Total Soluble Solids in Grape Must Estimation Using VIS-NIR-SWIR Reflectance Measured in Fresh Berries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Grape Sampling
2.2. Materials and Methods
2.2.1. Spectral Reflectance Measurements
2.2.2. Spectral Data Preprocessing
2.2.3. TSS Estimation by Spectroscopy
3. Results
3.1. Berry Reflectance Spectra
3.2. Laboratory Analysis
3.3. PLS Regression Model Predictions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urraca, R.; Sanz-Garcia, A.; Tardaguila, J.; Diago, M.P. Estimation of Total Soluble Solids in Grape Berries Using a Hand-Held NIR Spectrometer under Field Condition. J. Sci. Food Agric. 2016, 96, 3007–3016. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Novales, J.; Tardáguila, J.; Gutiérrez, S.; Diago, M.P. On-The-Go VIS + SW − NIR Spectroscopy as a Reliable Monitoring Tool for Grape Composition within the Vineyard. Molecules 2019, 24, 2795. [Google Scholar] [CrossRef] [PubMed]
- Herrera, J.; Guesalaga, A.; Agosin, E. Shortwave–near Infrared Spectroscopy for Non-Destructive Determination of Maturity of Wine Grapes. Meas. Sci. Technol. 2003, 14, 689. [Google Scholar] [CrossRef]
- Ferrara, G.; Melle, A.; Marcotuli, V.; Botturi, D.; Fawole, O.A.; Mazzeo, A. The Prediction of Ripening Parameters in Primitivo Wine Grape Cultivar Using a Portable NIR Device. J. Food Compos. Anal. 2022, 114, 104836. [Google Scholar] [CrossRef]
- Nogales-Bueno, J.; Rodríguez-Pulido, F.J.; Baca-Bocanegra, B.; Pérez-Marin, D.; Heredia, F.J.; Garrido-Varo, A.; Hernández-Hierro, J.M. Reduction of the Number of Samples for Cost-Effective Hyperspectral Grape Quality Predictive Models. Foods 2021, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Arribas, J.I. Non-Destructive Visible and Shortwave near-Infrared Spectroscopic Data Estimation of Various Physicochemical Properties of Fuji Apple (Malus pumila) Fruits at Different Maturation Stages. Chemom. Intell. Lab. Syst. 2020, 206, 104147. [Google Scholar] [CrossRef]
- Donis-González, I.R.; Valero, C.; Momin, M.A.; Kaur, A.; Slaughter, D.C. Performance Evaluation of Two Commercially Available Portable Spectrometers to Non-Invasively Determine Table Grape and Peach Quality Attributes. Agronomy 2020, 10, 148. [Google Scholar] [CrossRef]
- Ferrara, G.; Marcotuli, V.; Didonna, A.; Stellacci, A.M.; Palasciano, M.; Mazzeo, A. Ripeness Prediction in Table Grape Cultivars by Using a Portable NIR Device. Horticulturae 2022, 8, 613. [Google Scholar] [CrossRef]
- Kemps, B.; Leon, L.; Best, S.; De Baerdemaeker, J.; De Ketelaere, B. Assessment of the Quality Parameters in Grapes Using VIS/NIR Spectroscopy. Biosyst. Eng. 2010, 105, 507–513. [Google Scholar] [CrossRef]
- Kalopesa, E.; Karyotis, K.; Tziolas, N.; Tsakiridis, N.; Samarinas, N.; Zalidis, G. Estimation of Sugar Content in Wine Grapes via In Situ VNIR–SWIR Point Spectroscopy Using Explainable Artificial Intelligence Techniques. Sensors 2023, 23, 1065. [Google Scholar] [CrossRef] [PubMed]
- Chariskou, C.; Vrochidou, E.; Daniels, A.J.; Kaburlasos, V.G. Variable Selection on Reflectance NIR Spectra for the Prediction of TSS in Intact Berries of Thompson Seedless Grapes. Agronomy 2022, 12, 2113. [Google Scholar] [CrossRef]
- van Wyngaard, E.; Blancquaert, E.; Nieuwoudt, H.; Aleixandre-Tudo, J.L. Infrared Spectroscopy and Chemometric Applications for the Qualitative and Quantitative Investigation of Grapevine Organs. Front. Plant Sci. 2021, 12, 723247. [Google Scholar] [CrossRef] [PubMed]
- Vrochidou, E.; Bazinas, C.; Manios, M.; Papakostas, G.A.; Pachidis, T.P.; Kaburlasos, V.G. Machine Vision for Ripeness Estimation in Viticulture Automation. Horticulturae 2021, 7, 282. [Google Scholar] [CrossRef]
- Williams, P.; Dardenne, P.; Flinn, P. Tutorial: Items to Be Included in a Report on a near Infrared Spectroscopy Project. J. Near Infrared Spectrosc. 2017, 25, 85–90. [Google Scholar] [CrossRef]
- Daniels, A.; Poblete-Echeverría, C.; Opara, U.; Nieuwoudt, H. Measuring Internal Maturity Parameters Contactless on Intact Table Grape Bunches Using NIR Spectroscopy. Front. Plant Sci. 2019, 10, 1517. [Google Scholar] [CrossRef] [PubMed]
- Jarén, C.; Agulheiro-Santos, A.C.; Palma, V.; Rato, A.; Arias, N.; Arazuri, S. Determinación Del Contenido En Polifenoles En Uva de Mesa Mediante Tecnología NIRS; Universidad de Évora: Évora, Portugal, 2011. [Google Scholar]
- Sarkar, S.; Basak, J.K.; Moon, B.E.; Kim, H.T. A Comparative Study of PLSR and SVM-R with Various Preprocessing Techniques for the Quantitative Determination of Soluble Solids Content of Hardy Kiwi Fruit by a Portable Vis/NIR Spectrometer. Foods 2020, 9, 1078. [Google Scholar] [CrossRef] [PubMed]
- Power, A.; Truong, V.K.; Chapman, J.; Cozzolino, D. From the Laboratory to The Vineyard—Evolution of The Measurement of Grape Composition Using NIR Spectroscopy towards High-Throughput Analysis. High-Throughput 2019, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Murru, C.; Chimeno-Trinchet, C.; Díaz-García, M.E.; Badía-Laíño, R.; Fernández-González, A. Artificial Neural Network and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy to Identify the Chemical Variables Related to Ripeness and Variety Classification of Grapes for Protected. Designation of Origin Wine Production. Comput. Electron. Agric. 2019, 164, 104922. [Google Scholar] [CrossRef]
Municipality | Designation of Origin | Grape Cultivar | Longitude | Latitude | Grape Colour |
---|---|---|---|---|---|
Camponaraya | Bierzo | Godello | 6.692 W | 42.606 N | White |
Cacabelos | Bierzo | Mencía | 6.754 W | 42.626 N | Red |
Valbuena de Duero | Ribera de Duero | Tempranillo | 4.391 W | 41.631 N | Red |
Matapozuelos | Rueda | Verdejo | 4.765 W | 41.364 N | White |
Varieties | N | Min | Max | Range | Median | Mean | SD | CoV (%) |
---|---|---|---|---|---|---|---|---|
Godello | 57 | 17.60 | 25.40 | 7.80 | 22.90 | 22.49 | 1.94 | 8.63 |
Mencía | 58 | 20.80 | 25.60 | 4.80 | 23.75 | 23.52 | 1.04 | 4.43 |
Tempranillo | 59 | 16.50 | 24.00 | 7.50 | 21.60 | 21.27 | 1.54 | 7.23 |
Verdejo | 77 | 17.80 | 23.20 | 5.40 | 20.50 | 20.55 | 1.06 | 5.13 |
Varieties | Raw Data | SNV-Transformed Data | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | R2 | RMSE (°Brix) | SE (°Brix) | RPD | F | R2 | RMSE (°Brix) | SE (°Brix) | RPD | F | |
Godello | 57 | 0.55 | 1.32 | 1.33 | 1.46 | 7 | 0.61 | 1.22 | 1.23 | 1.58 | 7 |
Mencía | 58 | 0.68 | 0.59 | 0.60 | 1.74 | 5 | 0.68 | 0.60 | 0.60 | 1.72 | 3 |
Tempranillo | 59 | 0.50 | 1.10 | 1.11 | 1.39 | 7 | 0.64 | 0.94 | 0.94 | 1.63 | 7 |
Verdejo | 77 | 0.11 | 1.00 | 1.01 | 1.05 | 1 | 0.13 | 0.99 | 1.00 | 1.06 | 7 |
Varieties | Raw Data | SNV-Transformed Data | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | R2 | RMSE (°Brix) | SE (°Brix) | RPD | F | R2 | RMSE (°Brix) | SE (°Brix) | RPD | F | |
Godello | 57 | 0.75 | 0.98 | 0.99 | 1.97 | 7 | 0.77 | 0.94 | 0.94 | 2.06 | 7 |
Mencía | 58 | 0.72 | 0.55 | 0.56 | 1.87 | 7 | 0.74 | 0.54 | 0.54 | 1.91 | 7 |
Tempranillo | 59 | 0.59 | 0.99 | 1.00 | 1.54 | 6 | 0.63 | 0.94 | 0.95 | 1.63 | 6 |
Verdejo | 77 | 0.38 | 1.12 | 1.12 | 0.94 | 6 | 0.61 | 0.67 | 0.67 | 1.58 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejía-Correal, K.B.; Marcelo, V.; Sanz-Ablanedo, E.; Rodríguez-Pérez, J.R. Total Soluble Solids in Grape Must Estimation Using VIS-NIR-SWIR Reflectance Measured in Fresh Berries. Agronomy 2023, 13, 2275. https://doi.org/10.3390/agronomy13092275
Mejía-Correal KB, Marcelo V, Sanz-Ablanedo E, Rodríguez-Pérez JR. Total Soluble Solids in Grape Must Estimation Using VIS-NIR-SWIR Reflectance Measured in Fresh Berries. Agronomy. 2023; 13(9):2275. https://doi.org/10.3390/agronomy13092275
Chicago/Turabian StyleMejía-Correal, Karen Brigitte, Víctor Marcelo, Enoc Sanz-Ablanedo, and José Ramón Rodríguez-Pérez. 2023. "Total Soluble Solids in Grape Must Estimation Using VIS-NIR-SWIR Reflectance Measured in Fresh Berries" Agronomy 13, no. 9: 2275. https://doi.org/10.3390/agronomy13092275
APA StyleMejía-Correal, K. B., Marcelo, V., Sanz-Ablanedo, E., & Rodríguez-Pérez, J. R. (2023). Total Soluble Solids in Grape Must Estimation Using VIS-NIR-SWIR Reflectance Measured in Fresh Berries. Agronomy, 13(9), 2275. https://doi.org/10.3390/agronomy13092275