Straw Mulching Combined with Phosphorus Fertilizer Increases Fertile Florets of Wheat by Enhancing Leaf Photosynthesis and Assimilate Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Field Management
2.1.1. Grain Yield and Yield Components
2.1.2. Spike Differentiation Characteristics
2.1.3. DMW and Carbohydrate Contents
2.1.4. Photosynthetic Parameters, Chlorophyll Fluorescence Parameters, and Chlorophyll Content
2.2. Statistical Analysis
3. Results
3.1. Grain Yield and Yield Components
3.2. Spike Differentiation Characteristics
3.3. Water-Soluble Carbohydrate and Sucrose Contents
3.4. Photosynthetic Parameters, Chlorophyll Content, and Chlorophyll Fluorescence Parameters
4. Discussion
4.1. The Utilization Efficiency of Assimilates Was Mainly a Limiting Factor for the FFS
4.2. Increased Photosynthetic Efficiency of Flag Leaves, Which Promoted the Supply of Sources for Spike Development
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- González-Navarro, O.E.; Simon, G.; Molero, G.; Reynolds, M.P.; Slafer, G.A. Dynamics of floret development determining differences in spike fertility in an elite population of wheat. Field Crops Res. 2015, 172, 21–31. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Chu, J.P.; Dai, X.L.; He, M.R. Delayed sowing increases grain number by enhancing spike competition capacity for assimilates in winter wheat. Eur. J. Agron. 2019, 104, 49–62. [Google Scholar] [CrossRef]
- De Vita, P.; Nicosia, O.L.; Nigro, F.; Platani, C.; Riefolo, C.; Di Fonzo, N.; Cattivelli, L. Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur. J. Agron. 2007, 26, 39–53. [Google Scholar] [CrossRef]
- Fabian, A.; Safran, E.; Szabo-Eitel, G.; Barnabas, B.; Jager, K. Stigma functionality and fertility are reduced by heat and drought co-stress in wheat. Front. Plant Sci. 2019, 10, 00244. [Google Scholar] [CrossRef]
- Turc, O.; Tardieu, F. Drought affects abortion of reproductive organs by exacerbating developmentally driven processes via expansive growth and hydraulics. J. Exp. Bot. 2018, 69, 3245–3254. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.X.; Zhang, W.; Liang, X.Y.; Liu, Y.M.; Xu, S.J.; Zhao, Q.Y.; Du, Y.F.; Zhang, L.; Chen, X.P.; Zou, C.Q. Physiological and developmental traits associated with the grain yield of winter wheat as affected by phosphorus fertilizer management. Sci. Rep. 2019, 9, 16580. [Google Scholar] [CrossRef]
- Lazaro, L.; Abbate, P.E.; Cogliatti, D.H.; Andrade, F.H. Relationship between yield, growth and spike weight in wheat under phosphorus deficiency and shading. J. Agric. Sci. 2010, 148, 83–93. [Google Scholar] [CrossRef]
- Zhang, X.F.; Xin, X.L.; Zhu, A.N.; Zhang, J.B.; Yang, W.H. Effects of tillage and residue managements on organic C accumulation and soil aggregation in a sandy loam soil of the North China Plain. Catena 2017, 156, 176–183. [Google Scholar] [CrossRef]
- Li, X.R.; Zhang, X.; Liu, G.P.; Tang, Y.; Zhou, C.J.; Zhang, L.X.; Lv, J.Y. The spike plays important roles in the drought tolerance as compared to the flag leaf through the phenylpropanoid pathway in wheat. Plant Physiol. Biochem. 2020, 152, 100–111. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wang, J.D.; Gong, S.H.; Xu, D.; Mo, Y.; Zhang, B.Z. Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts. Agric. Water Manag. 2021, 249, 106809. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, J.; Gao, Y.M.; Liu, Y.; Li, J.P.; Zhou, X.N.; Yao, C.S.; Wang, Z.M.; Sun, Z.C.; Zhang, Y.H. Suppressed ABA signal transduction in the spike promotes sucrose use in the stem and reduces grain number in wheat under water stress. J. Exp. Bot. 2020, 71, 7241–7256. [Google Scholar] [CrossRef]
- Waddington, S.R.; Cartwright, P.M.; Wall, P.C. A quantitative scale of spike initial and pistil development in barley and wheat. Ann. Bot. 1983, 51, 119–130. [Google Scholar] [CrossRef]
- Ferrante, A.; Savin, R.; Slafer, G.A. Floret development of durum wheat in response to nitrogen availability. J. Exp. Bot. 2010, 61, 4351–4359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, J.; Hu, N.Y.; Li, W.; Qin, W.L.; Li, J.P.; Gao, Y.M.; Liu, Y.; Sun, Z.C.; Yu, K.; et al. Spike growth affects spike fertility through the number of florets with green anthers before floret abortion in wheat. Field Crop. Res. 2021, 260, 108007. [Google Scholar] [CrossRef]
- Gonzalez, F.G.; Miralles, D.J.; Slafer, G.A. Wheat floret survival as related to pre-anthesis spike growth. J. Exp. Bot. 2011, 62, 4889–4901. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.M.; Yang, Y.M.; Lin, X.L.; Xiao, J. Deciphering spike architecture formation towards yield improvement in wheat. J. Genet. Genom. 2023. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Zhang, X.; Xiao, Y.Y.; Chu, J.P.; Dai, Z.M. Variation of floret development and grain setting characteristics in winter wheat responses to delayed sowing. J. Sci. Food Agric. 2022, 102, 4892–4908. [Google Scholar] [CrossRef]
- Guo, Z.F.; Chen, D.J.; Schnurbusch, T. Plant and floret growth at distinct developmental stages during the stem elongation phase in wheat. Front. Plant Sci. 2018, 9, 330. [Google Scholar] [CrossRef]
- Serrago, R.A.; Miralles, D.J.; Slafer, G.A. Floret fertility in wheat as affected by photoperiod during stem elongation and removal of spikelets at booting. Eur. J. Agron. 2008, 28, 301–308. [Google Scholar] [CrossRef]
- Carmo-Silva, E.; Andralojc, P.J.; Scales, J.C.; Driever, S.M.; Mead, A.; Lawson, T.; Raines, C.A.; Parry, M.A.J. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. J. Exp. Bot. 2017, 68, 3473–3486. [Google Scholar] [CrossRef]
- Yang, H.K.; Wu, G.; Mo, P.; Chen, S.H.; Wang, S.Y.; Xiao, Y.; Ma, H.L.A.; Wen, T.; Guo, X.; Fan, G.Q. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Zhang, J.X. Study on the effect of straw mulching on farmland soil water. J. Environ. Public Health 2022, 2022, 3101880. [Google Scholar] [CrossRef]
- Yang, H.K.; Chen, R.H.; Chen, Y.F.; Li, H.; Wei, T.; Xie, W.; Fan, G.Q. Agronomic and physiological traits associated with genetic improvement of phosphorus use efficiency of wheat grown in a purple lithomorphic soil. Crop J. 2022, 10, 1151–1164. [Google Scholar] [CrossRef]
- He, P.; Xie, W.; Ma, H.L.; Chen, H.L.; Zou, Q.S.; Ai, D.L.; Fan, G.Q.; Yang, H.K. Straw mulching and phosphorus fertilization increase the proton motive force of wheat root tips after anthesis in dry land area. J. Plant Nutr. Fertil. 2023, 29, 1237–1249. [Google Scholar]
- Xiang, X.L.; Chen, S.H.; Yang, H.K.; Yang, Y.H.; Fan, G.Q. Effects of straw mulching and phosphorus application on wheat yield, phosphorus absorption and utilization in hilly dryland. Sci. Agric. Sin. 2021, 54, 5194–5205. [Google Scholar] [CrossRef]
- Yang, H.K.; Zhang, X.Y.; Chen, B.L.; Meng, Y.L.; Wang, Y.H.; Zhao, W.Q.; Zhou, Z.J. Integrated management strategies increase cottonseed, oil and protein production: The key role of carbohydrate metabolism. Front. Plant Sci. 2017, 8, 48. [Google Scholar] [CrossRef]
- Hu, W.; Gao, M.; Du, K.; Liu, Y.; Xu, B.J.; Wang, Y.H.; Zhou, Z.G.; Zhao, W.Q. Combined effect of elevated temperature and drought stress on carbohydrate metabolism of cotton (Gossypium hirsutum L.) subtending leaves. Physiol. Plant. 2023, 175, e13866. [Google Scholar] [CrossRef]
- Zhen, W.; Dutkiewicz, S.; Jahn, O.; Sher, D.; White, A.; Follows, M. Modeling photosynthesis and exudation in subtropical oceans. Glob. Biogeochem. Cycles 2021, 35, e2021GB006941. [Google Scholar] [CrossRef]
- Zou, J.; Hu, W.; Li, Y.X.; Zhu, H.H.; He, J.Q.; Wang, Y.H.; Meng, Y.L.; Chen, B.L.; Zhao, W.Q.; Wang, S.S.; et al. Leaf anatomical alterations reduce cotton’s mesophyll conductance under dynamic drought stress conditions. Plant J. 2022, 111, 391–405. [Google Scholar] [CrossRef]
- Gorooei, A.; Gaiser, T.; Aynehband, A.; Rahnama, A.; Kamali, B. The effect of farming management and crop rotation systems on chlorophyll content, dry matter translocation, and grain quantity and quality of wheat (Triticum aestivum L.) grown in a Semi-Arid region of Iran. Agronomy 2023, 13, 1007. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhang, X.Y.; Liu, X.W.; Zhang, X.Y.; Shao, L.W.; Sun, H.Y.; Chen, S.Y. The effects of nitrogen supply and water regime on instantaneous WUE, time-integrated WUE and carbon isotope discrimination in winter wheat. Field Crop. Res. 2013, 144, 236–244. [Google Scholar] [CrossRef]
- Shafi, M.; Zaman, R.; Bakht, J.; Hayat, Y.; Shas, S. Dry matter partitioning and grain yield of wheat as affected by phosphorus and its applications. Pak. J. Bot. 2015, 47, 281–287. [Google Scholar]
- Kottmann, L.; Wilde, P.; Schittenhelm, S. How do timing, duration, and intensity of drought stress affect the agronomic performance of winter rye? Eur. J. Agron. 2016, 75, 25–32. [Google Scholar] [CrossRef]
- Fischer, R.A. The importance of grain or kernel number in wheat: A reply to Sinclair and Jamieson. Field Crop. Res. 2008, 105, 15–21. [Google Scholar] [CrossRef]
- Gao, R.C.; CHEN, S.H.; Ma, H.L.; Mo, P.; Xiao, Y.; Zhang, X.; Fan, G.Q. Effects of straw mulching in autumn and reducing nitrogen application on dry matter accumulation, seed-setting characteristics and yield of dryland winter wheat. J. Plant Nutr. Fertil. 2022, 28, 426–439. [Google Scholar] [CrossRef]
- Zhao, H.B.; Mao, A.R.; Yang, H.M.; Wang, T.; Dou, Y.X.; Wang, Z.H.; Malhi, S. Summer fallow straw mulching and reducing nitrogen fertilization: A promising practice to alleviate environmental risk while increasing yield and economic profits of dryland wheat production. Eur. J. Agron. 2022, 133, 126440. [Google Scholar] [CrossRef]
- Wang, W.X.; Sun, M.; Lin, W.; Ren, A.X.; Gao, Z.Q. Effects of phosphorus fertilizer on root characteristics, uptake and utilization of phosphorus and yield of dryland wheat with contrasting yearly rainfall pattern. Chin. J. Appl. Ecol. 2021, 32, 895–905. [Google Scholar] [CrossRef]
- González, F.G.; Slafer, G.A.; Miralles, D.G. Floret development and spike growth as affected by photoperiod during stem elongation in wheat. Field Crop. Res. 2003, 81, 29–38. [Google Scholar] [CrossRef]
- Reynolds, M.; Foulkes, J.; Furbank, R.; Griffiths, S.; King, J.; Murchie, E.; Parry, M.; Slafer, G. Achieving yield gains in wheat. Plant Cell Environ. 2012, 35, 1799–1823. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Sun, H.Y.; Shao, L.W. Cause and mechanism of winter wheat yield reduction under straw mulch in the North China Plain. Chin. J. Eco-Agric. 2013, 21, 519–525. [Google Scholar] [CrossRef]
- Yan, Z.Z.; Chen, S.Y.; Zhang, X.Y.; Niu, J.F.; Shao, L.W. Effects of amount and time of straw mulching on soil temperature, root growth and yield of winter wheat. Chin. J. Eco-Agric. 2017, 25, 1779–1791. [Google Scholar] [CrossRef]
- Martinoia, E.; Meyer, S.; De Angeli, A.; Nagy, R. Vacuolar transporters in their physiological context. Annu. Rev. Plant Biol. 2012, 63, 183–213. [Google Scholar] [CrossRef] [PubMed]
- Van den Ende, W.; Valluru, R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: Scavenging and salvaging? J. Exp. Bot. 2009, 60, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Faralli, M.; Lawson, T. Natural genetic variation in photosynthesis: An untapped resource to increase crop yield potential? J. Syst. Evol. 2020, 101, 518–528. [Google Scholar] [CrossRef]
- Shu, Y.; Huang, G.J.; Zhang, Q.Q.; Peng, S.B.; Li, Y. Reduction of photosynthesis under P deficiency is mainly caused by the decreased CO2 diffusional capacities in wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2023, 198, 107680. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.Y.; Khan, K.; Ren, G.G.; Afridi, M.Z.; Feng, Y.Z.; Yang, G.H. Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean. Agric. Water Manag. 2019, 211, 16–25. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wang, J.D.; Gong, S.H.; Xu, D.; Mo, Y. Straw mulching enhanced the photosynthetic capacity of field maize by increasing the leaf N use efficiency. Agric. Water Manag. 2019, 218, 60–67. [Google Scholar] [CrossRef]
- Singh, S.K.; Reddy, V.R.; Fleisher, D.H.; Timlin, D.J. Interactive effects of temperature and phosphorus nutrition on soybean: Leaf photosynthesis, chlorophyll fluorescence, and nutrient efficiency. Photosynthetica 2019, 57, 248–257. [Google Scholar] [CrossRef]
- Zivcak, M.; Brestic, M.; Balatova, Z.; Drevenakova, P.; Olsovska, K.; Kalaji, H.M.; Yang, X.H.; Allakhverdiev, S.I. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth. Res. 2013, 117, 529–546. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Lukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
Year | Treatment | Fertile Spike (×104 ha−1) | Grain Number per Spike | 1000-Kernel Weight (g) | Grain Yield (kg ha−1) | |
---|---|---|---|---|---|---|
2020–2021 | NSM | P0 | 288 ± 8 d | 35.6 ± 0.9 d | 48.3 ± 0.2 a | 4209 ± 215 c |
P75 | 303 ± 9 bc | 37.7 ± 0.7 c | 48.4 ± 0.2 a | 4701 ± 160 b | ||
P120 | 312 ± 3 b | 39.1 ± 0.6 bc | 48.5 ± 0.1 a | 5039 ± 94 b | ||
SM | P0 | 300 ± 3 c | 39.8 ± 1.1 b | 48.4 ± 0.3 a | 4915 ± 142 b | |
P75 | 338 ± 2 a | 44.7 ± 1.0 a | 48.3 ± 0.2 a | 6199 ± 121 a | ||
P120 | 339 ± 7 a | 44.9 ± 0.7 a | 48.7 ± 0.1 a | 6292 ± 190 a | ||
2021–2022 | NSM | P0 | 284 ± 9 d | 34.3 ± 0.2 d | 48.4 ± 0.3 a | 4006 ± 103 d |
P75 | 300 ± 8 cd | 36.1 ± 0.4 c | 48.5 ± 0.9 a | 4453 ± 157 c | ||
P120 | 308 ± 2 bc | 38.1 ± 0.7 b | 48.3 ± 0.1 a | 4825 ± 61 bc | ||
SM | P0 | 292 ± 7 d | 38.8 ± 0.7 b | 48.2 ± 0.1 a | 4644 ± 172 bc | |
P75 | 314 ± 2 ab | 43.5 ± 0.6 a | 48.2 ± 0.2 a | 5596 ± 84 a | ||
P120 | 322 ± 4 a | 43.6 ± 0.6 a | 48.0 ± 0.1 a | 5730 ± 154 a | ||
Year (Y) | ** | ** | ns | ** | ||
Straw mulch (S) | ** | ** | ns | ** | ||
P fertilizer (P) | ** | ** | ns | ** | ||
Y × S | ** | ns | ns | * | ||
Y × P | ns | ns | ns | ns | ||
S × P | * | ** | ns | ** | ||
Y × S × P | ns | ns | ns | ns |
Treatment | Pnmax (μmol CO2 m–2 s−1) | AQY (mol mol−1) | LCP (μmol m–2 s−1) | LSP (μmol m–2 s−1) | |
---|---|---|---|---|---|
NSM | P0 | 24.1 ± 0.3 d | 0.066 ± 0.002 a | 16.0 ± 1.5 d | 1206 ± 28 c |
P75 | 25.4 ± 0.2 c | 0.067 ± 0.003 a | 18.0 ± 0.0 c | 1341 ± 81 b | |
P120 | 25.9 ± 0.5 bc | 0.068 ± 0.001 a | 20.4 ± 1.7 bc | 1385 ± 78 b | |
SM | P0 | 25.6 ± 0.4 c | 0.070 ± 0.005 a | 21.7 ± 0.1 b | 1397 ± 42 b |
P75 | 26.7 ± 0.6 b | 0.067 ± 0.002 a | 26.4 ± 1.5 a | 1716 ± 49 a | |
P120 | 28.8 ± 0.5 a | 0.068 ± 0.001 a | 27.7 ± 0.4 a | 1717 ± 31 a | |
Significance of factors | |||||
Straw mulch (S) | ** | ns | ** | ** | |
P fertilizer (P) | * | ns | * | ** | |
S × P | ns | ns | ns | ns |
Treatment | Pn (µmol m−2 s−1) | E (µmol m−2 s−1) | Gs (mol m−2 s−1) | Ci (µmol m−2 s−1) | Chl a (mg/g) | Chl b (mg/g) | ΦPSII | Fv/Fm | WUEins (µmol/mmol) | |
---|---|---|---|---|---|---|---|---|---|---|
NSM | P0 | 22.5 ± 0.2 c | 4.55 ± 0.26 c | 0.32 ± 0.00 c | 247 ± 4.3 d | 1.69 ± 0.07 b | 0.57 ± 0.04 c | 0.31 ± 0.00 f | 0.69 ± 0.00 d | 4.97 ± 0.31 a |
P75 | 23.0 ± 0.2 c | 4.73 ± 0.15 bc | 0.37 ± 0.00 b | 251 ± 3.8 cd | 1.87 ± 0.05 a | 0.62 ± 0.01 b | 0.42 ± 0.00 c | 0..76 ± 0.00 c | 4.86 ± 0.16 a | |
P120 | 23.8 ± 1.2 bc | 4.77 ± 0.10 bc | 0.38 ± 0.03 ab | 253 ± 1.9 bc | 1.91 ± 0.01 a | 0.66 ± 0.04 ab | 0.44 ± 0.00 b | 0.76 ± 0.00 c | 4.99 ± 0.35 a | |
SM | P0 | 23.4 ± 0.7 c | 4.95 ± 0.11 b | 0.36 ± 0.03 b | 257 ± 2.5 ab | 1.88 ± 0.02 a | 0.66 ± 0.03 ab | 0.40 ± 0.00 d | 0.77 ± 0.01 d | 4.79 ± 0.09 a |
P75 | 24.9 ± 0.3 ab | 6.06 ± 0.02 a | 0.38 ± 0.01 ab | 258 ± 0.6 a | 1.89 ± 0.01 a | 0.70 ± 0.00 a | 0.47 ± 0.00 a | 0.84 ± 0.00 a | 4.11 ± 0.05 b | |
P120 | 25.3 ± 0.7 a | 6.15 ± 0.12 a | 0.41 ± 0.00 a | 262 ± 1.3 a | 1.89 ± 0.05 a | 0.71 ± 0.00 a | 0.48 ± 0.00 a | 0.85 ± 0.01 a | 4.12 ± 0.19 b | |
Significance of factors | ||||||||||
Straw mulch (S) | * | ** | ns | ** | ** | ** | ** | ** | ** | |
P fertilizer (P) | * | * | ** | ns | * | * | ** | ** | ns | |
S × P | ns | ns | ns | ns | * | ns | ** | ns | ns |
Variable | Pnmax | AQY | LCP | LSP | Pn | E | Gs | Ci | Chl a | Chl b | ΦPSII | Fv/Fm | WUEins |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fertile florets | 0.89 * | 0.27 * | 0.99 ** | 0.99 ** | 0.97 ** | 0.94 * | 0.88 * | 0.94 * | 0.76 | 0.97 ** | 0.93 * | 1.00 ** | −0.93 |
Grain number per spike | 0.78 | −0.94 | 0.98 | 1.00 ** | 0.98 | 1.00* | 0.81 | 0.67 | 1.00 * | 0.99 | 0.99 | 0.99 | −1.00 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; He, P.; Ma, H.; Huang, X.; Fan, G.; Yang, H. Straw Mulching Combined with Phosphorus Fertilizer Increases Fertile Florets of Wheat by Enhancing Leaf Photosynthesis and Assimilate Utilization. Agronomy 2023, 13, 2342. https://doi.org/10.3390/agronomy13092342
Xie W, He P, Ma H, Huang X, Fan G, Yang H. Straw Mulching Combined with Phosphorus Fertilizer Increases Fertile Florets of Wheat by Enhancing Leaf Photosynthesis and Assimilate Utilization. Agronomy. 2023; 13(9):2342. https://doi.org/10.3390/agronomy13092342
Chicago/Turabian StyleXie, Wei, Peng He, Hongliang Ma, Xiulan Huang, Gaoqiong Fan, and Hongkun Yang. 2023. "Straw Mulching Combined with Phosphorus Fertilizer Increases Fertile Florets of Wheat by Enhancing Leaf Photosynthesis and Assimilate Utilization" Agronomy 13, no. 9: 2342. https://doi.org/10.3390/agronomy13092342
APA StyleXie, W., He, P., Ma, H., Huang, X., Fan, G., & Yang, H. (2023). Straw Mulching Combined with Phosphorus Fertilizer Increases Fertile Florets of Wheat by Enhancing Leaf Photosynthesis and Assimilate Utilization. Agronomy, 13(9), 2342. https://doi.org/10.3390/agronomy13092342