Distinguishing Cyst Nematode Species Using Image Textures and Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.2.1. Image Acquisition and Processing
2.2.2. Neural Network Models
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Thevenoux, R.; Le, V.L.; Villessèche, H.; Buisson, A.; Beurton-Aimar, M.; Grenier, E.; Folcher, L.; Parisey, N. Image based species identification of GlobIodera quarantine nematodes using computer vision and deep learning. Comput. Electron. Agric. 2021, 186, 106058. [Google Scholar] [CrossRef]
- Feist, E.; Kearn, J.; Gaihre, Y.; O’Connor, V.; Holden-Dye, L. The distinct profiles of the inhibitory effects of fluensulfone, abamectin, aldicarb and fluopyram on Globodera pallida hatching. Pestic. Biochem. Physiol. 2020, 165, 104541. [Google Scholar] [CrossRef] [PubMed]
- Levin, K.A.; Tucker, M.R.; Strock, C.F.; Lynch, J.P.; Mather, D.E. Three-dimensional imaging reveals that positions of cyst nematode feeding sites relative to xylem vessels differ between susceptible and resistant wheat. Plant Cell Rep. 2021, 40, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Madani, M.; Ward, L.; Vierstraete, A.; De Boer, S.H.; Moens, M. The ribosomal intergenic spacer (IGS) in the potato and tobacco cyst nematodes, Globodera pallida, G. rostochiensis and G. tabacum. Mol. Cell. Probes 2019, 48, 101441. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, Ł.; Kurek, W.; Lichocka, M.; Sobczak, M. A cryotechnique-based method for low abundance protein immunolocalization in tomato (Solanum lycopersicum) roots infected with a nematode, Globodera rostochiensis. Micron 2018, 108, 24–30. [Google Scholar] [CrossRef]
- Fioretti, L.; Porter, A.; Haydock, P.J.; Curtis, R. Monoclonal antibodies reactive with secreted-excreted products from the amphids and the cuticle surface of Globodera pallida affect nematode movement and delay invasion of potato roots. Int. J. Parasitol. 2002, 32, 1709–1718. [Google Scholar] [PubMed]
- Stare, B.G.; Lamovšek, J.; Širca, S.; Urek, G. Assessment of sequence variability in putative parasitism factor, expansin (expB2) from diverse populations of potato cyst nematode Globodera rostochiensis. Physiol. Mol. Plant Pathol. 2012, 79, 49–54. [Google Scholar] [CrossRef]
- Mhatre, P.H.; Divya, K.; Venkatasalam, E.; Bairwa, A.; Sudha, R.; Saranya, C.; Guru-Pirasanna-Pandi, G.; Sharma, S. Evaluation of Trap Crop, Solanum sisymbriifolium and Antagonistic Crops Against Potato Cyst Nematodes, Globodera spp. S. Afr. J. Bot. 2021, 138, 242–248. [Google Scholar] [CrossRef]
- Boucher, A.C.; Mimee, B.; Montarry, J.; Bardou-Valette, S.; Bélair, G.; Moffett, P.; Grenier, E. Genetic diversity of the golden potato cyst nematode Globodera rostochiensis and determination of the origin of populations in Quebec, Canada. Mol. Phylogenet. Evol. 2013, 69, 75–82. [Google Scholar] [CrossRef]
- Madani, M.; Subbotin, S.A.; Moens, M. Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using Real-Time PCR with SYBR green I dye. Mol. Cell Probes 2005, 2, 81–86. [Google Scholar] [CrossRef]
- Amiri, S.; Subbotin, S.A.; Moens, M. Identification of the beet cyst nematode Heterodera schachtii by PCR. Eur. J. Plant Pathol. 2002, 108, 497–506. [Google Scholar] [CrossRef]
- Wainer, J.; Dinh, Q. Taxonomy, Morphological and Molecular Identification of the Potato Cyst Nematodes, Globodera pallida and G. rostochiensis. Plants 2021, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Vlaar, L.E.; Thiombiano, B.; Abedini, D.; Schilder, M.; Yang, Y.; Dong, L. A Combination of Metabolomics and Machine Learning Results in the Identification of a New Cyst Nematode Hatching Factor. Metabolites 2022, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- OEPP/EPPO. EPPO Standarts PM 7/40(2). Globodera rostochiensis and Globodera pallida. Bull. OEPP/EPPO Bull. 2009, 39, 354–368. [Google Scholar] [CrossRef]
- Karnkowski, W.; Kaczmarek, A.; Dobosz, R.; Wieczorek, P.; Obrepalska-Steplowska, A. Occurrence of the white potato nematode Globodera pallida (Stone, 1973) (Nematoda: Heteroderidae) on the territory of Poland. Prog. Plant Prot. 2012, 52, 1087–1092. [Google Scholar]
- Jindo, K.; Teklu, M.G.; van Boheeman, K.; Njehia, N.S.; Narabu, T.; Kempenaar, C.; Molendijk, L.P.G.; Schepel, E.; Been, T.H. Unmanned Aerial Vehicle (UAV) for Detection and Prediction of Damage Caused by Potato Cyst Nematode G. pallida on Selected Potato Cultivars. Remote Sens. 2023, 15, 1429. [Google Scholar] [CrossRef]
- Zouhar, M.; Rysanek, O.; Kocova, N. Detection and differentiation of the potato cysts nematodes Globodera rotochiensis and Globodera pallida by PCR. Plant Prot. Sci. 2000, 36, 81–84. [Google Scholar] [CrossRef]
- Ste-Croix, D.T.; Bélanger, R.R.; Mimee, B. Single Nematode Transcriptomic Analysis, Using Long-Read Technology, Reveals Two Novel Virulence Gene Candidates in the Soybean Cyst Nematode, Heterodera glycines. Int. J. Mol. Sci. 2023, 24, 9440. [Google Scholar] [CrossRef]
- Nuaima, R.H.; Heuer, H. Genetic Variation among Heterodera schachtii Populations Coincided with Differences in Invasion and Propagation in Roots of a Set of Cruciferous Plants. Int. J. Mol. Sci. 2023, 24, 6848. [Google Scholar] [CrossRef]
- Noutfia, Y.; Ropelewska, E. Innovative Models Built Based on Image Textures Using Traditional Machine Learning Algorithms for Distinguishing Different Varieties of Moroccan Date Palm Fruit (Phoenix dactylifera L.). Agriculture 2023, 13, 26. [Google Scholar] [CrossRef]
- Noutfia, Y.; Ropelewska, E. Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ (Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements. Agriculture 2023, 13, 74. [Google Scholar] [CrossRef]
- Ropelewska, E. Diversity of Plum Stones Based on Image Texture Parameters and Machine Learning Algorithms. Agronomy 2022, 12, 762. [Google Scholar] [CrossRef]
- Ropelewska, E. Application of Imaging and Artificial Intelligence for Quality Monitoring of Stored Black Currant (Ribes nigrum L.). Foods 2022, 11, 3589. [Google Scholar] [CrossRef] [PubMed]
- Ropelewska, E. Assessment of the Influence of Storage Conditions and Time on Red Currants (Ribes rubrum L.) Using Image Processing and Traditional Machine Learning. Agriculture 2022, 12, 1730. [Google Scholar] [CrossRef]
- Unlersen, M.F.; Sonmez, M.E.; Aslan, M.F.; Demir, B.; Aydin, N.; Sabanci, K.; Ropelewska, E. CNN–SVM hybrid model for varietal classification of wheat based on bulk samples. Eur. Food Res. Technol. 2022, 248, 2043–2052. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A. MaZda-a Software for Texture Analysis. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Republic of Korea, 23–24 November 2007; pp. 245–249. [Google Scholar]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Strzelecki, M.; Szczypiński, P.; Materka, A.; Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl. Instrum. Methods Phys. Res. A 2013, 702, 137–140. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2005. [Google Scholar]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 4th ed.; University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Ropelewska, E.; Rady, A.M.; Watson, N.J. Apricot Stone Classification Using Image Analysis and Machine Learning. Sustainability 2023, 15, 9259. [Google Scholar] [CrossRef]
- Ropelewska, E. Distinguishing lacto-fermented and fresh carrot slice images using the Multilayer Perceptron neural network and other machine learning algorithms from the groups of Functions, Meta, Trees, Lazy, Bayes and Rules. Eur. Food Res. Technol. 2022, 248, 2421–2429. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross-section and seed textures determined using image processing. J. Food Process Eng. 2021, 44, e13694. [Google Scholar] [CrossRef]
- Akintayo, A.; Tylka, G.L.; Singh, A.K.; Ganapathysubramanian, B.; Singh, A.; Sarkar, S. A deep learning framework to discern and count microscopic nematode eggs. Sci. Rep. 2018, 8, 9145. [Google Scholar] [CrossRef] [PubMed]
- Kranse, O.P.; Ko, I.; Healey, R.; Sonawala, U.; Wei, S.; Senatori, B.; De Batte, F.; Zhou, J.; Eves-van den Akker, S. A low-cost and open-source solution to automate imaging and analysis of cyst nematode infection assays for Arabidopsis thaliana. Plant Methods 2022, 18, 134. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.B.; Bastos, L.M.; de Oliveira, M.F.; Soares, P.L.M.; Ciampitti, I.A.; da Silva, R.P. Identifying Nematode Damage on Soybean through Remote Sensing and Machine Learning Techniques. Agronomy 2022, 12, 2404. [Google Scholar] [CrossRef]
- Hillnhütter, C.; Mahlein, A.K.; Sikora, R.A.; Oerke, E.C. Remote Sensing to Detect Plant Stress Induced by Heterodera Schachtii and Rhizoctonia Solani in Sugar Beet Fields. Field Crops Res. 2011, 122, 70–77. [Google Scholar] [CrossRef]
- Nutter, F.W., Jr.; Tylka, G.L.; Guan, J.; Moreira, A.J.D.; Marett, C.C.; Rosburg, T.R.; Basart, J.P.; Chong, C.S. Use of remote sensing to detect soybean cyst nematode-induced plant stress. J. Nematol. 2002, 34, 222–231. [Google Scholar] [PubMed]
- Lu, H.; Tallman, J.; Hu, X.; Anderson, E.; Chamberlin, M.; Lu, G. An innovative method for counting females of soybean cyst nematode with fluorescence imaging technology. J. Nematol. 2005, 37, 495–499. [Google Scholar]
- Baretto, A.; Paulus, A.; Varellmam, M.; Mahlein, A.-K. Hyperspectral imaging of symptoms induced by Rhizoctonia solani in sugar beet: Comparison of input data and different machine learning algorithms. J. Plant Dis. Prot. 2020, 127, 441–451. [Google Scholar] [CrossRef]
Color Channel | Selected Image Textures |
---|---|
L | LHMean LHPerc90 LS5SZ3SumAverg |
b | bS5SZ3SumAverg |
X | XHMean XHPerc90 |
Y | YHMean YHDomn10 |
Z | ZHMean ZHVariance ZHPerc50 ZHPerc99 ZS5SH3SumVarnc ZS5SZ3SumAverg ZS4RVGLevNonU |
R | RS5SV3DifVarnc |
G | GHMean GHVariance |
B | BHMean BHVariance BHPerc50 BHPerc90 BHDomn10 BS4RHGLevNonU BS4RVFraction |
U | UHMaxm10 US5SN3AngScMom US5SN5SumAverg UATeta2 |
S | SS5SN5Contrast |
Application | Classifier Type | Parameters |
---|---|---|
MATLAB | Narrow Neural Network | first layer size: 10; number of fully connected layers: 1; activation: ReLU; iteration limit: 1000; standardize data: yes; regularization strength (Lambda): 0 |
Medium Neural Network | first layer size: 25; number of fully connected layers: 1; activation: ReLU; iteration limit: 1000; standardize data: yes; regularization strength (Lambda): 0 | |
Wide Neural Network | first layer size: 100; number of fully connected layers: 1; activation: ReLU; iteration limit: 1000; standardize data: yes; regularization strength (Lambda): 0 | |
Bilayered Neural Network | first layer size: 10; second layer size: 10; number of fully connected layers: 2; activation: ReLU; iteration limit: 1000; standardize data: yes; regularization strength (Lambda): 0 | |
Trilayered Neural Network | first layer size: 10; second layer size: 10; third layer size: 10; number of fully connected layers: 3; activation: ReLU; iteration limit: 1000; standardize data: yes; regularization strength (Lambda): 0 | |
WEKA | WiSARD | batchSize: 100; bitNo: 8; bleachConfidence: 0.01; bleachFlag: False; bleachStep: 1.0; debug: False; doNotCheckCapabilities: False; mapType: RANDOM; seed: −1; ticNo: 256 |
Multilayer Perceptron | batchSize: 100; debug: False; doNotCheckCapabilities: False; decay: hiddenLayers: a; learningRate: 0.3; momenetum: 0.2; nominalToBinaryFilter:True; normalizeAttributes: True; normalizeNumericClass: True; reset: True; resume: False; seed: 0; trainingTime: 500; validationTreshold: 20 | |
RBF (Radial basis function) Network | batchSize: 100; clusteringSeed: 1; debug: False; doNotCheckCapabilities: False; maxIts: −1; minStdDev: 0.1; numClusters: 2; ridge: 1.0 × 10−8 |
Algorithm | True Class | Predicted Class (%) | Average Accuracy (%) | ||
---|---|---|---|---|---|
G. pallida | G. rostochiensis | H. schachtii | |||
Narrow Neural Network | G. pallida | 81 | 19 | 0 | 86.3 |
G. rostochiensis | 17 | 80 | 3 | ||
H. schachtii | 1 | 1 | 98 | ||
Medium Neural Network | G. pallida | 85 | 15 | 0 | 86.3 |
G. rostochiensis | 20 | 79 | 1 | ||
H. schachtii | 1 | 4 | 95 | ||
Wide Neural Network | G. pallida | 81 | 17 | 2 | 86.3 |
G. rostochiensis | 15 | 83 | 2 | ||
H. schachtii | 0 | 5 | 95 | ||
Bilayered Neural Network | G. pallida | 72 | 25 | 3 | 83.7 |
G. rostochiensis | 18 | 81 | 1 | ||
H. schachtii | 0 | 2 | 98 | ||
Trilayered Neural Network | G. pallida | 79 | 19 | 2 | 83.7 |
G. rostochiensis | 23 | 75 | 2 | ||
H. schachtii | 2 | 1 | 97 |
Algorithm | True Class | Predicted Class (%) | Average Accuracy (%) | ||
---|---|---|---|---|---|
G. pallida | G. rostochiensis | H. schachtii | |||
WiSARD | G. pallida | 87 | 13 | 0 | 89.67 |
G. rostochiensis | 14 | 85 | 1 | ||
H. schachtii | 0 | 3 | 97 | ||
Multilayer Perceptron | G. pallida | 75 | 25 | 0 | 84.67 |
G. rostochiensis | 19 | 81 | 0 | ||
H. schachtii | 1 | 1 | 98 | ||
RBF Network | G. pallida | 86 | 14 | 0 | 86.00 |
G. rostochiensis | 24 | 74 | 2 | ||
H. schachtii | 0 | 2 | 98 |
Algorithm | Correctly Classified Cases | Incorrectly Classified Cases | Kappa Statistic | Weighted Averages | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TPR | FPR | ROC Area | PRC Area | Precision | F-Measure | MCC | ||||
WiSARD | 269 | 31 | 0.845 | 0.897 | 0.052 | 0.918 | 0.833 | 0.898 | 0.897 | 0.845 |
Multilayer Perceptron | 254 | 46 | 0.770 | 0.847 | 0.077 | 0.943 | 0.889 | 0.849 | 0.847 | 0.771 |
RBF Network | 258 | 42 | 0.790 | 0.860 | 0.070 | 0.942 | 0.870 | 0.861 | 0.859 | 0.791 |
Algorithm | Class | TPR | FPR | ROC Area | PRC Area | Precision | F-Measure | MCC |
---|---|---|---|---|---|---|---|---|
WiSARD | G. pallida | 0.870 | 0.070 | 0.901 | 0.810 | 0.861 | 0.866 | 0.798 |
G. rostochiensis | 0.850 | 0.080 | 0.863 | 0.702 | 0.842 | 0.846 | 0.768 | |
H. schachtii | 0.970 | 0.005 | 0.991 | 0.989 | 0.990 | 0.980 | 0.970 | |
Multilayer Perceptron | G. pallida | 0.750 | 0.100 | 0.928 | 0.799 | 0.789 | 0.769 | 0.659 |
G. rostochiensis | 0.810 | 0.130 | 0.913 | 0.880 | 0.757 | 0.783 | 0.669 | |
H. schachtii | 0.980 | 0.000 | 0.987 | 0.989 | 1.000 | 0.990 | 0.985 | |
RBF Network | G. pallida | 0.860 | 0.120 | 0.932 | 0.800 | 0.782 | 0.819 | 0.724 |
G. rostochiensis | 0.740 | 0.080 | 0.911 | 0.834 | 0.822 | 0.779 | 0.679 | |
H. schachtii | 0.980 | 0.010 | 0.982 | 0.976 | 0.980 | 0.980 | 0.970 |
Algorithm | True Class | Predicted Class (%) | Average Accuracy (%) | |
---|---|---|---|---|
Heterodera spp. | Globodera spp. | |||
WiSARD | Heterodera spp. | 98 | 2 | 98.50 |
Globodera spp. | 1 | 99 | ||
Multilayer Perceptron | Heterodera spp. | 98 | 2 | 99.00 |
Globodera spp. | 0 | 100 | ||
RBF Network | Heterodera spp. | 98 | 2 | 98.50 |
Globodera spp. | 1 | 99 |
Algorithm | True Class | TPR | FPR | ROC Area | PRC Area | Precision | F-Measure | MCC | Kappa Statistic |
---|---|---|---|---|---|---|---|---|---|
WiSARD | Heterodera spp. | 0.980 | 0.010 | 0.992 | 0.989 | 0.980 | 0.980 | 0.970 | 0.9700 |
Globodera spp. | 0.990 | 0.020 | 0.994 | 0.996 | 0.990 | 0.990 | 0.970 | ||
Multilayer Perceptron | Heterodera spp. | 0.980 | 0.000 | 0.995 | 0.995 | 1.000 | 0.990 | 0.985 | 0.9849 |
Globodera spp. | 1.000 | 0.020 | 0.995 | 0.995 | 0.990 | 0.995 | 0.985 | ||
RBF Network | Heterodera spp. | 0.980 | 0.010 | 0.992 | 0.989 | 0.980 | 0.980 | 0.970 | 0.9700 |
Globodera spp. | 0.990 | 0.020 | 0.994 | 0.996 | 0.990 | 0.990 | 0.970 |
Algorithm | True Class | Predicted Class (%) | Average Accuracy (%) | |
---|---|---|---|---|
G. pallida | G. rostochiensis | |||
WiSARD | G. pallida | 87 | 13 | 85.5 |
G. rostochiensis | 16 | 84 | ||
Multilayer Perceptron | G. pallida | 83 | 17 | 81.5 |
G. rostochiensis | 20 | 80 | ||
RBF Network | G. pallida | 82 | 18 | 76.5 |
G. rostochiensis | 29 | 71 |
Algorithm | True Class | TPR | FPR | ROC Area | PRC Area | Precision | F-Measure | MCC | Kappa Statistic |
---|---|---|---|---|---|---|---|---|---|
WiSARD | G. pallida | 0.870 | 0.160 | 0.807 | 0.800 | 0.845 | 0.857 | 0.710 | 0.7100 |
G. rostochiensis | 0.840 | 0.130 | 0.734 | 0.725 | 0.866 | 0.853 | 0.710 | ||
Multilayer Perceptron | G. pallida | 0.830 | 0.200 | 0.869 | 0.839 | 0.806 | 0.818 | 0.630 | 0.6300 |
G. rostochiensis | 0.800 | 0.170 | 0.869 | 0.870 | 0.825 | 0.812 | 0.630 | ||
RBF Network | G. pallida | 0.820 | 0.290 | 0.864 | 0.826 | 0.739 | 0.777 | 0.533 | 0.5300 |
G. rostochiensis | 0.710 | 0.180 | 0.864 | 0.856 | 0.798 | 0.751 | 0.533 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E.; Skwiercz, A.; Sobczak, M. Distinguishing Cyst Nematode Species Using Image Textures and Artificial Neural Networks. Agronomy 2023, 13, 2277. https://doi.org/10.3390/agronomy13092277
Ropelewska E, Skwiercz A, Sobczak M. Distinguishing Cyst Nematode Species Using Image Textures and Artificial Neural Networks. Agronomy. 2023; 13(9):2277. https://doi.org/10.3390/agronomy13092277
Chicago/Turabian StyleRopelewska, Ewa, Andrzej Skwiercz, and Mirosław Sobczak. 2023. "Distinguishing Cyst Nematode Species Using Image Textures and Artificial Neural Networks" Agronomy 13, no. 9: 2277. https://doi.org/10.3390/agronomy13092277
APA StyleRopelewska, E., Skwiercz, A., & Sobczak, M. (2023). Distinguishing Cyst Nematode Species Using Image Textures and Artificial Neural Networks. Agronomy, 13(9), 2277. https://doi.org/10.3390/agronomy13092277