 | 0.03 ± 0.001 | 0.51 ± 0.021 |
Xiziyuan No. 1 | 162.23 ± 6.73 | 103.83 ± 85.29 | 0.02 ± 0.006 | 0.15 ± 0.035 |
Xiziyuan No. 2 | 189.06 ± 11.43 | 132.43 ± 6.65 | 0.08 ± 0.014 | 0.74 ± 0.029 c |
Nongda No. 1 | 250.04 ± 29.76 de | 188.81 ± 44.41 cd | 0.04 ± 0.006 | 0.31 ± 0.011 |
Huayouza 652 | 207.64 ± 1.39 | 139.14 ± 14.33 | 0.26 ± 0.025 b | 0.38 ± 0.016 |
Fengyou112 | 173.14 ± 7.30 | 82.24 ± 38.91 | 0.08 ± 0.014 | 0.66 ± 0.078 e |
Xiangsui 603 | 197.71 ± 5.21 | 168.16 ± 14.29 | 0.11 ± 0.013 de | 0.71 ± 0.025 de |
KW | 216.39 ± 24.31 | 275.19 ± 31.45 a | 0.01 ± 0.016 | 1.04 ± 0.025 c |
K173 | 189.32 ± 26.44 | 63.90 ± 51.45 | 0.13 ± 0.061 d | 0.42 ± 0.009 |
Ganyou 105 | 190.80 ± 11.77 | 63.80 ± 23.21 | 0.20 ± 0.008 c | 0.51 ± 0.016 |
Dadi 95 | 202.79 ± 20.71 | 220.84 ± 32.28 bc | 0.04 ± 0.009 | 0.54 ± 0.019 |
20xy1329 | 170.45 ± 4.65 | 134.04 ± 5.28 | 0.05 ± 0.009 | 0.53 ± 0.017 |
Index | Substance Class | Amount (mg/g) | |
---|---|---|---|
WH23 (CK) | Fanmingyoutai | ||
Maltose | disaccharide | 0.04 d | 0.02 d |
Sucrose | disaccharide | 64.82 c | 78.83 c |
Trehalose | disaccharide | 0.42 d | 0.48 d |
Lactose | disaccharide | N/A | N/A |
D-Arabinose | monosaccharide | 0.05 d | 0.04 d |
D-Fructose | monosaccharide | 139.19 b | 160.74 b |
L-Fucose | monosaccharide | 0.01 d | 0.01 d |
D-Galactose | monosaccharide | 0.40 d | 0.07 d |
Glucose | monosaccharide | 211.11 a | 216.72 a |
Inositol | monosaccharide | 1.68 d | 2.27 d |
L-Rhamnose | monosaccharide | 0.01 d | 0.02 d |
D-Sorbitol | monosaccharide | 0.01 d | 0.01 d |
Xylitol | monosaccharide | 0.01 d | 0.01 d |
Gene ID | Gene Symbol | Gene Description | Expression Regulation |
---|---|---|---|
BnaC07g10340D | LOC106394983 | endogenous alpha-amylase | down |
BnaA08g05660D | LOC106360628 | beta-amylase 5 | down |
BnaCnng46880D | LOC106431371 | probable sucrose-phosphatase 3a | down |
BnaA09g30430D | LOC106429767 | sucrose transport protein SUC2 | down |
BnaA09g15290D | LOC106391407 | galactinol synthase 2 | down |
BnaAnng09070D | LOC106421594 | aldehyde oxidase GLOX | up |
BnaAnng01700D | LOC106422717 | putative phosphatidylglycerol | up |
BnaA03g47060D | LOC106360071 | bidirectional sugar transporter SWEET14 | down |
BnaC07g33320D | LOC106449449 | bidirectional sugar transporter SWEET17 | down |
BnaC08g06850D | LOC106414209 | sugar transport protein 5 STP5 | up |
BnaC06g21620D | LOC106353515 | indole glucosinolate O-methyltransferase 5 GSL | down |
Index | Gene Expression in the Fresh Shoot | Gene Expression in the Leaves | ||||||
---|---|---|---|---|---|---|---|---|
GLOX | SWEET17 | STP | GSL | GLOX | SWEET17 | STP | GSL | |
Content of soluble sugar | 0.035 | 0.172 | 0.097 | 0.021 | −0.358 ** | −0.169 | −0.215 | −0.035 |
Content of soluble protein | −0.013 | 0.250 * | 0.093 | 0.432 ** | −0.152 | −0.272 * | −0.236 * | −0.118 |
Content of vitamin C | −0.274 * | −0.237 * | −0.323 ** | −0.238 * | 0.242 * | 0.004 | −0.021 | −0.151 |
Content of total chlorophyll | −0.097 | 0.127 | 0.057 | 0.095 | 0.140 | 0.192 | 0.204 | 0.260 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Tan, T.; Chen, H.; Sun, H.; Hui, R.; Zhang, Z. Comparative Study of Bolting Adaptability between 60Co-Induced Rape and Its Original Material. Agronomy 2023, 13, 2118. https://doi.org/10.3390/agronomy13082118
Yan W, Tan T, Chen H, Sun H, Hui R, Zhang Z. Comparative Study of Bolting Adaptability between 60Co-Induced Rape and Its Original Material. Agronomy. 2023; 13(8):2118. https://doi.org/10.3390/agronomy13082118
Chicago/Turabian StyleYan, Wei, Tailong Tan, Hao Chen, Haiyan Sun, Rongkui Hui, and Zhenqian Zhang. 2023. "Comparative Study of Bolting Adaptability between 60Co-Induced Rape and Its Original Material" Agronomy 13, no. 8: 2118. https://doi.org/10.3390/agronomy13082118
APA StyleYan, W., Tan, T., Chen, H., Sun, H., Hui, R., & Zhang, Z. (2023). Comparative Study of Bolting Adaptability between 60Co-Induced Rape and Its Original Material. Agronomy, 13(8), 2118. https://doi.org/10.3390/agronomy13082118