Rootstocks Alter the Seasonal Dynamics and Vertical Distribution of New Root Growth of Vitis vinifera cv. Shiraz grapevines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Vines
2.2. Installation of Minirhizotron Tubes
2.3. Soil Water and Temperature Monitoring
2.4. Weather Data
2.5. Root Observation and Digital Image Collection
2.6. Statistical Analysis
2.6.1. Analysis across All Observation Dates
2.6.2. Analysis across Last Three Years of Observation Dates
3. Results
3.1. The Model Outcomes
3.2. Soil Moisture, Soil and Air Temperature, Phenological Stages
3.3. Total New Root Production in Different Seasons and Phenological Stages
3.4. New Root Production, Vertical Root Distribution Dynamics and Seasonal Root Growth Dynamics of Grapevines
4. Discussion
4.1. New Root Production, Vertical Root Distribution Dynamics and seasonal Root Growth Dynamics of Grapevines
4.2. Influence of Soil Temperature on Grapevine Root Growth
4.3. Influence of Soil Moisture on Grapevine Root Growth
4.4. Influence of Genotype on Grapevine Root Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mar Alsina, M.; Smart, D.R.; Bauerle, T.; de Herralde, F.; Biel, C.; Stockert, C.; Negron, C.; Save, R. Seasonal changes of whole root system conductance by a drought-tolerant grape root system. J. Exp. Bot. 2011, 62, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Contador, M.L.; Comas, L.H.; Metcalf, S.G.; Stewart, W.L.; Porris Gomez, I.; Negron, C.; Lampinen, B.D. Root growth dynamics linked to above-ground growth in walnut (Juglans regia). Ann. Bot. 2015, 116, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Eissenstat, D.M.; Bauerle, T.L.; Comas, L.H.; Lakso, A.N.; Neilsen, D.; Neilsen, G.H.; Smart, D.R. Seasonal patterns of root growth in relation to shoot phenology in grape and apple. In Vth International Symposium on Mineral Nutrition of Fruit Plants; Retamales, J.B., Ed.; Acta Horticulturae; International Society Horticultural Science: Leuven, Belgium, 2006; pp. 21–26. [Google Scholar]
- Cox, C.M.; Favero, A.C.; Dry, P.R.; McCarthy, M.G.; Collins, C. Rootstock Effects on Primary Bud Necrosis, Bud Fertility, and Carbohydrate Storage in Shiraz. Am. J. Enol. Vitic. 2012, 63, 277–283. [Google Scholar] [CrossRef]
- Atkinson, C.; Else, M. Understanding how rootstocks dwarf fruit trees. Compact Fruit Tree 2001, 34, 46–49. [Google Scholar]
- Robbins, N.S.; Pharr, D.M. Effect of restricted root growth on carbohydrate metabolism and whole plant growth of Cucumis sativus L. Plant Physiol. 1988, 87, 409–413. [Google Scholar] [CrossRef]
- Basile, B.; Bryla, D.R.; Salsman, M.L.; Marsal, J.; Cirillo, C.; Johnson, R.S.; DeJong, T.M. Growth patterns and morphology of fine roots of size-controlling and invigorating peach rootstocks. Tree Physiol. 2007, 27, 231–241. [Google Scholar] [CrossRef]
- Keller, M. Cultivars, clones, and rootstocks. In The Science of Grapevines: Anatomy and Physiology; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 18–19. [Google Scholar]
- Di Filippo, M.; Vila, H. Influence of different rootstocks on the vegetative and reproductive performance of “Vitis vinifera” L. Malbec under irrigated conditions. J. Int. Des Sci. De La Vigne Et Du Vin = Int. J. Vine Wine Sci. 2011, 45, 75–84. [Google Scholar] [CrossRef]
- Swanepoel, J.; Southey, J. The influence of rootstock on the rooting pattern of the grapevine. S. Afr. J. Enol. Vitic. 1989, 10, 23–28. [Google Scholar] [CrossRef]
- Comas, L.H.; Anderson, L.; Dunst, R.; Lakso, A.; Eissenstat, D. Canopy and environmental control of root dynamics in a long-term study of Concord grape. New Phytol. 2005, 167, 829–840. [Google Scholar] [CrossRef]
- Hunter, J. Plant spacing implications for grafted grapevine I. Soil characteristics, root growth, dry matter partitioning, dry matter composition and soil utilisation. S. Afr. J. Enol. Vitic. 1998, 19, 25–34. [Google Scholar] [CrossRef]
- Keller, M.; Mills, L.J.; Harbertson, J.F. Rootstock effects on deficit-irrigated winegrapes in a dry climate: Vigor, yield formation, and fruit ripening. Am. J. Enol. Vitic. 2012, 63, 29–39. [Google Scholar] [CrossRef]
- Fichtl, L.; Hofmann, M.; Kahlen, K.; Voss-Fels, K.P.; Cast, C.S.; Ollat, N.; Vivin, P.; Loose, S.; Nsibi, M.; Schmid, J. Towards grapevine root architectural models to adapt viticulture to drought. Front. Plant Sci. 2023, 14, 1162506. [Google Scholar] [CrossRef] [PubMed]
- Tandonnet, J.P.; Cookson, S.; Vivin, P.; Ollat, N. Scion genotype controls biomass allocation and root development in grafted grapevine. Aust. J. Grape Wine Res. 2010, 16, 290–300. [Google Scholar] [CrossRef]
- Bassoi, L.H.; Grangeiro, L.C.; Silva, J.A.M.E.; Silva, E.E.G.D.A. Root distribution of irrigated grapevine rootstocks in a coarse texture soil of the São Francisco Valley, Brazil. Rev. Bras. De Frutic. 2002, 24, 35–38. [Google Scholar] [CrossRef]
- Bhar, D.; Mason, G.; Hilton, R. In situ Observations on Plum Root Growth1. J. Am. Soc. Hortic. Sci. 1970, 95, 237–239. [Google Scholar] [CrossRef]
- Callejas, R.; Canales, P.; de Cortazar, V.G. Relationship between root growth of ‘Thompson Seedless’ grapevines and soil temperature. Chil. J. Agric. Res. 2009, 69, 496–502. [Google Scholar] [CrossRef]
- Lyr, H.; Hoffmann, G. Growth rates and growth periodicity of tree roots. In International Review of Forestry Research; Elsevier: Amsterdam, The Netherlands, 1967; Volume 2, pp. 181–236. [Google Scholar]
- Teskey, R.O.; Hinckley, T.M. Influence of temperature and water potential on root growth of white oak. Physiol. Plant. 1981, 52, 363–369. [Google Scholar] [CrossRef]
- Freeman, B.; Smart, R. A root observation laboratory for studies with grapevines. Am. J. Enol. Vitic. 1976, 27, 36–39. [Google Scholar] [CrossRef]
- Hilton, R.; Khatamian, H. Diurnal variation in elongation rates of roots of woody plants. Can. J. Plant Sci. 1973, 53, 699–700. [Google Scholar] [CrossRef]
- Southey, J.M. Root distribution of different grapevine rootstocks on a relatively saline soil. S. Afr. J. Enol. Vitic. 1992, 13, 1–9. [Google Scholar] [CrossRef]
- Southey, J.; Archer, E. The effect of rootstock cultivar on grapevine root distribution and density. Grapevine Root Its Environ. 1988, 215, 57–73. [Google Scholar]
- Williams, L.E.; Smith, R.J. The effect of rootstock on the partitioning of dry weight, nitrogen and potassium, and root distribution of Cabernet Sauvignon grapevines. Am. J. Enol. Vitic. 1991, 42, 118–122. [Google Scholar] [CrossRef]
- Morlat, R.; Jacquet, A. The soil effects on the grapevine root system in several vineyards of the Loire valley (France). Vitis 1993, 32, 35–42. [Google Scholar]
- Nagarajah, S. Effects of soil texture on the rooting patterns of Thompson Seedless vines on own roots and on Ramsey rootstock in irrigated vineyards. Am. J. Enol. Vitic. 1987, 38, 54–59. [Google Scholar] [CrossRef]
- Atkinson, D. The distribution and effectiveness of the roots of tree crops. Hortic. Rev. 1980, 2, 424–490. [Google Scholar]
- McMichael, B.; Burke, J. Soil temperature and root growth. HortScience 1998, 33, 947–951. [Google Scholar] [CrossRef]
- Bauerle, T.L.; Smart, D.R.; Bauerle, W.L.; Stockert, C.; Eissenstat, D.M. Root foraging in response to heterogeneous soil moisture in two grapevines that differ in potential growth rate. New Phytol. 2008, 179, 857–866. [Google Scholar] [CrossRef]
- Kuhns, M.; Garrett, H.; Teskey, R.; Hinckley, T. Root growth of black walnut trees related to soil temperature, soil water potential, and leaf water potential. For. Sci. 1985, 31, 617–629. [Google Scholar]
- Bevington, K.B.; Castle, W.S. Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature, and soil water content. J. Am. Soc. Hortic. Sci. 1985, 110, 840–845. [Google Scholar] [CrossRef]
- Woodham, R.; Alexander, D.M.E. The effect of root temperature on development of small fruiting Sultana vines. Vitis 1966, 5, 345–350. [Google Scholar]
- Kliewer, W. Effect of root temperature on budbreak, shoot growth, and fruit-set of ‘Cabernet Sauvignon’grapevines. Am. J. Enol. Vitic. 1975, 26, 82–89. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Smith, J.P.; Holzapfel, B.P.; Hardie, W.J. Soil temperature moderates grapevine carbohydrate reserves after bud break and conditions fruit set responses to photoassimilatory stress. Funct. Plant Biol. 2011, 38, 899. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.J.; Lamont, K.; Pan, H.; Barry, L.; Hall, A.; Rogiers, S.Y. Spring root-zone temperature regulates root growth, nutrient uptake and shoot growth dynamics in grapevines. Aust. J. Grape Wine Res. 2015, 21, 479–489. [Google Scholar] [CrossRef]
- Hall, A.; Jones, G.V. Spatial analysis of climate in winegrape-growing regions in Australia. Aust. J. Grape Wine Res. 2010, 16, 389–404. [Google Scholar] [CrossRef]
- Huang, X.; Lakso, A.N.; Eissenstat, D.M. Interactive effects of soil temperature and moisture on Concord grape root respiration. J. Exp. Bot. 2005, 56, 2651–2660. [Google Scholar] [CrossRef]
- Dry, N. Grapevine Rootstocks: Selection and Management for South Australian Vineyards; Lythrum Press: Adelaide, Australia, 2007. [Google Scholar]
- Coombe, B.G. Growth stages of the grapevine: Adoption of a system for identifying grapevine growth stages. Aust. J. Grape Wine Res. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- Van Zyl, J. Response of grapevine roots to soil water regimes and irrigation systems. In The Grapevine Root and Its Environment; Department of Agriculture and Water Supply: Stellenbosch, Republic of South Africa, 1988; pp. 30–43. [Google Scholar]
- Bassoi, L.H.; Hopmans, J.W.; de Castro Jorge, L.A.; De Alencar, C.; e Silva, J. Grapevine root distribution in drip and microsprinkler irrigation. Sci. Agric. 2003, 60, 377–387. [Google Scholar] [CrossRef]
- Comas, L.H.; Eissenstat, D.M.; Lakso, A.N. Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytol. 2000, 147, 171–178. [Google Scholar] [CrossRef]
- Ferree, D.; Scurlock, D.; Schmid, J. Root pruning reduces photosynthesis, transpiration, growth, and fruiting of container-grown French-American hybrid grapevines. HortScience 1999, 34, 1064–1067. [Google Scholar] [CrossRef]
- Bonomelli, C.; Bonilla, C.; and Nuñez, F. Soil temperature effect on root growth of cherry trees. (Prunus avium L.). In Proceedings of the VI International Cherry Symposium (ISHS-Pontificia Universidad Católica de Chile), Reñaca, Viña del Mar, Chile, 15–19 November 2009. [Google Scholar]
- Costa, J.M.; Egipto, R.; Aguiar, F.C.; Marques, P.; Nogales, A.; Madeira, M. The role of soil temperature in mediterranean vineyards in a climate change context. Front. Plant Sci. 2023, 14, 1145137. [Google Scholar] [CrossRef]
- Kramer, P.J.; Boyer, J.S. Water Relations of Plants and Soils; Academic Press, Inc.: Cambridge, MA, USA, 1995. [Google Scholar]
- Araujo, F.; Williams, L.E.; Grimes, D.W.; Matthews, M.A. A comparative study of young ‘Thompson Seedless’ grapevines under drip and furrow irrigation. I. Root and soil water distributions. Sci. Hortic. 1995, 60, 235–249. [Google Scholar] [CrossRef]
- Morano, L.; Kliewer, W.M. Root distribution of three grapevine rootstocks grafted to Cabernet Sauvignon grown on a very gravelly clay loam soil in Oakville, California. Am. J. Enol. Vitic. 1994, 45, 345–348. [Google Scholar] [CrossRef]
- Perry, R.; Lyda, S.; Bowen, H. Root distribution of fourVitis cultivars. Plant Soil. 1983, 71, 63–74. [Google Scholar] [CrossRef]
- Mezzatesta, D.S.; Berli, F.J.; Arancibia, C.; Buscema, F.; Piccoli, P.N. Impact of contrasting soils in a high-altitude vineyard of Vitis vinifera L. cv. Malbec: Root morphology and distribution, vegetative and reproductive expressions, and berry skin phenolics. OENO One 2022, 56, 149–163. [Google Scholar] [CrossRef]
- Linsenmeier, A.; Lehnart, R.; Lohnertz, O.; Michel, H. Investigation of grapevine root distribution by in situ minirhizotron observation. Vitis 2010, 49, 1–6. [Google Scholar]
Predictor Variables | Response | |
---|---|---|
No Root Growth (Model 1) | New Roots (Model 2) | |
Air temperature | *** | *** |
Genotype | *** | ** |
Season | *** | *** |
Depth | * | * |
Phenological stages | *** | *** |
Year | *** | *** |
Observation date | *** | *** |
Air temperature: Genotype | *** | *** |
Genotype: Season | *** | ** |
Genotype: Phenological stages | *** | *** |
Genotype: Year | *** | *** |
Genotype: Observation date | *** | *** |
Predictor Variables | Response |
---|---|
New Roots | |
Air temperature | ** |
Genotype | ** |
Season | *** |
Depth | * |
Phenological stages | ** |
Year | ns |
Observation date | ns |
Soil moisture at 10 cm | ns |
Soil moisture at 30 cm | ** |
Air temperature: Genotype | *** |
Genotype: Soil moisture at 10 cm | * |
Genotype: Soil moisture at 30 cm | ** |
Phenological Stages | Season | ||||
---|---|---|---|---|---|
Season 1 (2007/2008) | Season 2 (2008/2009) | Season 3 (2009/2010) | Season 4 (2012/2013) | Season 5 (2013/2014) | |
Bud-break (E-L 02) | 12/09/2007 | 17/09/2008 | 8/09/2009 | 18/09/2012 | 18/09/2013 |
Flowering (E-L 08) | 08/11/2007 | 29/10/2008 | 02/11/2009 | 30/10/2012 | 02/11/2013 |
Veraison (E-L 31) | 02/01/2008 | 07/01/2009 | 30/12/2009 | 08/01/2013 | 30/12/2013 |
Harvest (E-L 35) | 29/02/2008 | 10/02/2009 | 23/02/2010 | 06/03/2013 | 09/03/2014 |
Genotypes | |||||
---|---|---|---|---|---|
Shiraz | 140 Ruggeri | Schwarzmann | Ramsey | ||
Seasons | Spring | 1157 | 2621 | 1440 | 1603 |
Summer | 254 | 470 | 414 | 333 | |
Autumn | 50 | 156 | 156 | 109 | |
Winter | 245 | 331 | 205 | 514 | |
Phenological stages | Bud-break | 93 | 136 | 41 | 191 |
Flowering | 594 | 1563 | 1075 | 972 | |
Veraison | 132 | 136 | 164 | 124 | |
Harvest | 99 | 203 | 81 | 69 | |
Year total | 1706 | 3578 | 2215 | 2559 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, K.P.; Field, S.K.; Rogiers, S.Y.; Nielsen, S.; Guisard, Y.; Holzapfel, B.P. Rootstocks Alter the Seasonal Dynamics and Vertical Distribution of New Root Growth of Vitis vinifera cv. Shiraz grapevines. Agronomy 2023, 13, 2355. https://doi.org/10.3390/agronomy13092355
Mahmud KP, Field SK, Rogiers SY, Nielsen S, Guisard Y, Holzapfel BP. Rootstocks Alter the Seasonal Dynamics and Vertical Distribution of New Root Growth of Vitis vinifera cv. Shiraz grapevines. Agronomy. 2023; 13(9):2355. https://doi.org/10.3390/agronomy13092355
Chicago/Turabian StyleMahmud, Kare P., Stewart K. Field, Suzy Y. Rogiers, Sharon Nielsen, Yann Guisard, and Bruno P. Holzapfel. 2023. "Rootstocks Alter the Seasonal Dynamics and Vertical Distribution of New Root Growth of Vitis vinifera cv. Shiraz grapevines" Agronomy 13, no. 9: 2355. https://doi.org/10.3390/agronomy13092355
APA StyleMahmud, K. P., Field, S. K., Rogiers, S. Y., Nielsen, S., Guisard, Y., & Holzapfel, B. P. (2023). Rootstocks Alter the Seasonal Dynamics and Vertical Distribution of New Root Growth of Vitis vinifera cv. Shiraz grapevines. Agronomy, 13(9), 2355. https://doi.org/10.3390/agronomy13092355