Construction of an Early Warning System Based on a Fuzzy Matter-Element Model for Diagnosing the Health of Alpine Grassland: A Case Study of Henan County, Qinghai, China
Abstract
:1. Introduction
2. Research Methodology
2.1. Field Data Collection
2.2. Indicators
2.3. Weighting Indicators
2.4. Data Processing—Fuzzy Matter Element Standardization
2.5. Grading the Severity of Warning
3. Results
3.1. Standardized Fuzzy Matter-Element Matrix of the Alpine Grassland
3.2. Importance of All Indicators
3.3. Level of Early Warning by Grassland Type
3.4. Level of Early Warning by Grazing Style
4. Discussion
4.1. Grassland Type and Its Best Way of Use
4.2. Influence of Grazing Intensity
4.3. Impact of Human Intervention
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.N.; Zhang, J.G. Grazing strategies and suggestions for sustainable utilization of alpine meadow resources on the Qinghai Tibet Plateau. Chin. Herbiv. Sci. 2017, 37, 63–67. [Google Scholar]
- Wu, G.L.; Du, G.Z. Discussion on the restoration and sustainable development of degraded alpine grassland ecosystem in Qinghai Tibet Plateau. Nat. J. 2007, 29, 159–164. [Google Scholar]
- Li, X.L.; Gao, J.; Brierley, G.; Qiao, Y.M.; Zhang, J.; Yang, Y.W. Rangeland degradation on the Qinghai—Tibet Plateau: Implications for rehabilitation. Land Degrad. Dev. 2013, 80, 72–80. [Google Scholar] [CrossRef]
- Song, Y.; Long, J.; Wang, H.B. Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor since 2000 Induced by Climate Change and Human Activities. Remote Sens. 2018, 10, 95. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Zhou, H.K. Eco-environmental degradation, vegetation regeneration and sustainable development in the headwaters of three rivers on Tibetan Plateau. China Acad. J. Electron. Publ. House 2005, 20, 471–476. [Google Scholar]
- Hu, L.; Wang, C.T.; Wang, G.X.; Ma, L.; Liu, W.; Xiang, Z.Y. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of three rivers, China. Acta Prataculturae Sin. 2014, 23, 8–19. [Google Scholar]
- Wang, G.X.; Li, Y.S.; Wang, Y.B.; Shen, Y.P. Impacts of alpine ecosystem and climate changes on surface runoff in the headwaters of the Yangtze River. J. Glaciol. Geocryol. 2007, 29, 159–168. [Google Scholar]
- Li, N.; Wang, G.X.; Liu, G.S.; Liu, Y.; Sun, X.Y. The ecological implications of land use change in the source regions of the Yangtze and Yellow Rivers, China. Reg. Environ. Chang. 2013, 13, 1099–1108. [Google Scholar]
- Soyza, A.G.; Whitford, W.G.; Herrick, J.E.; Van Zee, J.W.; Havstad, K.M. Early warning indicators of desertification: Examples of tests in the Chihuahuan Desert. J. Arid. Environ. 1998, 39, 101–112. [Google Scholar] [CrossRef]
- Fu, B.j. Principle and method of regional ecological environment early warning. Resour. Dev. Prot. 1991, 7, 138–141. [Google Scholar]
- Dakos, V.; Scheffer, M.; Van Nes, E.H.; Held, H. Slowing down as an early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 14308–14312. [Google Scholar] [CrossRef]
- Drake, J.M.; Griffen, B.D. Early warning signals of extinction in deteriorating environments. Nature 2010, 467, 456–459. [Google Scholar] [CrossRef]
- Capparelli, G.; Tiranti, D. Application of the MoniFLaIR early warning system for rainfall-induced landslides in Piedmont region (Italy). Landslides 2010, 7, 401–410. [Google Scholar] [CrossRef]
- Wen, D.L.; Pan, H. Construction of monitoring and early warning system for cold soil black soil environment. Environ. Sci. Manag. 2010, 35, 124–126. [Google Scholar]
- Hackett, B.; Comerma, E.; Daniel, P. Marine pollution monitoring and prediction. Oceanography 2009, 22, 168–175. [Google Scholar] [CrossRef]
- Wright, A.L. Wetland Eutrophication: Early Warning Biogeochemical Indicators. Soil Water Sci. 2016, 304, 1–3. [Google Scholar] [CrossRef]
- Van Dam, R.A.; Camilleri, C.; Finlayson, C.M. The potential of rapid assessment techniques as early warning indicators of wetland degradation: A review. Environ. Toxicol. 2015, 13, 297–312. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, Z.; Yang, W. Ecological risk assessment for water scarcity in China’s Yellow River Delta Wetland. Stoch. Environ. Res. Risk Assess. 2011, 25, 697–771. [Google Scholar] [CrossRef]
- Romañach, S.S.; Benscoter, A.M.; Brandt, L.A. Value-focused framework for defining landscape-scale conservation targets. J. Nat. Conserv. 2016, 32, 53–61. [Google Scholar] [CrossRef]
- Shang, Z.H.; Dong, Q.M.; Shi, J.J.; Zhou, H.K.; Dong, S.K.; Shao, X.Q.; Li, S.X.; Wang, Y.L.; Ma, Y.S.; Ding, L.M.; et al. Research progress in recent ten years of ecological restoration for ‘Black Soil Land’ degraded grassland on Tibetan plateau-concurrently discuss of ecological restoration in Sangjiangyuan region. Acta Agrestia Sin. 2018, 26, 1–21. [Google Scholar]
- Liu, D.J.; Zou, Z.H. Water quality evaluation based on improved fuzzy matter-element method. J. Environ. Sci. 2012, 24, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Tao, X. Evaluation of Land Ecological Safety Based on Fuzzy Matter-Element Theory. J. Comput. 2011, 6, 2639–2646. [Google Scholar] [CrossRef]
- Li, L.; Xu, Y.L.; Jiang, S.H.; Wu, Q.M. Evaluation of Urban Vitality Based on Fuzzy Matter-Element Model. Geogr. Geo-Inf. Sci. 2010, 26, 73–77. [Google Scholar]
- Ren, J.Z. Methods of Grassland Science Research; China Agriculture Press: Beijing, China, 1998. [Google Scholar]
- You, Q.G.; Xian, X.; Peng, F.; Dong, S.Y. Alpine meadow degradation effect on soil thermal and hydraulic properties and its environmental impacts. J. Desert Res. 2015, 35, 1183–1192. [Google Scholar]
- Cai, X.B.; Zhou, J. Spatial-temporal variation of soil organic carbon and its relations to soil physical properties in degraded alpine grasslands. Chin. J. Appl. Ecol. 2009, 20, 2639–2645. [Google Scholar]
- Wei, J.; Jiang, P.; Yu, D.Y.; Wu, G.; Fu, H.W. Distribution patterns of vegetation biomass and nutrients bio-cycle in alpine tundra ecosystem on Changbai Mountains. Northeast. China J. For. Res. 2007, 18, 271–278. [Google Scholar] [CrossRef]
- Saccone, P.; Cirel, J.; Pages, J.P.; Brun, J.J.; Michalet, R. Ecological resistance to Acer negundo invasion in a European riparian forest: Relative importance of environmental and biotic drivers. Appl. Veg. Sci. 2013, 16, 184–192. [Google Scholar] [CrossRef]
- Cao, Y.Z.; Wang, X.D.; Lu, X.Y.; Yan, Y.; Fan, J.H. Soil organic carbon and nutrients along an alpine grassland transect across Northern Tibet. J. Mt. Sci. 2013, 10, 564–573. [Google Scholar] [CrossRef]
- Hou, F.J.; Li, G.; Chang, S.H. Physiological indicators of grazing grassland health management. J. Appl. Ecol. 2002, 13, 1049–1053. [Google Scholar]
- Liu, J.Y.; Xu, X.L.; Shao, Q.Q. Grassland degradation in the “Three-River Headwaters” region, Qinghai Province. J. Geogr. Sci. 2008, 18, 259–273. [Google Scholar] [CrossRef]
- Dong, Q.M.; Ma, Y.S.; Xu, C.J.; Shi, J.J.; Wang, Y.; Wang, Y.L.; Sheng, L.; Li, S.X. Study of Classification and Gradation, Restoration of Black-Soil Beach Degraded Grassland in the Headwaters of Three Rivers. Acta Agrestia Sin. 2015, 23, 441–447. [Google Scholar]
- Yang, W.C. Health Evaluation of Qinghai Tibet Alpine Meadow Ecosystem: A Case Study of Chengduo County; Gansu Agricultural University: Lanzhou, China, 2010. [Google Scholar]
- Liu, Z. Evaluation of Ecological Carrying Capacity of Qilian Mountains Nature Reserve; Nanjing Normal University: Nanjing, China, 2004. [Google Scholar]
- Partovi, F.Y. Determining what to benchmark: An analytic hierarchy process approach. Int. J. Oper. Prod. Manag. 1994, 14, 25–39. [Google Scholar] [CrossRef]
- Jing, P. The Fuzzy Matter-Element Model for Forewarning Analysis of Regional Water Resources Sustainable Development. China Rural Water Hydropower 2005, 8, 22–24. [Google Scholar]
- Murray, R.B.; Mayland, H.F.; Van Soest, P.J. Growth and Nutritional Value to Cattle of Grasses on Cheatgrass Range in Southern Idaho; Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1978.
- Xu, C.; Wang, H.J.; Liu, Q.X.; Wang, B. Alternative stable states and tipping points of ecosystems. Biodivers. Sci. 2020, 28, 1417–1430. [Google Scholar] [CrossRef]
- Dakos, V.; Van Nes, E.H.; Donangelo, R.; Fort, H.; Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 2010, 3, 163–174. [Google Scholar] [CrossRef]
- Sutherland, W.J.; Freckleton, R.P.; Godfray, H.C.J.; Beissinger, S.R.; Benton, T.; Cameron, D.D.; Carmel, Y.; Coomes, D.A.; Coulson, T.; Emmerson, M.C.; et al. Identification of 100 fundamental ecological questions. J. Ecol. 2013, 101, 58–67. [Google Scholar] [CrossRef]
- Berdugo, M.; Kéfi, S.; Soliveres, S.; Maestre, F.T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 2017, 1, 0003. [Google Scholar] [CrossRef]
- Liautaud, K.; van Nes, E.H.; Barbier, M.; Scheffer, M.; Loreau, M. Superorganisms or loose collections of species? A unifying theory of community patterns along environmental gradients. Ecol. Lett. 2019, 22, 1243–1252. [Google Scholar] [CrossRef]
- Rosindell, J.; Hubbell, S.P.; Etienne, R.S. The Unified Neutral Theory of Biodiversity and Biogeography at Age Ten. Trends Ecol. Evol. 2011, 26, 340–348. [Google Scholar] [CrossRef]
- Beck, R.F.; Tober, D.A. Vegetational changes on creosotebush sites after removal of shrubs, cattle and rabbits. Agric. Exp. Stn. Bull. 1985, 717, 1–22. [Google Scholar]
- Allen, E.B. The Reconstruction of Disturbed Arid Lands: An Ecological Approach; Routledge Press: New York, NY, USA, 2019. [Google Scholar]
- Costello, D.F.; Turner, G.T. Judging Condition and Utilization of Short-Grass Ranges on the Central Great Plains; US Department of Agriculture: Washington, DC, USA, 1944.
- Proffitt, A.; Bendotti, S.; Eastham, J. The effect of sheep trampling and grazing on soil physical properties and pasture growth for a red-brown earth. Aust. J. Agric. Res. 1993, 44, 317–331. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol. Evol. 2003, 18, 648–656. [Google Scholar] [CrossRef]
- Mäler, K.G. Development ecological resources and their management: A study of complex dynamic systems. Eur. Econ. Rev. 2009, 44, 645–665. [Google Scholar] [CrossRef]
- Ellison, L. Influence of grazing on plant succession of rangelands. Bot. Rev. 1960, 26, 1–78. [Google Scholar] [CrossRef]
- Rohde, K.; Stauffer, D. Simulation of geographical trends in Chowdhury ecosystem model. Adv. Complex Syst. 2005, 8, 4. [Google Scholar] [CrossRef]
- Hu, Z.M.; Guo, Q.; Li, S.G.; Piao, S.L.; Knapp, A.K.; Ciais, P.; Li, X.R.; Yu, G.R. Shifts in the dynamics of productivity signal ecosystem state transitions at the biome-scale. Ecol. Lett. 2018, 21, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.E.; He, B. Concept’s Representation and Extension Nature Based on Matter-Element Models. J. Petrochem. Univ. 1997, 10, 83–87. [Google Scholar]
Type of Grassland | Longitude (E) | Latitude (N) | Altitude (m) | Species Richness (S) | Veg Coverage (%) | Veg Height (cm) | Dominant Species | Grazing Style | |
---|---|---|---|---|---|---|---|---|---|
PH | M1 | 101°24′41″ | 34°41′53″ | 3541 | 48 | 99.0 | 60 | Potentilla fruticosa (0.051) | Winter Pasture (WP) |
M6 | 101°25′48″ | 34°40′42″ | 3518 | 21 | 82.0 | 35 | Potentilla fruticosa (0.225) | Summer Pasture (SP) | |
EN | M2 | 101°51′53″ | 34°35′36″ | 3590 | 28 | 94.3 | 75 | Elymus nutans (0.108) | Winter Pasture (WP) |
M3 | 101°47′17″ | 34°37′16″ | 3636 | 16 | 75.5 | 55 | Elymus nutans (0.150) | Summer Pasture (SP) | |
M7 | 101°35′27″ | 34°42′11″ | 3542 | 35 | 79.5 | 70 | Elymus nutans (0.182) | No Grazing (NGP) | |
KH | M4 | 101°31′51″ | 34°52′21″ | 3610 | 28 | 92.1 | 3 | Kobresia humilis (0.079) | Summer Pasture (SP) |
LB | M5 | 101°30′37″ | 34°42′15″ | 3509 | 30 | 88.0 | 28 | Ligularia birgaurea (0.114) | No Grazing (NGP) |
KT | M8 | 101°27′57″ | 34°51′22″ | 3588 | 33 | 98.3 | 55 | Kobresia tibetica (0.180) | Winter Pasture (WP) |
Target Layer (A) | Criterion Layer (B) | Indicator Layer (C) | |||
---|---|---|---|---|---|
Weight | Factor | Unit | |||
Derive the level of warning on the potential risk of grassland degradation | 0.630 | B1—grassland quality | C1 | Bare ground proportion | % |
C2 | Turf layer thickness | cm | |||
C3 | Above ground biomass | g/m2 | |||
C4 | Vegetation coverage | % | |||
C5 | Height of dominant species | cm | |||
C6 | Plant richness | Number of species | |||
0.218 | B2—habitat quality | C7 | Total carbon | g/Kg | |
C8 | Available phosphorus | g/Kg | |||
C9 | Total nitrogen | mg/Kg | |||
C10 | Available potassium | mg/Kg | |||
C11 | Moisture | % | |||
C12 | Slope | ° | |||
0.151 | B3—eco-carrying capacity | C13 | Grazing intensity | sheep-unit/hm2.year | |
C14 | Forage production | RMB/hm2 | |||
C15 | Fine forage ratio | % |
Warning Degree | No Warning | Light Warning | Medium Warning | Serious Warning | Extreme Warning |
---|---|---|---|---|---|
Prosperity index | [0, 2] | [2, 4] | [4, 6] | [6, 8] | [8, 10] |
Range of indicators | <S4 | [S4, S3] | [S3, S2] | [S2, S1] | ≥S1 |
B1-C | Parameter | B1 | C1 | C2 | C3 | C4 | C5 | C6 |
2.289 | 1.246 | 0.888 | 0.342 | 0.525 | 1.414 | 3.448 | ||
0.630 | 0.11 | 0.066 | 0.028 | 0.042 | 0.114 | 0.278 | ||
B2-C | B2 | C7 | C8 | C9 | C10 | C11 | C12 | |
0.794 | 2.928 | 0.293 | 0.567 | 1.763 | 1.399 | 0.833 | ||
0.218 | 0.082 | 0.008 | 0.016 | 0.049 | 0.039 | 0.023 | ||
B3-C | B3 | C13 | C14 | C15 | ||||
0.550 | 2.466 | 0.405 | 3.271 | |||||
0.151 | 0.022 | 0.012 | 0.110 |
Indicator | Factor | Change Degree (%) | ||||
---|---|---|---|---|---|---|
PF | EN | KH | LB | KT | ||
C1 | Bareground proportion | −38.42 | −35.70 | 30.38 | −69.17 | 147.06 |
C2 | Turf layer thickness | 0.00 | 10.71 | −25.00 | 16.67 | −7.69 |
C3 | Aboveground biomass | −20.86 | −72.75 | −68.66 | −28.49 | −38.18 |
C4 | Vegetation coverage | 4.03 | 7.26 | −2.61 | 9.43 | −2.54 |
C5 | Height of dominant species | 21.48 | 2.76 | 4.88 | 0.00 | 7.09 |
C6 | Plant diversity | −57.14 | −50.63 | −67.86 | −66.67 | −72.73 |
C7 | Total carbon | 11.26 | 18.61 | 18.19 | −9.57 | 13.99 |
C8 | Available phosphorus | −21.12 | 49.43 | 14.49 | 18.18 | 41.92 |
C9 | Total nitrogen | −15.93 | 7.76 | −51.46 | −35.22 | −1.05 |
C10 | Available potassium | −30.74 | 2.91 | −18.04 | 14.05 | 39.99 |
C11 | Moisture | −35.41 | 15.94 | −7.99 | −0.95 | 14.37 |
C12 | Slope | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
C13 | Grazing intensity | 13.04 | −47.37 | 20.00 | −100.00 | −400.00 |
C14 | Forage production | −8.93 | −7.86 | 0.00 | −5.26 | −14.29 |
C15 | Fine forage ratio | 102.74 | 92.99 | 43.57 | 925.00 | 42.68 |
Value Difference | Change Degree (%) | ||||||
---|---|---|---|---|---|---|---|
WP | SP | NGP | WP | SP | NGP | ||
C1 | Bareground proportion | −1.87 | 10.93 | 2.90 | −17.08 | 99.89 | 26.53 |
C12 | Slope | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
C13 | Grazing intensity | −0.13 | −0.10 | 1.75 | −7.62 | −5.71 | 0.00 |
C2 | Turf layer thickness | 0.00 | −0.33 | 0.00 | 0.00 | −100.00 | 0.00 |
C3 | Above ground biomass | 183.40 | 113.99 | 85.26 | 100.00 | 62.15 | 46.49 |
C4 | Vegetation coverage | 1.87 | −10.93 | −2.90 | 17.08 | −100.00 | −26.53 |
C5 | Height of dominant species | −4.13 | 0.27 | −1.00 | −100.00 | 6.46 | −24.21 |
C6 | Plant diversity | 22.67 | 9.67 | 22.00 | 99.99 | 42.64 | 97.04 |
C7 | Total carbon | −1.93 | −5.76 | −3.31 | −33.56 | −100.00 | −57.38 |
C8 | Available phosphorus | 0.86 | −0.42 | −1.59 | 54.09 | −26.62 | 100.00 |
C9 | Total nitrogen | −0.81 | 1.09 | 0.67 | −74.19 | 100.00 | 61.56 |
C10 | Available potassium | 88.80 | 49.73 | −75.44 | 100.00 | 56.00 | −84.95 |
C11 | Moisture | 16.33 | 0.62 | −4.29 | 100.00 | 3.80 | −26.24 |
C14 | Forage production | 3.67 | 1.67 | 4.00 | 91.67 | 41.67 | 100.00 |
C15 | Fine forage ratio | −5.33 | −44.54 | −32.72 | −11.97 | −100.00 | −73.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Liu, M.; Zhu, S.; Duan, Z.; Wu, R.; Quan, X.; Chen, M.; Zhang, J.; Qiao, Y. Construction of an Early Warning System Based on a Fuzzy Matter-Element Model for Diagnosing the Health of Alpine Grassland: A Case Study of Henan County, Qinghai, China. Agronomy 2023, 13, 2176. https://doi.org/10.3390/agronomy13082176
Shi H, Liu M, Zhu S, Duan Z, Wu R, Quan X, Chen M, Zhang J, Qiao Y. Construction of an Early Warning System Based on a Fuzzy Matter-Element Model for Diagnosing the Health of Alpine Grassland: A Case Study of Henan County, Qinghai, China. Agronomy. 2023; 13(8):2176. https://doi.org/10.3390/agronomy13082176
Chicago/Turabian StyleShi, Huilan, Mengping Liu, Shihai Zhu, Zhonghua Duan, Rongrong Wu, Xiaolong Quan, Mengci Chen, Jiexue Zhang, and Youming Qiao. 2023. "Construction of an Early Warning System Based on a Fuzzy Matter-Element Model for Diagnosing the Health of Alpine Grassland: A Case Study of Henan County, Qinghai, China" Agronomy 13, no. 8: 2176. https://doi.org/10.3390/agronomy13082176
APA StyleShi, H., Liu, M., Zhu, S., Duan, Z., Wu, R., Quan, X., Chen, M., Zhang, J., & Qiao, Y. (2023). Construction of an Early Warning System Based on a Fuzzy Matter-Element Model for Diagnosing the Health of Alpine Grassland: A Case Study of Henan County, Qinghai, China. Agronomy, 13(8), 2176. https://doi.org/10.3390/agronomy13082176