Identification of Robust Hybrid Inversion Models on the Crop Fraction of Absorbed Photosynthetically Active Radiation Using PROSAIL Model Simulated and Field Multispectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Canopy Multispectral Image Acquisition
2.4. Canopy FPAR Measurements
2.5. PROSAIL RTM and Data Simulation
2.6. Vegetation Indices (VIs)
2.7. Sensitivity Analysis
2.8. Inversion Modeling Algorithm
2.8.1. The ANN Algorithm
2.8.2. The SVR Algorithm
3. Results
3.1. Appropriate VIs for FPAR Estimation
3.2. Sensitivity Analysis
3.2.1. Global Sensitivity Analysis of the FPAR
3.2.2. Local Sensitivity Analysis of the FPAR
3.3. Performance of the Inversion Model with the Validation Dataset
3.4. Evaluation of the Optimal Inversion Model for Estimating Canola
4. Discussion
4.1. Sensitivity Analysis of the FPAR and VIs
4.2. Comparison of Modeling Inversion Methods
4.3. Estimating the FPAR in Canola Growth Periods with Hybrid Models
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCallum, A.; Wagner, W.; Schmullius, C.; Shvidenko, A.; Obersteiner, M.; Fritz, S.; Nilsson, S. Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000. Remote Sens. Environ. 2010, 114, 941–949. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Q.; Lyapustin, A.I.; Wang, Y.; Middleton, E.M. Impacts of light use efficiency and fPAR parameterization on gross primary production modeling. Agric. For. Meteorol. 2014, 189, 187–197. [Google Scholar] [CrossRef]
- Bala, S.K.; Islam, A.S. Correlation between potato yield and MODIS-derived vegetation indices. Int. J. Remote Sens. 2009, 30, 2491–2507. [Google Scholar] [CrossRef]
- Donohue, R.J.; McVicar, T.R.; Roderick, M.L. Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Glob. Chang. Biol. 2009, 15, 1025–1039. [Google Scholar] [CrossRef]
- GCOS. The Status of the Global Climate Observing System 2021: The GCOS Status Report (GCOS-240); WMO: Geneva, Switzerland, 2021. [Google Scholar]
- Leolini, L.; Bregaglio, S.; Ginaldi, F.; Costafreda-Aumedes, S.; Di Gennaro, S.F.; Matese, A.; Maselli, F.; Caruso, G.; Palai, G.; Bajocco, S.; et al. Use of remote sensing-derived fPAR data in a grapevine simulation model for estimating vine biomass accumulation and yield variability at sub-field level. Precis. Agric. 2023, 24, 705–726. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, H.; Yu, L.; Wu, M.; Wang, F.; Huang, W.; Liu, L.; Sun, R.; Li, C.; Wang, D.; et al. Assessing spectral indices to estimate the fraction of photosynthetically active radiation absorbed by the vegetation canopy. Int. J. Remote Sens. 2018, 39, 8022–8040. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y.; Chen, X.; Wang, H.; Yao, N.; Liu, F. Monitoring monthly soil moisture conditions in China with temperature vegetation dryness indexes based on an enhanced vegetation index and normalized difference vegetation index. Theor. Appl. Climatol. 2021, 143, 159–176. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, B.; Liu, L. Comparing spatiotemporal patterns in Eurasian FPAR derived from two NDVI-based methods. Int. J. Digit. Earth 2012, 5, 283–298. [Google Scholar] [CrossRef]
- Clevers, J.; Van Leeuwen, H.; Verhoef, W. Estimating the fraction APAR by means of vegetation indices: A sensitivity analysis with a combined prospect-sail model. Remote Sens. Rev. 1994, 9, 203–220. [Google Scholar] [CrossRef]
- Dong, T.; Wu, B.; Meng, J.; Du, X.; Shang, J. Sensitivity analysis of retrieving fraction of absorbed photosynthetically active radiation (FPAR) using remote sensing data. Acta Ecol. Sin. 2016, 36, 1–7. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, M.; Coops, N.C.; Hilker, T.; Wulder, M.A.; Newnham, G.J.; Culvenor, D.S. Automated reconstruction of tree and canopy structure for modeling the internal canopy radiation regime. Remote Sens. Environ. 2013, 136, 286–300. [Google Scholar] [CrossRef]
- Meng, L.; Huang, Y.; Zhu, N.; Chen, Z.; Li, X. Mapping properties of vegetation in a tidal salt marsh from multi-spectral satellite imagery using the SCOPE model. Int. J. Remote Sens. 2021, 42, 422–444. [Google Scholar] [CrossRef]
- Liu, R.; Ren, H.; Liu, S.; Liu, Q.; Li, X. Modelling of fraction of absorbed photosynthetically active radiation in vegetation canopy and its validation. Biosyst. Eng. 2015, 133, 81–94. [Google Scholar] [CrossRef]
- Punalekar, S.M.; Verhoef, A.; Quaife, T.L.; Humphries, D.; Bermingham, L.; Reynolds, C.K. Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model. Remote Sens. Environ. 2018, 218, 207–220. [Google Scholar] [CrossRef]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.R.; Myneni, R.B. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar]
- Verger, A.; Baret, F.; Camacho, F. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sens. Environ. 2011, 115, 415–426. [Google Scholar] [CrossRef]
- Gu, C.; Du, H.; Mao, F.; Han, N.; Zhou, G.; Xu, X.; Sun, S.; Gao, G. Global sensitivity analysis of PROSAIL model parameters when simulating Moso bamboo forest canopy reflectance. Int. J. Remote Sens. 2016, 37, 5270–5286. [Google Scholar] [CrossRef]
- Zhou, G.; Ma, Z.; Sathyendranath, S.; Platt, T.; Jiang, C.; Sun, K. Canopy Reflectance Modeling of Aquatic Vegetation for Algorithm Development: Global Sensitivity Analysis. Remote Sens. 2018, 10, 837. [Google Scholar] [CrossRef]
- Leolini, L.; Moriondo, M.; Rossi, R.; Bellini, E.; Brilli, L.; López-Bernal, Á.; Santos, J.A.; Fraga, H.; Bindi, M.; Dibari, C.; et al. Use of Sentinel-2 Derived Vegetation Indices for Estimating fPAR in Olive Groves. Agronomy 2022, 12, 1540. [Google Scholar] [CrossRef]
- Dong, T.; Meng, J.; Shang, J.; Liu, J.; Wu, B.; Huffman, T. Modified vegetation indices for estimating crop fraction of absorbed photosynthetically active radiation. Int. J. Remote Sens. 2015, 36, 3097–3113. [Google Scholar] [CrossRef]
- Hou, W.; Su, J.; Xu, W.; Li, X. Inversion of the fraction of absorbed photosynthetically active radiation (FPAR) from FY-3C MERSI data. Remote Sens. 2019, 12, 67. [Google Scholar] [CrossRef]
- Kolassa, J.; Reichle, R.H.; Koster, R.D.; Liu, Q.; Mahanama, S.; Zeng, F.-W. An Observation-Driven Approach to Improve Vegetation Phenology in a Global Land Surface Model. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002083. [Google Scholar] [CrossRef]
- Porth, C.B.; Porth, L.; Zhu, W.J.; Boyd, M.; Tan, K.S.; Liu, K. Remote Sensing Applications for Insurance: A Predictive Model for Pasture Yield in the Presence of Systemic Weather. N. Am. Actuar. J. 2020, 24, 333–354. [Google Scholar] [CrossRef]
- Johnson, D.M.; Rosales, A.; Mueller, R.; Reynolds, C.; Frantz, R.; Anyamba, A.; Pak, E.; Tucker, C. USA Crop Yield Estimation with MODIS NDVI: Are Remotely Sensed Models Better than Simple Trend Analyses? Remote Sens. 2021, 27, 4227. [Google Scholar] [CrossRef]
- Johnson, D.M. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products. Int. J. Appl. Earth Obs. 2016, 52, 65–81. [Google Scholar] [CrossRef]
- Pardo, N.; Sánchez, M.L.; Su, Z.; Pérez, I.A.; García, M.A. SCOPE model applied for rapeseed in Spain. Sci. Total Environ. 2018, 627, 417–426. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Z.; Shang, J.; Liu, J.; Dong, T.; Tang, M.; Feng, S.; Cai, H. Detecting winter canola (Brassica napus) phenological stages using an improved shape-model method based on time-series UAV spectral data. Crop J. 2022, 10, 1353–1362. [Google Scholar] [CrossRef]
- Huemmrich, K.F.; Goward, S.N. Vegetation canopy PAR absorptance and NDVI: An assessment for ten tree species with the SAIL model. Remote Sens. Environ. 1997, 61, 254–269. [Google Scholar] [CrossRef]
- Baret, F.; Jacquemoud, S.; Guyot, G.; Leprieur, C. Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. Remote Sens. Environ. 1992, 41, 133–142. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, W.; Zhou, D.; Gong, H. Sensitivity Analysis of Vegetation Reflectance to Biochemical and Biophysical Variables at Leaf, Canopy, and Regional Scales. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4014–4024. [Google Scholar] [CrossRef]
- Feret, J.B.; Francois, C.; Gitelson, A.; Asner, G.P.; Barry, K.M.; Panigada, C.; Richardson, A.D.; Jacquemoud, S. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sens. Environ. 2011, 115, 2742–2750. [Google Scholar] [CrossRef]
- Locherer, M.; Hank, T.; Danner, M.; Mauser, W. Retrieval of Seasonal Leaf Area Index from Simulated EnMAP Data through Optimized LUT-Based Inversion of the PROSAIL Model. Remote Sens. 2015, 7, 10321–10346. [Google Scholar] [CrossRef]
- Sun, J.; Wang, L.; Shi, S.; Li, Z.; Yang, J.; Gong, W.; Wang, S.; Tagesson, T. Leaf pigment retrieval using the PROSAIL model: Influence of uncertainty in prior canopy-structure information. Crop J. 2022, 10, 1251–1263. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [Google Scholar] [CrossRef]
- Verhoef, W.; Bach, H. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 2007, 109, 166–182. [Google Scholar] [CrossRef]
- Liu, G.; Liang, C.; Kuo, T.; Lin, T.; Shih Jen, H. Comparison of the NDVI, ARVI and AFRI vegetation index, along with their relations with the AOD using SPOT 4 vegetation data. Terr. Atmos. Ocean. Sci. 2004, 15, 15–31. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Weisz, R. Aerial color infrared photography for determining late-season nitrogen requirements in corn. Agron. J. 2005, 97, 1443–1451. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, W.; Qin, Y.; Lai, L.; Guan, T.; Zhang, X.; Jiang, L.; Du, H.; Yang, D.; Cong, Z.; et al. Alpine vegetation phenology dynamic over 16 years and its covariation with climate in a semi-arid region of China. Sci. Total Environ. 2016, 572, 119–128. [Google Scholar] [CrossRef]
- Chen, J.; Yang, C.; Wu, S.; Chung, Y.; Charles, A.; Chen, C. Leaf chlorophyll content and surface spectral reflectance of tree species along a terrain gradient in Taiwan’s Kenting National Park. Bot. Stud. 2007, 48, 71–77. [Google Scholar]
- Xie, Q.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Casa, R.; Pignatti, S.; Laneve, G.; Pascucci, S.; et al. Vegetation Indices Combining the Red and Red-Edge Spectral Information for Leaf Area Index Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1482–1493. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Z.; Xu, S.; He, X.; Ni, Z.; Zhao, H.; Ren, S. Retrieving the Diurnal FPAR of a Maize Canopy from the Jointing Stage to the Tasseling Stage with Vegetation Indices under Different Water Stresses and Light Conditions. Sensors 2018, 18, 3965. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L. The mathematical identity of two vegetation indices: MCARI2 and MTVI2. Int. J. Remote Sens. 2013, 34, 7504–7507. [Google Scholar] [CrossRef]
- Wang, S.; Sun, W.; Li, S.; Shen, Z.; Fu, G. Interannual variation of the growing season maximum normalized difference vegetation index, MNDVI, and its relationship with climatic factors on the Tibetan Plateau. Pol. J. Ecol. 2015, 63, 424–439. [Google Scholar]
- Das, P.K.; Seshasai, M.V.R. Multispectral sensor spectral resolution simulations for generation of hyperspectral vegetation indices from Hyperion data. Geocarto Int. 2015, 30, 686–700. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int. 2015, 30, 650–661. [Google Scholar] [CrossRef]
- Fern, R.R.; Foxley, E.A.; Bruno, A.; Morrison, M.L. Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecol. Indic. 2018, 94, 16–21. [Google Scholar] [CrossRef]
- Vescovo, L.; Wohlfahrt, G.; Balzarolo, M.; Pilloni, S.; Sottocornola, M.; Rodeghiero, M.; Gianelle, D. New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass. Int. J. Remote Sens. 2012, 33, 2178–2195. [Google Scholar] [CrossRef]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. 2015, 34, 235–248. [Google Scholar] [CrossRef]
- Wang, F.; Huang, J.; Chen, L. Development of a vegetation index for estimation of leaf area index based on simulation modeling. J. Plant Nutr. 2010, 33, 328–338. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G.; Zhang, F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sens. Environ. 2018, 209, 439–445. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- Carter, G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Du, M.; Noboru, N.; Atsushi, I.; Yukinori, S. Multi-temporal monitoring of wheat growth by using images from satellite and unmanned aerial vehicle. Int. J. Agric. Biol. Eng. 2017, 10, 1–13. [Google Scholar]
- Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef]
- Disney, M.I.; Lewis, P.; North, P.R.J. Monte Carlo ray tracing in optical canopy reflectance modelling. Int. J. Remote Sens. 2000, 18, 163–196. [Google Scholar] [CrossRef]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Cervantes, J.; Garcia-Lamont, F.; Rodriguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Prikaziuk, E.; van der Tol, C. Global Sensitivity Analysis of the SCOPE Model in Sentinel-3 Bands: Thermal Domain Focus. Remote Sens. 2019, 11, 2424. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Q.; Shen, R. Analysis of Directional Characteristics of Winter Wheat Canopy Spectra. Spectrosc. Spect. Anal. 2010, 30, 1600–1605. [Google Scholar]
- Chen, L.; Yan, G.; Wang, T.; Ren, H.; Calbo, J.; Zhao, J.; McKenzie, R. Estimation of surface shortwave radiation components under all sky conditions: Modeling and sensitivity analysis. Remote Sens. Environ. 2012, 123, 457–469. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691–1353709. [Google Scholar] [CrossRef]
- da Silva, V.S.; Salami, G.; da Silva, M.I.O.; Silva, E.A.; Monteiro Junior, J.J.; Alba, E. Methodological evaluation of vegetation indexes in land use and land cover (LULC) classification. Geol. Ecol. Landsc. 2020, 4, 159–169. [Google Scholar] [CrossRef]
- Fang, P.; Yan, N.; Wei, P.; Zhao, Y.; Zhang, X. Aboveground Biomass Mapping of Crops Supported by Improved CASA Model and Sentinel-2 Multispectral Imagery. Remote Sens. 2021, 13, 2755. [Google Scholar] [CrossRef]
- Jin, H.; Eklundh, L. A physically based vegetation index for improved monitoring of plant phenology. Remote Sens. Environ. 2014, 152, 512–525. [Google Scholar] [CrossRef]
- Yao, X.; Ren, H.; Cao, Z.; Tian, Y.; Cao, W.; Zhu, Y.; Cheng, T. Detecting leaf nitrogen content in wheat with canopy hyperspectrum under different soil backgrounds. Int. J. Appl. Earth Obs. 2014, 32, 114–124. [Google Scholar] [CrossRef]
- Nevalainen, O.; Hakala, T.; Suomalainen, J.; Makipaa, R.; Peltoniemi, M.; Krooks, A.; Kaasalainen, S. Fast and nondestructive method for leaf level chlorophyll estimation using hyperspectral LiDAR. Agric. For. Meteorol. 2014, 198, 250–258. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Bannari, A.; Staenz, K. Soil Backgrounds Impact Analysis on Chlorophyll Indices Using Field, Airborne and Satellite Hyperspectral Data. In Geoscience and Remote Sensing; Pei-Gee, P.H., Ed.; IntechOpen: Brunswick, Germany, 2009; pp. 195–227. [Google Scholar]
- Liu, J.; Pattey, E.; Miller, J.R.; McNairn, H.; Smith, A.; Hu, B. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sens. Environ. 2010, 114, 1167–1177. [Google Scholar] [CrossRef]
- Xie, Q.; Huang, W.; Dash, J.; Song, X.; Huang, L.; Zhao, J.; Wang, R. Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions. Adv. Space Res. 2015, 56, 2365–2373. [Google Scholar] [CrossRef]
- Lauvernet, C.; Baret, F.; Hascoet, L.; Buis, S.; Le Dimet, F.X. Multitemporal-patch ensemble inversion of coupled surface-atmosphere radiative transfer models for land surface characterization. Remote Sens. Environ. 2008, 112, 851–861. [Google Scholar] [CrossRef]
- Liang, L.; Geng, D.; Yan, J.; Qiu, S.; Di, L.; Wang, S.; Xu, L.; Wang, L.; Kang, J.; Li, L. Estimating Crop LAI Using Spectral Feature Extraction and the Hybrid Inversion Method. Remote Sens. 2020, 12, 3534. [Google Scholar] [CrossRef]
- Dong, T.; Meng, J.; Shang, J.; Liu, J.; Wu, B. Evaluation of Chlorophyll-Related Vegetation Indices Using Simulated Sentinel-2 Data for Estimation of Crop Fraction of Absorbed Photosynthetically Active Radiation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4049–4059. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A. New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophys. Res. Lett. 2005, 32, L17403–L17407. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Xie, Q.; Huang, W.; Cai, S.; Liang, D.; Peng, D.; Zhang, Q.; Huang, L.; Yang, G.; Zhang, D. Comparative Study on Remote Sensing Invertion Methods for Estimating Winter Wheat Leaf Area Index. Spectrosc. Spect. Anal. 2014, 34, 1352–1356. [Google Scholar]
- Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212–219. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, C.; Xiang, W.; Tian, D.; Deng, X.; Zhao, M. Application of artificial neural networks in global climate change and ecological research: An overview. Chin. Sci. Bull. 2010, 55, 3853–3863. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Zhang, Y.; Gobron, N.; Frankenberg, C.; Wang, S.; Li, Z. The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sens. Environ. 2020, 240, 111686–111702. [Google Scholar] [CrossRef]
- Behrens, T.; Muller, J.; Diepenbrock, W. Utilization of canopy reflectance to predict properties of oilseed rape (Brassica napus L.) and barley (Hordeum vulgare L.) during ontogenesis. Eur. J. Agron. 2006, 25, 345–355. [Google Scholar] [CrossRef]
- Shen, M.; Chen, J.; Zhu, X.; Tang, Y. Yellow flowers can decrease NDVI and EVI values: Evidence from a field experiment in an alpine meadow. Can. J. Remote Sens. 2009, 35, 99–106. [Google Scholar] [CrossRef]
- Sulik, J.J.; Long, D.S. Spectral indices for yellow canola flowers. Int. J. Remote Sens. 2015, 36, 2751–2765. [Google Scholar] [CrossRef]
- Silva, C.D.F.; Manzione, R.L.; Albuquerque, J.L. Large-Scale Spatial Modeling of Crop Coefficient and Biomass Production in Agroecosystems in Southeast Brazil. Horticulturae 2018, 4, 44. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, M.; Zhang, X.; Zeng, H.; Wu, B. Mapping winter wheat biomass and yield using time series data blended from PROBA-V 100-and 300-m S1 products. Remote Sens. 2016, 8, 824. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Martonchik, J.; Myneni, R.B.; Diner, D.; Running, S.W. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res. Atmos. 1998, 103, 32257–32275. [Google Scholar] [CrossRef]
- Shi, J.; Wang, C.; Xi, X.; Yang, X.; Wang, J.; Ding, X. Retrieving fPAR of maize canopy using artificial neural networks with airborne LiDAR and hyperspectral data. Remote Sens. Lett. 2020, 11, 1002–1011. [Google Scholar] [CrossRef]
- Clevers, J. A simplified approach for yield prediction of sugar beet based on optical remote sensing data. Remote Sens Environ. 1997, 61, 221–228. [Google Scholar] [CrossRef]
- Chen, J. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1353–1368. [Google Scholar] [CrossRef]
- Zhang, Q.; Middleton, E.M.; Margolis, H.A.; Drolet, G.G.; Barr, A.A.; Black, T.A. Can a satellite-derived estimate of the fraction of PAR absorbed by chlorophyll (FAPARchl) improve predictions of light-use efficiency and ecosystem photosynthesis for a boreal aspen forest? Remote Sens. Environ. 2009, 113, 880–888. [Google Scholar] [CrossRef]
Year | Growth Stages | N | Max | Min | Mean | SD |
---|---|---|---|---|---|---|
2021 | Seedling | 62 | 0.780 | 0.465 | 0.621 | 0.095 |
Flowering | 40 | 0.741 | 0.409 | 0.605 | 0.082 | |
Maturity | 40 | 0.706 | 0.404 | 0.564 | 0.075 | |
2022 | Seedling | 18 | 0.770 | 0.442 | 0.616 | 0.104 |
Flowering | 60 | 0.770 | 0.417 | 0.590 | 0.084 | |
Maturity | 16 | 0.705 | 0.530 | 0.602 | 0.057 |
Model | Parameters | Typical Values | General Dataset 1 Range | Specific Dataset 2 Range | Step |
---|---|---|---|---|---|
PROSPECT | Cab (μg cm−2) | 40 | 10–80 | 30–60 | 0.5 |
Car (μg cm−2) | 8 | 5–20 | 5–20 | 10 | |
Cbrown (μg cm−2) | 0.0 | 0–0.5 | 0–0.5 | 0.05 | |
Cw (cm) | 0.01 | 0.005–0.05 | 0.005–0.05 | 0.005 | |
Cm (g cm−2) | 0.009 | 0.001–0.015 | 0.001–0.015 | 0.001 | |
N | 1.5 | 1–3 | 1–3 | 0.1 | |
SAIL | LAI (m2 m−2) | 1 | 0.25–7.5 | 1–5 | 0.5 |
ALA (°) | 30 | 10–80 | 30–60 | 10 | |
hspot (m m−1) | 0.01 | 0–1 | 0–1 | 0.2 | |
SZA (°) | 30 | 0–90 | 10–60 | 10 | |
OZA (°) | 10 | 0–90 | 0–90 | 10 | |
psi (°) | 0 | 0–90 | 0–90 | 10 | |
psoil | 0 | 0–1 | 0–1 | 0.25 |
Vegetation Index | Formulation | References |
---|---|---|
Atmospherically resistant Vegetation index (ARVI) | [41] | |
Chlorophyll index green (CIgreen) | [42] | |
Chlorophyll index red-edge (CIred-edge) | [42] | |
Difference vegetation index (DVI) | [43] | |
Enhanced vegetation index (EVI) | [44] | |
Enhanced vegetation index 2 (EVI2) | [45] | |
Green normalized difference Vegetation index (GNDVI) | [46] | |
Green ratio vegetation index (RVIgreen) | [47] | |
Green-red vegetation index (GRVI) | [48] | |
Modified chlorophyll absorption ratio vegetation index (MCARVI) | [49] | |
Modified normalized difference vegetation index (mNDVI) | [50] | |
modified normalized difference vegetation index red-edge (mNDVIred-edge) | [51] | |
Modified simple ratio (mSR) | [52] | |
Modified simple ratio red-edge (mSRred-edge) | [53] | |
Modified triangular vegetation index 2 (MTVI2) | [54] | |
Modified soil adjusted vegetation index (mSAVI) | [55] | |
Normalized difference vegetation index red-edge (NDVIred-edge) | [56] | |
Normalized difference vegetation index (NDVI) | [57] | |
Modified normalized difference water index (mNDWI) | [58] | |
Optimized soil-adjusted vegetation index (OSAVI) | [59] | |
Optimized soil-adjusted vegetation index red-edge (OSAVIred-edge) | [49] | |
Renormalized difference vegetation index (RDVI) | [60] | |
Renormalized difference vegetation index red-edge (RDVIred-edge) | [61] | |
Ratio vegetation index (RVI) | [62] | |
Soil-adjusted vegetation index (SAVI) | [63] | |
Simple ratio (SR) | [64] | |
Simple ratio red-edge (SRred-edge) | [65] | |
Visible-band difference vegetation index (VDVI) | [66] | |
Wide dynamic range vegetation index (WDRVI) | [67] |
VI | General Dataset 1 | Specific Dataset 2 | Total Rank | ||||||
---|---|---|---|---|---|---|---|---|---|
Regression Equation | R2 | RMSE | Rank | Regression Equation | R2 | RMSE | Rank | ||
OSAVI | 0.817 | 0.054 | 1 | 0.771 | 0.100 | 5 | 6 | ||
WDRVI | 0.766 | 0.061 | 4 | 0.823 | 0.088 | 2 | 6 | ||
mSR | 0.766 | 0.061 | 6 | 0.818 | 0.089 | 4 | 10 | ||
MTVI2 | 0.776 | 0.060 | 2 | 0.712 | 0.112 | 9 | 11 | ||
RVI | 0.753 | 0.063 | 10 | 0.821 | 0.089 | 3 | 13 | ||
NDVI | 0.744 | 0.064 | 12 | 0.840 | 0.084 | 1 | 13 | ||
OSAVIred-edge | 0.764 | 0.057 | 8 | 0.726 | 0.109 | 8 | 16 | ||
MCARVI | 0.769 | 0.061 | 3 | 0.689 | 0.117 | 13 | 16 | ||
SR | 0.753 | 0.063 | 11 | 0.756 | 0.103 | 6 | 17 | ||
RDVIred-edge | 0.766 | 0.061 | 5 | 0.696 | 0.115 | 12 | 17 | ||
RDVI | 0.754 | 0.063 | 9 | 0.707 | 0.113 | 10 | 19 | ||
MSAVI | 0.755 | 0.063 | 7 | 0.665 | 0.121 | 15 | 22 | ||
mNDVI | 0.683 | 0.071 | 17 | 0.747 | 0.105 | 7 | 24 | ||
NDVIred-edge | 0.691 | 0.070 | 16 | 0.703 | 0.114 | 11 | 27 | ||
SAVI | 0.729 | 0.066 | 13 | 0.656 | 0.123 | 19 | 32 | ||
EVI2 | 0.728 | 0.066 | 14 | 0.659 | 0.122 | 18 | 32 | ||
GNDVI | 0.671 | 0.073 | 18 | 0.673 | 0.120 | 14 | 32 | ||
EVI | 0.710 | 0.068 | 15 | 0.630 | 0.127 | 20 | 35 | ||
mNDWI | 0.671 | 0.073 | 19 | 0.660 | 0.122 | 17 | 36 | ||
mSRred-edge | 0.665 | 0.073 | 20 | 0.664 | 0.121 | 16 | 36 | ||
CIred-edge705 | 0.633 | 0.077 | 21 | 0.594 | 0.133 | 22 | 43 | ||
CIgreen | 0.604 | 0.080 | 23 | 0.563 | 0.138 | 23 | 46 | ||
SRred-edge | 0.610 | 0.079 | 22 | 0.548 | 0.140 | 25 | 47 | ||
DVI | 0.599 | 0.080 | 24 | 0.549 | 0.140 | 24 | 48 | ||
GRVI | 0.517 | 0.088 | 28 | 0.600 | 0.132 | 21 | 49 | ||
mNDVIred-edge | 0.538 | 0.086 | 26 | 0.543 | 0.141 | 26 | 52 | ||
GRVI | 0.581 | 0.082 | 25 | 0.520 | 0.145 | 28 | 53 | ||
ARVI | 0.518 | 0.088 | 27 | 0.415 | 0.160 | 29 | 56 | ||
VDVI | 0.472 | 0.092 | 29 | 0.543 | 0.141 | 27 | 56 |
Dataset | Inversion Method | VIs | Model Performance | |
---|---|---|---|---|
R2 | RMSE | |||
General dataset 1 | Curve fitting | OSAVI | 0.801 | 0.077 |
mSR | 0.703 | 0.122 | ||
WDRVI | 0.750 | 0.080 | ||
ANN | OSAVI | 0.822 | 0.055 | |
mSR | 0.772 | 0.069 | ||
WDRVI | 0.769 | 0.062 | ||
SVR | OSAVI | 0.817 | 0.067 | |
mSR | 0.741 | 0.088 | ||
WDRVI | 0.768 | 0.072 | ||
Specific dataset 2 | Curve fitting | OSAVI | 0.740 | 0.073 |
mSR | 0.680 | 0.120 | ||
WDRVI | 0.735 | 0.080 | ||
ANN | OSAVI | 0.775 | 0.059 | |
mSR | 0.750 | 0.079 | ||
WDRVI | 0.752 | 0.066 | ||
SVR | OSAVI | 0.749 | 0.066 | |
mSR | 0.722 | 0.083 | ||
WDRVI | 0.737 | 0.069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, J.; Luo, Z.; Zhang, C.; Tang, M.; Liu, R.; Xie, Z.; Feng, S. Identification of Robust Hybrid Inversion Models on the Crop Fraction of Absorbed Photosynthetically Active Radiation Using PROSAIL Model Simulated and Field Multispectral Data. Agronomy 2023, 13, 2147. https://doi.org/10.3390/agronomy13082147
Kong J, Luo Z, Zhang C, Tang M, Liu R, Xie Z, Feng S. Identification of Robust Hybrid Inversion Models on the Crop Fraction of Absorbed Photosynthetically Active Radiation Using PROSAIL Model Simulated and Field Multispectral Data. Agronomy. 2023; 13(8):2147. https://doi.org/10.3390/agronomy13082147
Chicago/Turabian StyleKong, Jiying, Zhenhai Luo, Chao Zhang, Min Tang, Rui Liu, Ziang Xie, and Shaoyuan Feng. 2023. "Identification of Robust Hybrid Inversion Models on the Crop Fraction of Absorbed Photosynthetically Active Radiation Using PROSAIL Model Simulated and Field Multispectral Data" Agronomy 13, no. 8: 2147. https://doi.org/10.3390/agronomy13082147
APA StyleKong, J., Luo, Z., Zhang, C., Tang, M., Liu, R., Xie, Z., & Feng, S. (2023). Identification of Robust Hybrid Inversion Models on the Crop Fraction of Absorbed Photosynthetically Active Radiation Using PROSAIL Model Simulated and Field Multispectral Data. Agronomy, 13(8), 2147. https://doi.org/10.3390/agronomy13082147