The Evaluation of Carbon Farming Strategies in Organic Vegetable Cultivation
Abstract
:1. Introduction
2. Materials and Methods
Systematic Literature Review
3. Results and Discussion
3.1. Overview
3.2. Environmental Impact of Organic Vegetable Cultivation on Carbon Emissions
3.3. Exploring the Connection between Organic Vegetable Farming and Carbon Sequestration
Measures | Expected Results | References |
---|---|---|
Rethink tillage management | Shifting conventional tillage to no-till farming cuts emissions by 30 to 35 kg C/ha per season | [31] |
Higher SOC after 5 years of organic vegetable production by adopting no tillage | [101] | |
Formation of macroaggregates under long-term conservation tillage | [120] | |
Use of cover crops | Provides nutrients to the soil | [40] |
Decreases soil NO3 by 30% | [41,104,121] | |
C sequestration outweighs N2O emissions | [105] | |
Crop rotation and no tillage | Higher SOC compared to conventional tillage system | [117,122] |
Higher mineralized soil N compared with tilled systems | [123,124] | |
An overall decline of up to 7.6% in GWP (net global warming potential) | [125] | |
Use of grain crop residues as fertilizers | 1000 kg of cereal residue generates 12 to 20 kg N, 1 to 4 kg P, 7 to 30 kg K, 4 to 8 kg Ca, and 2 to 4 kg Mg | [102] |
Adapting a natural farming system | low-input NT with weed residue mulching increases soil carbon sequestration by 0–7.5 cm for 8 years | [126] |
Use of biochar— the carbonaceous product obtained from the organic material pyrolysis | Adjusts soil N cycle and reduces N losses | [127] |
An average 63% increase in symbiotic biological dinitrogen (N2) fixation in crops and an 11% enhancement of plant N uptake | [127] | |
Supplies nutrients to soils that stimulate biological N2 fixation | [128,129] | |
Enhances crop yields | [130] | |
Reduces N2O emissions | [131,132] | |
Soil erosion control | Measurement of emissions compared with burial of C under erosional processes | [72,133] |
Management of farming practices: - Long-term organic matter application | Mitigate organic matter degradation that impacts the atmosphere similar to fossil fuel combustion | [42] |
Enhances soil organic carbon level and fertility | [106,107] | |
Reduces N2O emissions | [105,134] | |
Magnifies free-living N fixation rates in the soil and/or nodulation in N-fixing crops | [135] | |
- Use of silicate rock amendments | Speeds up the rate of chemical weathering and consumes atmospheric CO2 | [136] |
Decreases both methane and N2O emissions | [137,138] | |
Water resources conservation | Water-efficient farming systems = water conservation = water harvesting | [31,139] |
Carbon trading market scope | Short-term (3–5 years) measure of proficiency of SOC level changes | [140,141] |
3.4. Advantages and Disadvantages of Carbon Farming: Exploring the Upsides and Downsides
3.5. The Synergy between Organic Vegetable Cultivation and Some Emerging Systems within the Context of Carbon Farming
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noble, R.; Noble, D. Understanding Living Systems; Cambridge University Press: Cambridge, UK, 2023; ISBN 1-00-927736-7. [Google Scholar]
- Bhavsar, A.; Hingar, D.; Ostwal, S.; Thakkar, I.; Jadeja, S.; Shah, M. The Current Scope and Stand of Carbon Capture Storage and Utilization ~A Comprehensive Review. Case Stud. Chem. Environ. Eng. 2023, 8, 100368. [Google Scholar] [CrossRef]
- Filipović, S.; Lior, N.; Radovanović, M. The Green Deal—Just Transition and Sustainable Development Goals Nexus. Renew. Sustain. Energy Rev. 2022, 168, 112759. [Google Scholar] [CrossRef]
- Mattila, T.J.; Hagelberg, E.; Söderlund, S.; Joona, J. How Farmers Approach Soil Carbon Sequestration? Lessons Learned from 105 Carbon-Farming Plans. Soil Tillage Res. 2022, 215, 105204. [Google Scholar] [CrossRef]
- Paustian, K.; Larson, E.; Kent, J.; Marx, E.; Swan, A. Soil C Sequestration as a Biological Negative Emission Strategy. Front. Clim. 2019, 1, 8. [Google Scholar] [CrossRef]
- Tariq, S.; Mubeen, M.; Hammad, H.M.; Jatoi, W.N.; Hussain, S.; Farid, H.U.; Ali, M.; Javeed, H.M.R.; Sabagh, A.E.; Fahad, S. Mitigation of Climate Change Through Carbon Farming. In Climate Change Impacts on Agriculture: Concepts, Issues and Policies for Developing Countries; Springer: New York, NY, USA, 2023; pp. 381–391. [Google Scholar] [CrossRef]
- Fageria, N. Role of Soil Organic Matter in Maintaining Sustainability of Cropping Systems. Commun. Soil Sci. Plant Anal. 2012, 43, 2063–2113. [Google Scholar] [CrossRef]
- Karami, A.; Homaee, M.; Afzalinia, S.; Ruhipour, H.; Basirat, S. Organic Resource Management: Impacts on Soil Aggregate Stability and Other Soil Physico-Chemical Properties. Agric. Ecosyst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Sharma, M.; Kaushal, R.; Kaushik, P.; Ramakrishna, S. Carbon Farming: Prospects and Challenges. Sustainability 2021, 13, 11122. [Google Scholar] [CrossRef]
- Tisdall, J. Formation of Soil Aggregates and Accumulation of Soil Organic Matter. In Structure and Organic Matter Storage in Agricultural Soils; CRC Press: Boca Raton, FL, USA, 2020; pp. 57–96. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the Design of Climate Change-Resilient Farming Systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Garrett, K.A.; Forbes, G.A.; Savary, S.; Skelsey, P.; Sparks, A.H.; Valdivia, C.; van Bruggen, A.H.; Willocquet, L.; Djurle, A.; Duveiller, E. Complexity in Climate-change Impacts: An Analytical Framework for Effects Mediated by Plant Disease. Plant Pathol. 2011, 60, 15–30. [Google Scholar] [CrossRef]
- Hartmann, J.; West, A.J.; Renforth, P.; Köhler, P.; De La Rocha, C.L.; Wolf-Gladrow, D.A.; Dürr, H.H.; Scheffran, J. Enhanced Chemical Weathering as a Geoengineering Strategy to Reduce Atmospheric Carbon Dioxide, Supply Nutrients, and Mitigate Ocean Acidification. Rev. Geophys. 2013, 51, 113–149. [Google Scholar] [CrossRef]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A Blueprint for Blue Carbon: Toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.A.; Carey, C.J.; Atwood, L.; Bossio, D.; Fenichel, E.P.; Gennet, S.; Fargione, J.; Fisher, J.R.; Fuller, E.; Kane, D.A. Soil Carbon Science for Policy and Practice. Nat. Sustain. 2019, 2, 1070–1072. [Google Scholar] [CrossRef]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing Organic Stocks in Agricultural Soils: Knowledge Gaps and Potential Innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Influence of Climate Change on Protected Cultivation: Impacts and Sustainable Adaptation Strategies-A Review. J. Clean. Prod. 2019, 225, 481–495. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Impacts of Protected Vegetable Cultivation on Climate Change and Adaptation Strategies for Cleaner Production—A Review. J. Clean. Prod. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- Yin, C.; Gu, H.; Zhang, S. Measuring Technological Collaborations on Carbon Capture and Storage Based on Patents: A Social Network Analysis Approach. J. Clean. Prod. 2020, 274, 122867. [Google Scholar] [CrossRef]
- Van den Berg, N.J.; van Soest, H.L.; Hof, A.F.; den Elzen, M.G.; van Vuuren, D.P.; Chen, W.; Drouet, L.; Emmerling, J.; Fujimori, S.; Höhne, N. Implications of Various Effort-Sharing Approaches for National Carbon Budgets and Emission Pathways. Clim. Chang. 2020, 162, 1805–1822. [Google Scholar] [CrossRef]
- Lenzi, D.; Jakob, M.; Honegger, M.; Droege, S.; Heyward, J.C.; Kruger, T. Equity Implications of Net Zero Visions. Clim. Chang. 2021, 169, 20. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Beschta, R.L.; Lacy, P.M.; Liverman, M. Livestock Use on Public Lands in the Western USA Exacerbates Climate Change: Implications for Climate Change Mitigation and Adaptation. Environ. Manag. 2022, 69, 1137–1152. [Google Scholar] [CrossRef] [PubMed]
- Greiner, R.; Gregg, D. Farmers’ Intrinsic Motivations, Barriers to the Adoption of Conservation Practices and Effectiveness of Policy Instruments: Empirical Evidence from Northern Australia. Land Use Policy 2011, 28, 257–265. [Google Scholar] [CrossRef]
- Riccaboni, A.; Neri, E.; Trovarelli, F.; Pulselli, R.M. Sustainability-Oriented Research and Innovation in ‘Farm to Fork’Value Chains. Curr. Opin. Food Sci. 2021, 42, 102–112. [Google Scholar] [CrossRef]
- Verschuuren, J. Achieving Agricultural Greenhouse Gas Emission Reductions in the EU Post-2030: What Options Do We Have? Rev. Eur. Comp. Int. Environ. Law 2022, 31, 246–257. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Organizational, Societal, Knowledge and Skills Capacity for a Low Carbon Energy Transition in a Circular Waste Bioeconomy (CWBE): Observational Evidence of the Thessaly Region in Greece. Sci. Total Environ. 2022, 813, 151870. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Soil Organic Carbon Sequestration. In Soil Organic Carbon Sequestration in Terrestrial Biomes of the United States; Springer: New York, NY, USA, 2022; pp. 55–145. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Ondrasek, G.; Horvatinec, J.; Kovačić, M.B.; Reljić, M.; Vinceković, M.; Rathod, S.; Bandumula, N.; Dharavath, R.; Rashid, M.I.; Panfilova, O. Land Resources in Organic Agriculture: Trends and Challenges in the Twenty-First Century from Global to Croatian Contexts. Agronomy 2023, 13, 1544. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Pro-Duction and Labelling of Organic Products and Repealing Council Regulation No 834/2007. Off. J. L 2018, 150, 1–92. [Google Scholar]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Gruda, N. Weed Suppression in Vegetable Crops Using Wood Fibre Mulch. Ber. Uber Landwirtsch. 2007, 85, 329–334. [Google Scholar]
- Gruda, N. The Effect of Wood Fiber Mulch on Water Retention, Soil Temperature and Growth of Vegetable Plants. J. Sustain. Agric. 2008, 32, 629–643. [Google Scholar] [CrossRef]
- Pittarello, M.; Chiarini, F.; Menta, C.; Furlan, L.; Carletti, P. Changes in Soil Quality through Conservation Agriculture in North-Eastern Italy. Agriculture 2022, 12, 1007. [Google Scholar] [CrossRef]
- Timsina, J. Can Organic Sources of Nutrients Increase Crop Yields to Meet Global Food Demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef]
- Fiebrig, I.; Zikeli, S.; Bach, S.; Gruber, S. Perspectives on Permaculture for Commercial Farming: Aspirations and Realities. Org. Agric. 2020, 10, 379–394. [Google Scholar] [CrossRef]
- Janowska, B.; Łój, J.; Andrzejak, R. Role of Community Gardens in Development of Housing Estates in Polish Cities. Agronomy 2022, 12, 1447. [Google Scholar] [CrossRef]
- Saharan, B.S.; Tyagi, S.; Kumar, R.; Vijay; Om, H.; Mandal, B.S.; Duhan, J.S. Application of Jeevamrit Improves Soil Properties in Zero Budget Natural Farming Fields. Agriculture 2023, 13, 196. [Google Scholar] [CrossRef]
- Zawadzińska, A.; Salachna, P.; Nowak, J.S.; Kowalczyk, W.; Piechocki, R.; Łopusiewicz, Ł.; Pietrak, A. Compost Based on Pulp and Paper Mill Sludge, Fruit-Vegetable Waste, Mushroom Spent Substrate and Rye Straw Improves Yield and Nutritional Value of Tomato. Agronomy 2021, 12, 13. [Google Scholar] [CrossRef]
- Marcillo, G.; Miguez, F. Corn Yield Response to Winter Cover Crops: An Updated Meta-Analysis. J. Soil Water Conserv. 2017, 72, 226–239. [Google Scholar] [CrossRef]
- Thapa, R.; Mirsky, S.B.; Tully, K.L. Cover Crops Reduce Nitrate Leaching in Agroecosystems: A Global Meta-analysis. J. Environ. Qual. 2018, 47, 1400–1411. [Google Scholar] [CrossRef]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S. Persistence of Soil Organic Carbon Caused by Functional Complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Kincl, D.; Formánek, P.; Vopravil, J.; Nerušil, P.; Menšík, L.; Janků, J. Soil-Conservation Effect of Intercrops in Silage Maize. Soil Water Res. 2022, 17, 180–190. [Google Scholar] [CrossRef]
- Poláková, J.; Janků, J.; Holec, J.; Soukup, J. Soil-Water Effects of Good Agricultural and Environmental Conditions Should Be Weighed in Conjunction with Carbon Farming. Agronomy 2023, 13, 1002. [Google Scholar] [CrossRef]
- Barão, L.; Alaoui, A.; Hessel, R. Identifying and Comparing Easily Accessible Frameworks for Assessing Soil Organic Matter Functioning. Agronomy 2022, 13, 109. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; Scialabba, N.E.-H. Enhanced Top Soil Carbon Stocks under Organic Farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [PubMed]
- Leifeld, J.; Fuhrer, J. Organic Farming and Soil Carbon Sequestration: What Do We Really Know about the Benefits? Ambio 2010, 39, 585–599. [Google Scholar] [CrossRef]
- Freibauer, A.; Rounsevell, M.D.; Smith, P.; Verhagen, J. Carbon Sequestration in the Agricultural Soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Palayukan, G.; Hanudin, E.; Purwanto, B. Stable and Unstable Carbon Fraction under Different Vegetable Farming System on Mt. Merbabu’s Andisols, Central Java. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 2nd International Conference on Organic Agriculture in the Tropics (ORGATROP), Online, 28–29 October 2021; IOP Publishing: Bristol, UK, 2022; Volume 1005, p. 012014. [Google Scholar]
- Sardiana, I. Organic Vegetable Farming System Enhancing Soil Carbon Sequestration in Bali, Indonesia. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 5th International Conference on Climate Change 2020, Bali, Indonesia, 24–25 September 2020; IOP Publishing: Bristol, UK, 2021; Volume 724, p. 012025. [Google Scholar]
- Liao, Y.; Wu, W.; Meng, F.; Smith, P.; Lal, R. Increase in Soil Organic Carbon by Agricultural Intensification in Northern China. Biogeosciences 2015, 12, 1403–1413. [Google Scholar] [CrossRef]
- Matsuura, E.; Komatsuzaki, M.; Hashimi, R. Assessment of Soil Organic Carbon Storage in Vegetable Farms Using Different Farming Practices in the Kanto Region of Japan. Sustainability 2018, 10, 152. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.; Riordan, P.; Macdonald, D.W. Does Organic Farming Reduce Environmental Impacts?—A Meta-Analysis of European Research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef]
- Blair, N.; Faulkner, R.D.; Till, A.R.; Korschens, M.; Schulz, E. Long-Term Management Impacts on Soil C, N and Physical Fertility: Part II: Bad Lauchstadt Static and Extreme FYM Experiments. Soil Tillage Res. 2006, 91, 39–47. [Google Scholar] [CrossRef]
- Tejada, M.; Gonzalez, J.; García-Martínez, A.; Parrado, J. Application of a Green Manure and Green Manure Composted with Beet Vinasse on Soil Restoration: Effects on Soil Properties. Bioresour. Technol. 2008, 99, 4949–4957. [Google Scholar] [CrossRef]
- Gruda, N.S. Advances in Soilless Culture and Growing Media in Today’s Horticulture—An Editorial. Agronomy 2022, 12, 2773. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Aldiyab, A.; Elgudayem, F.; Ikiz, B.; Gruda, N.S. Effect of Biofertilizers on Leaf Yield, Nitrate Amount, Mineral Content and Antioxidants of Basil (Ocimum basilicum L.) in a Floating Culture. Sci. Rep. 2022, 12, 20917. [Google Scholar] [CrossRef] [PubMed]
- Dasgan, H.Y.; Yilmaz, M.; Dere, S.; Ikiz, B.; Gruda, N.S. Bio-Fertilizers Reduced the Need for Mineral Fertilizers in Soilless-Grown Capia Pepper. Horticulturae 2023, 9, 188. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Kacmaz, S.; Arpaci, B.B.; İkiz, B.; Gruda, N.S. Biofertilizers Improve the Leaf Quality of Hydroponically Grown Baby Spinach (Spinacia oleracea L.). Agronomy 2023, 13, 575. [Google Scholar] [CrossRef]
- Matthews, S.; Ali, A.; Siddiqui, Y.; Supramaniam, C.V. Plant Bio-Stimulant: Prospective, Safe and Natural Resources. J. Soil Sci. Plant Nutr. 2022, 22, 2570–2586. [Google Scholar] [CrossRef]
- Baum, C.; El-Tohamy, W.; Gruda, N. Increasing the Productivity and Product Quality of Vegetable Crops Using Arbuscular Mycorrhizal Fungi: A Review. Sci. Hortic. 2015, 187, 131–141. [Google Scholar] [CrossRef]
- El-Tohamy, W.; El-Abagy, H.; El-Greadly, N.; Gruda, N. Hormonal Changes, Growth and Yield of Tomato Plants in Response to Chemical and Bio-Fertilization Application in Sandy Soils. J. Appl. Bot. Food Qual. 2012, 82, 179–182. [Google Scholar]
- Emmanuel, O.C.; Babalola, O.O. Productivity and Quality of Horticultural Crops through Co-Inoculation of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Bacteria. Microbiol. Res. 2020, 239, 126569. [Google Scholar] [CrossRef] [PubMed]
- Kilic, N.; Dasgan, H.Y.; Gruda, N.S. A Novel Approach for Organic Strawberry Cultivation: Vermicompost-Based Fertilization and Microbial Complementary Nutrition. Horticulturae 2023, 9, 642. [Google Scholar] [CrossRef]
- Agrimonti, C.; Lauro, M.; Visioli, G. Smart Agriculture for Food Quality: Facing Climate Change in the 21st Century. Crit. Rev. Food Sci. Nutr. 2021, 61, 971–981. [Google Scholar] [CrossRef]
- Balliu, A.; Zheng, Y.; Sallaku, G.; Fernández, J.A.; Gruda, N.S.; Tuzel, Y. Environmental and Cultivation Factors Affect the Morphology, Architecture and Performance of Root Systems in Soilless Grown Plants. Horticulturae 2021, 7, 243. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Katsoulas, N.; Kittas, C. Smart Greenhouse Production Practices to Manage and Mitigate the Impact of Climate Change in Protected Cultivation. Int. Soc. Hortic. Sci. 2021, 1320, 189–196. [Google Scholar] [CrossRef]
- Adewale, C.; Higgins, S.; Granatstein, D.; Stöckle, C.O.; Carlson, B.R.; Zaher, U.E.; Carpenter-Boggs, L. Identifying Hotspots in the Carbon Footprint of a Small Scale Organic Vegetable Farm. Agric. Syst. 2016, 149, 112–121. [Google Scholar] [CrossRef]
- Gomiero, T.; Paoletti, M.G.; Pimentel, D. Energy and Environmental Issues in Organic and Conventional Agriculture. Crit. Rev. Plant Sci. 2008, 27, 239–254. [Google Scholar] [CrossRef]
- Küstermann, B.; Hülsbergen, K.-J. Emission of Climate-Relevant Gases in Organic and Conventional Cropping Systems. In Proceedings of the 16th IFOAM Organic World Congress, Modena, Italy, 16–20 June 2008. [Google Scholar]
- Smith, P.; Powlson, D.S.; Smith, J.U.; Falloon, P.; Coleman, K. Meeting Europe’s Climate Change Commitments: Quantitative Estimates of the Potential for Carbon Mitigation by Agriculture. Glob. Chang. Biol. 2000, 6, 525–539. [Google Scholar] [CrossRef]
- Fritsche, U.R.; Eberle, U.; Wiegmann, K.; Schmidt, K. Treibhausgasemissionen Durch Erzeugung Und Verarbeitung von Lebensmitteln; Arbeitspapier; Öko-Institut eV Darmstadt: Darmstadt, Germany, 2007; Volume 13. [Google Scholar]
- De Backer, E.; Aertsens, J.; Vergucht, S.; Steurbaut, W. Assessing the Ecological Soundness of Organic and Conventional Agriculture by Means of Life Cycle Assessment (LCA): A Case Study of Leek Production. Br. Food J. 2009, 111, 1028–1061. [Google Scholar] [CrossRef]
- Alonso, A.M.; Guzmán, G.J. Comparison of the Efficiency and Use of Energy in Organic and Conventional Farming in Spanish Agricultural Systems. J. Sustain. Agric. 2010, 34, 312–338. [Google Scholar] [CrossRef]
- Lynch, D.H.; Zheng, Z.; Zebarth, B.J.; Martin, R.C. Organic Amendment Effects on Tuber Yield, Plant N Uptake and Soil Mineral N under Organic Potato Production. Renew. Agric. Food Syst. 2008, 23, 250–259. [Google Scholar] [CrossRef]
- Williams, A.; Audsley, E.; Sandars, D. Determining the Environmental Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities: Defra Project Report IS0205. 2006. Available online: http://randd.defra.gov.uk/Default.aspx (accessed on 20 August 2023).
- Ziesemer, J. Energy Use in Organic Food Systems; Natural Resources Management and Environment Department Food and Agriculture Organization of the United Nations: Rome, Italy, 2007; pp. 1–28. [Google Scholar]
- Wood, R.; Lenzen, M.; Dey, C.; Lundie, S. A Comparative Study of Some Environmental Impacts of Conventional and Organic Farming in Australia. Agric. Syst. 2006, 89, 324–348. [Google Scholar] [CrossRef]
- Dyer, J.; Desjardins, R. A Simple Meta-Model for Assessing the Contribution of Liquid Fossil Fuel for on-Farm Fieldwork to Agricultural Greenhouse Gases in Canada. J. Sustain. Agric. 2005, 27, 71–90. [Google Scholar] [CrossRef]
- Bos, J.F.; de Haan, J.; Sukkel, W.; Schils, R.L. Energy Use and Greenhouse Gas Emissions in Organic and Conventional Farming Systems in the Netherlands. NJAS—Wageningen J. Life Sci. 2014, 68, 61–70. [Google Scholar] [CrossRef]
- Autret, B.; Beaudoin, N.; Rakotovololona, L.; Bertrand, M.; Grandeau, G.; Gréhan, E.; Ferchaud, F.; Mary, B. Can Alternative Cropping Systems Mitigate Nitrogen Losses and Improve GHG Balance? Results from a 19-Yr Experiment in Northern France. Geoderma 2019, 342, 20–33. [Google Scholar] [CrossRef]
- Hansen, S.; Berland Frøseth, R.; Stenberg, M.; Stalenga, J.; Olesen, J.E.; Krauss, M.; Radzikowski, P.; Doltra, J.; Nadeem, S.; Torp, T. Reviews and Syntheses: Review of Causes and Sources of N2O Emissions and NO3 Leaching from Organic Arable Crop Rotations. Biogeosciences 2019, 16, 2795–2819. [Google Scholar] [CrossRef]
- Toensmeier, E.; Ferguson, R.; Mehra, M. Perennial Vegetables: A Neglected Resource for Biodiversity, Carbon Sequestration, and Nutrition. PLoS ONE 2020, 15, e0234611. [Google Scholar] [CrossRef]
- Sanchez-Maranon, M.; Soriano, M.; Delgado, G.; Delgado, R. Soil Quality in Mediterranean Mountain Environments: Effects of Land Use Change. Soil Sci. Soc. Am. J. 2002, 66, 948–958. [Google Scholar] [CrossRef]
- Leithold, G.; Hülsbergen, K.; Brock, C. Organic Matter Returns to Soils Must Be Higher under Organic Compared to Conventional Farming. J. Plant Nutr. Soil Sci. 2015, 178, 4–12. [Google Scholar] [CrossRef]
- Scialabba, N.E.-H.; Müller-Lindenlauf, M. Organic Agriculture and Climate Change. Renew. Agric. Food Syst. 2010, 25, 158–169. [Google Scholar] [CrossRef]
- Brar, B.; Singh, K.; Dheri, G. Carbon Sequestration and Soil Carbon Pools in a Rice–Wheat Cropping System: Effect of Long-Term Use of Inorganic Fertilizers and Organic Manure. Soil Tillage Res. 2013, 128, 30–36. [Google Scholar] [CrossRef]
- Leifeld, J.; Reiser, R.; Oberholzer, H. Consequences of Conventional versus Organic Farming on Soil Carbon: Results from a 27-year Field Experiment. Agron. J. 2009, 101, 1204–1218. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.; Mishra, B.; Shahi, D. Long-Term Fertilization, Manure and Liming Effects on Soil Organic Matter and Crop Yields. Soil Tillage Res. 2007, 94, 397–409. [Google Scholar] [CrossRef]
- Luce, M.S.; Grant, C.A.; Zebarth, B.J.; Ziadi, N.; O’Donovan, J.T.; Blackshaw, R.E.; Harker, K.N.; Johnson, E.N.; Gan, Y.; Lafond, G.P. Legumes Can Reduce Economic Optimum Nitrogen Rates and Increase Yields in a Wheat–Canola Cropping Sequence in Western Canada. Field Crop. Res. 2015, 179, 12–25. [Google Scholar] [CrossRef]
- Unkovich, M.; Herridge, D.; Peoples, M.; Cadisch, G.; Boddey, B.; Giller, K.; Alves, B.; Chalk, P. Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems; Australian Centre for International Agricultural Research (ACIAR): Bruce, Australia, 2008; ISBN 978-1-921531-26-2.
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggaard-Nielsen, H.; JR Alves, B.; Morrison, M.J. Legumes for Mitigation of Climate Change and the Provision of Feedstock for Biofuels and Biorefineries. A Review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef]
- Lehmann, J. A Handful of Carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A Review of Biochars’ Potential Role in the Remediation, Revegetation and Restoration of Contaminated Soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Prasad, M.; Chrysargyris, A.; McDaniel, N.; Kavanagh, A.; Gruda, N.S.; Tzortzakis, N. Plant Nutrient Availability and PH of Biochars and Their Fractions, with the Possible Use as a Component in a Growing Media. Agronomy 2019, 10, 10. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Nelson, P.F. Agronomic Properties of Wastewater Sludge Biochar and Bioavailability of Metals in Production of Cherry Tomato (Lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize Yield and Nutrition during 4 Years after Biochar Application to a Colombian Savanna Oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Amonette, J.E.; Ippolito, J.A.; Lima, I.M.; Gaskin, J.; Das, K.; Steiner, C.; Ahmedna, M. Biochars Impact on Soil-Moisture Storage in an Ultisol and Two Aridisols. Soil Sci. 2012, 177, 310–320. [Google Scholar] [CrossRef]
- Hashimi, R.; Kaneda, S.; Kaneko, N.; Ohta, H.; Komatsuzaki, M. Aggregate Distribution and Substrate-Induced Respiration under Different Tillage and Mulching Management Systems in Organic Farming. Soil Sci. Plant Nutr. 2020, 66, 878–888. [Google Scholar] [CrossRef]
- Sharma, S.; Thind, H.; Sidhu, H.; Jat, M.; Parihar, C. Effects of Crop Residue Retention on Soil Carbon Pools after 6 Years of Rice–Wheat Cropping System. Environ. Earth Sci. 2019, 78, 296. [Google Scholar] [CrossRef]
- Sosulski, T.; Srivastava, A.K.; Ahrends, H.E.; Smreczak, B.; Szymańska, M. Carbon Storage Potential and Carbon Dioxide Emissions from Mineral-Fertilized and Manured Soil. Appl. Sci. 2023, 13, 4620. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S.; De Paepe, J.L. Cover Crop Effects on Soils and Subsequent Crops in the Pampas: A Meta-Analysis. Soil Tillage Res. 2017, 170, 53–65. [Google Scholar] [CrossRef]
- Guenet, B.; Gabrielle, B.; Chenu, C.; Arrouays, D.; Balesdent, J.; Bernoux, M.; Bruni, E.; Caliman, J.; Cardinael, R.; Chen, S. Can N2O Emissions Offset the Benefits from Soil Organic Carbon Storage? Glob. Chang. Biol. 2021, 27, 237–256. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, S.; Endo, Y.; Hatano, R. The Effect of Organic Matter Application on Carbon Sequestration and Soil Fertility in Upland Fields of Different Types of Andosols. Soil Sci. Plant Nutr. 2017, 63, 200–220. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Li, X.; Tian, X.; Zhao, A.; Wang, S.; Wang, S.; Shi, J. Effect of Straw Management on Carbon Sequestration and Grain Production in a Maize–Wheat Cropping System in Anthrosol of the Guanzhong Plain. Soil Tillage Res. 2016, 157, 43–51. [Google Scholar] [CrossRef]
- Almaraz, M.; Wong, M.Y.; Geoghegan, E.K.; Houlton, B.Z. A Review of Carbon Farming Impacts on Nitrogen Cycling, Retention, and Loss. Ann. N. Y. Acad. Sci. 2021, 1505, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Kay, P.; Stirling, G.; Weng, X.; Bell, L. Impacts of Reducing Fallow Periods on Indicators of Soil Function in Subtropical Dryland Farming Systems. Agric. Ecosyst. Environ. 2022, 324, 107727. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Fahad, S.; Cerdà, A.; Rizwan, M.; Farhad, W.; Ehsan, S.; Bakhat, H.F. Agroforestry: A Sustainable Environmental Practice for Carbon Sequestration under the Climate Change Scenarios—A Review. Environ. Sci. Pollut. Res. 2017, 24, 11177–11191. [Google Scholar] [CrossRef] [PubMed]
- Hillel, D.; Rosenzweig, C. Introduction–Climate Change and Agroecosystems: Key Issues. In Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation; World Scientific: Singapore, 2011; pp. 1–5. [Google Scholar]
- Hutchinson, J.; Campbell, C.; Desjardins, R. Some Perspectives on Carbon Sequestration in Agriculture. Agric. For. Meteorol. 2007, 142, 288–302. [Google Scholar] [CrossRef]
- Lu, F.; Wang, X.; Han, B.; Ouyang, Z.; Duan, X.; Zheng, H.; Miao, H. Soil Carbon Sequestrations by Nitrogen Fertilizer Application, Straw Return and No-tillage in China’s Cropland. Glob. Chang. Biol. 2009, 15, 281–305. [Google Scholar] [CrossRef]
- Zahra, S.; Abbas, F.; Ishaq, W.; Ibrahim, M.; Hammad, H.; Akram, B.; Salik, M. Carbon Sequestration Potential of Soils under Maize Production in Irrigated Agriculture of the Punjab Province of Pakistan. J. Anim. Plant Sci. 2016, 26, 706–715. [Google Scholar]
- Nishimura, S.; Yonemura, S.; Sawamoto, T.; Shirato, Y.; Akiyama, H.; Sudo, S.; Yagi, K. Effect of Land Use Change from Paddy Rice Cultivation to Upland Crop Cultivation on Soil Carbon Budget of a Cropland in Japan. Agric. Ecosyst. Environ. 2008, 125, 9–20. [Google Scholar] [CrossRef]
- Yfantopoulos, D.; Ntatsi, G.; Gruda, N.; Bilalis, D.; Savvas, D. Effects of the Preceding Crop on Soil N Availability, Biological Nitrogen Fixation, and Fresh Pod Yield of Organically Grown Faba Bean (Vicia faba L.). Horticulturae 2022, 8, 496. [Google Scholar] [CrossRef]
- Sokolowski, A.C.; McCormick, B.P.; De Grazia, J.; Wolski, J.E.; Rodríguez, H.A.; Rodríguez-Frers, E.P.; Gagey, M.C.; Debelis, S.P.; Paladino, I.R.; Barrios, M.B. Tillage and No-Tillage Effects on Physical and Chemical Properties of an Argiaquoll Soil under Long-Term Crop Rotation in Buenos Aires, Argentina. Int. Soil Water Conserv. Res. 2020, 8, 185–194. [Google Scholar] [CrossRef]
- Kautsar, V.; Cheng, W.; Tawaraya, K.; Yamada, S.; Toriyama, K.; Kobayashi, K. Carbon and Nitrogen Stocks and Their Mineralization Potentials Are Higher under Organic than Conventional Farming Practices in Japanese Andosols. Soil Sci. Plant Nutr. 2020, 66, 144–151. [Google Scholar] [CrossRef]
- Fukuoka, M. The One-Straw Revolution: An Introduction to Natural Farming; New York Review of Books: New York, NY, USA, 2009; ISBN 1-59017-313-9. [Google Scholar]
- Kahlon, M.S.; Lal, R.; Ann-Varughese, M. Twenty Two Years of Tillage and Mulching Impacts on Soil Physical Characteristics and Carbon Sequestration in Central Ohio. Soil Tillage Res. 2013, 126, 151–158. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.; Drinkwater, L. Replacing Bare Fallows with Cover Crops in Fertilizer-Intensive Cropping Systems: A Meta-Analysis of Crop Yield and N Dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Gong, Y.; Li, P.; Sakagami, N.; Komatsuzaki, M. No-Tillage with Rye Cover Crop Can Reduce Net Global Warming Potential and Yield-Scaled Global Warming Potential in the Long-Term Organic Soybean Field. Soil Tillage Res. 2021, 205, 104747. [Google Scholar] [CrossRef]
- Mahal, N.K.; Castellano, M.J.; Miguez, F.E. Conservation Agriculture Practices Increase Potentially Mineralizable Nitrogen: A Meta-analysis. Soil Sci. Soc. Am. J. 2018, 82, 1270–1278. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.-L.; Pu, C.; Zhang, X.-Q.; Xue, J.-F.; Ren, Y.-X.; Zhao, X.-L.; Chen, F.; Lal, R.; Zhang, H.-L. Crop Yields under No-till Farming in China: A Meta-Analysis. Eur. J. Agron. 2017, 84, 67–75. [Google Scholar] [CrossRef]
- Shakoor, A.; Shahbaz, M.; Farooq, T.H.; Sahar, N.E.; Shahzad, S.M.; Altaf, M.M.; Ashraf, M. A Global Meta-Analysis of Greenhouse Gases Emission and Crop Yield under No-Tillage as Compared to Conventional Tillage. Sci. Total Environ. 2021, 750, 142299. [Google Scholar] [CrossRef] [PubMed]
- Dewi, R.K.; Fukuda, M.; Takashima, N.; Yagioka, A.; Komatsuzaki, M. Soil Carbon Sequestration and Soil Quality Change between No-Tillage and Conventional Tillage Soil Management after 3 and 11 Years of Organic Farming. Soil Sci. Plant Nutr. 2022, 68, 133–148. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Liu, B.; Amonette, J.E.; Lin, Z.; Liu, G.; Ambus, P.; Xie, Z. How Does Biochar Influence Soil N Cycle? A Meta-Analysis. Plant Soil 2018, 426, 211–225. [Google Scholar] [CrossRef]
- Chan, K.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using Poultry Litter Biochars as Soil Amendments. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological Nitrogen Fixation by Common Beans (Phaseolus vulgaris L.) Increases with Bio-Char Additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar Boosts Tropical but Not Temperate Crop Yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Van Zwieten, L.; Singh, B.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M. Biochar’s Role in Mitigating Soil Nitrous Oxide Emissions: A Review and Meta-Analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A. Biochar, Soil and Land-Use Interactions That Reduce Nitrate Leaching and N2O Emissions: A Meta-Analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Fahad, S.; Farhad, W.; Cerdà, A. A Review of Soil Carbon Dynamics Resulting from Agricultural Practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, X.; Bai, Z.; Chadwick, D.; Misselbrook, T.; Sommer, S.G.; Qin, W.; Ma, L. Mitigation of Ammonia, Nitrous Oxide and Methane Emissions during Solid Waste Composting with Different Additives: A Meta-Analysis. J. Clean. Prod. 2019, 235, 626–635. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Ladeira, L.C.; Arrobas, M. Azotobacter-Enriched Organic Manures to Increase Nitrogen Fixation and Crop Productivity. Eur. J. Agron. 2018, 93, 88–94. [Google Scholar] [CrossRef]
- Beerling, D.J.; Leake, J.R.; Long, S.P.; Scholes, J.D.; Ton, J.; Nelson, P.N.; Bird, M.; Kantzas, E.; Taylor, L.L.; Sarkar, B. Farming with Crops and Rocks to Address Global Climate, Food and Soil Security. Nat. Plants 2018, 4, 138–147. [Google Scholar] [CrossRef]
- Bossolani, J.W.; Crusciol, C.A.C.; Merloti, L.F.; Moretti, L.G.; Costa, N.R.; Tsai, S.M.; Kuramae, E.E. Long-Term Lime and Gypsum Amendment Increase Nitrogen Fixation and Decrease Nitrification and Denitrification Gene Abundances in the Rhizosphere and Soil in a Tropical No-till Intercropping System. Geoderma 2020, 375, 114476. [Google Scholar] [CrossRef]
- Blanc-Betes, E.; Kantola, I.B.; Gomez-Casanovas, N.; Hartman, M.D.; Parton, W.J.; Lewis, A.L.; Beerling, D.J.; DeLucia, E.H. In Silico Assessment of the Potential of Basalt Amendments to Reduce N2O Emissions from Bioenergy Crops. GCB Bioenergy 2021, 13, 224–241. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Carbonell, R.; Ordoñez, R.; Torres, F.P.; Durán Zuazo, V.H. Conservation Agriculture Practices to Improve the Soil Water Management and Soil Carbon Storage in Mediterranean Rainfed Agro-Ecosystems. In Soil Health Restoration and Management; Springer: Singapore, 2020; pp. 203–230. [Google Scholar] [CrossRef]
- Badgery, W.; Murphy, B.; Cowie, A.; Orgill, S.; Rawson, A.; Simmons, A.; Crean, J. Soil Carbon Market-Based Instrument Pilot–the Sequestration of Soil Organic Carbon for the Purpose of Obtaining Carbon Credits. Soil Res. 2020, 59, 12–23. [Google Scholar] [CrossRef]
- Kimble, J.M.; Follett, R.F.; Stewart, B.A. Assessment Methods for Soil Carbon; CRC Press: Boca Raton, FL, USA, 2000; ISBN 1-56670-461-8. [Google Scholar]
- Dumbrell, N.P.; Kragt, M.E.; Gibson, F.L. What Carbon Farming Activities Are Farmers Likely to Adopt? A Best–Worst Scaling Survey. Land Use Policy 2016, 54, 29–37. [Google Scholar] [CrossRef]
- Baumber, A.; Metternicht, G.; Cross, R.; Ruoso, L.-E.; Cowie, A.L.; Waters, C. Promoting Co-Benefits of Carbon Farming in Oceania: Applying and Adapting Approaches and Metrics from Existing Market-Based Schemes. Ecosyst. Serv. 2019, 39, 100982. [Google Scholar] [CrossRef]
- Evans, M.C.; Carwardine, J.; Fensham, R.J.; Butler, D.W.; Wilson, K.A.; Possingham, H.P.; Martin, T.G. Carbon Farming via Assisted Natural Regeneration as a Cost-Effective Mechanism for Restoring Biodiversity in Agricultural Landscapes. Environ. Sci. Policy 2015, 50, 114–129. [Google Scholar] [CrossRef]
- Kragt, M.E.; Gibson, F.; Maseyk, F.; Wilson, K.A. Public Willingness to Pay for Carbon Farming and Its Co-Benefits. Ecol. Econ. 2016, 126, 125–131. [Google Scholar] [CrossRef]
- Lin, B.B.; Macfadyen, S.; Renwick, A.R.; Cunningham, S.A.; Schellhorn, N.A. Maximizing the Environmental Benefits of Carbon Farming through Ecosystem Service Delivery. Bioscience 2013, 63, 793–803. [Google Scholar] [CrossRef]
- Mondelaers, K.; Aertsens, J.; Van Huylenbroeck, G. A Meta-analysis of the Differences in Environmental Impacts between Organic and Conventional Farming. Br. Food J. 2009, 111, 1098–1119. [Google Scholar] [CrossRef]
- Brock, C.; Fließbach, A.; Oberholzer, H.; Schulz, F.; Wiesinger, K.; Reinicke, F.; Koch, W.; Pallutt, B.; Dittman, B.; Zimmer, J. Relation between Soil Organic Matter and Yield Levels of Nonlegume Crops in Organic and Conventional Farming Systems. J. Plant Nutr. Soil Sci. 2011, 174, 568–575. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, H.; Gong, Y.; Fan, M.; Yang, H.; Lal, R.; Kuzyakov, Y. Effects of 15 Years of Manure and Inorganic Fertilizers on Soil Organic Carbon Fractions in a Wheat-Maize System in the North China Plain. Nutr. Cycl. Agroecosyst. 2012, 92, 21–33. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weibull, A. The Effects of Organic Agriculture on Biodiversity and Abundance: A Meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Stockdale, E.; Lampkin, N.; Hovi, M.; Keatinge, R.; Lennartsson, E.; Macdonald, D.; Padel, S.; Tattersall, F.; Wolfe, M.; Watson, C. Agronomic and Environmental Implications of Organic Farming Systems. Adv. Agron. 2001, 70, 2001. [Google Scholar] [CrossRef]
- Gustin, G. U.S. Rice Farmers Turn Sustainability into Carbon Credits, with Microsoft as First Buyer. Inside Climate News. 2017. Available online: https://Insideclimatenews.Org/News/26062017/Agriculture-Rice-Methane-Emissions-Carbon-Trading-Microsoft-Climate-Change (accessed on 12 September 2023).
- Koper, T. FAQ: Agricultural Carbon Credit Projects; Clim Trust: Portland, OR, USA, 2014. [Google Scholar]
- Zhao, X.; Liu, S.; Pu, C.; Zhang, X.; Xue, J.; Zhang, R.; Wang, Y.; Lal, R.; Zhang, H.; Chen, F. Methane and Nitrous Oxide Emissions under No-till Farming in China: A Meta-analysis. Glob. Chang. Biol. 2016, 22, 1372–1384. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-G.; Kirschbaum, M.U.; Beedy, T.L. Carbon Sequestration and Net Emissions of CH4 and N2O under Agroforestry: Synthesizing Available Data and Suggestions for Future Studies. Agric. Ecosyst. Environ. 2016, 226, 65–78. [Google Scholar] [CrossRef]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W. Soil Carbon Sequestration to Mitigate Climate Change: A Critical Re-examination to Identify the True and the False. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- van der Werf, H.M.; Knudsen, M.T.; Cederberg, C. Towards Better Representation of Organic Agriculture in Life Cycle Assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
- Smith, L.G.; Kirk, G.J.; Jones, P.J.; Williams, A.G. The Greenhouse Gas Impacts of Converting Food Production in England and Wales to Organic Methods. Nat. Commun. 2019, 10, 4641. [Google Scholar] [CrossRef]
- Tscharntke, T.; Grass, I.; Wanger, T.C.; Westphal, C.; Batáry, P. Beyond Organic Farming–Harnessing Biodiversity-Friendly Landscapes. Trends Ecol. Evolut. 2021, 36, 919–930. [Google Scholar] [CrossRef]
- Rahmann, G.; Reza Ardakani, M.; Bàrberi, P.; Boehm, H.; Canali, S.; Chander, M.; David, W.; Dengel, L.; Erisman, J.W.; Galvis-Martinez, A.C. Organic Agriculture 3.0 Is Innovation with Research. Org. Agric. 2017, 7, 169–197. [Google Scholar] [CrossRef]
- Zoomers, A.; Van Noorloos, F.; Otsuki, K.; Steel, G.; Van Westen, G. The Rush for Land in an Urbanizing World: From Land Grabbing toward Developing Safe, Resilient, and Sustainable Cities and Landscapes. World Dev. 2017, 92, 242–252. [Google Scholar] [CrossRef]
- Gabriel, D.; Sait, S.M.; Hodgson, J.A.; Schmutz, U.; Kunin, W.E.; Benton, T.G. Scale Matters: The Impact of Organic Farming on Biodiversity at Different Spatial Scales. Ecol. Lett. 2010, 13, 858–869. [Google Scholar] [CrossRef] [PubMed]
- D’Odorico, P.; Rulli, M.C.; Dell’Angelo, J.; Davis, K.F. New Frontiers of Land and Water Commodification: Socio-environmental Controversies of Large-scale Land Acquisitions. Land Degrad. Dev. 2017, 28, 2234–2244. [Google Scholar] [CrossRef]
- Hungate, B.A.; Dukes, J.S.; Shaw, M.R.; Luo, Y.; Field, C.B. Nitrogen and Climate Change. Science 2003, 302, 1512–1513. [Google Scholar] [CrossRef]
- Meier, M.S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental Impacts of Organic and Conventional Agricultural Products—Are the Differences Captured by Life Cycle Assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Reganold, J.P.; Wachter, J.M. Organic Agriculture in the Twenty-First Century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Larsen, E.; Grossman, J.; Edgell, J.; Hoyt, G.; Osmond, D.; Hu, S. Soil Biological Properties, Soil Losses and Corn Yield in Long-Term Organic and Conventional Farming Systems. Soil Tillage Res. 2014, 139, 37–45. [Google Scholar] [CrossRef]
- Pretty, J.; Farage, P.; Ball, A. Economic Constraints to the Adoption of Carbon Farming. Can. J. Soil Sci. 2005, 85, 541–547. [Google Scholar] [CrossRef]
- Renwick, A.; Ball, A.; Pretty, J. Economic, Biological and Policy Constraints on the Adoption of Carbon Farming in Temperate Regions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1721–1740. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Kleber, M. The Contentious Nature of Soil Organic Matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Conant, R.T.; Ogle, S.M.; Paul, E.A.; Paustian, K. Measuring and Monitoring Soil Organic Carbon Stocks in Agricultural Lands for Climate Mitigation. Front. Ecol. Environ. 2011, 9, 169–173. [Google Scholar] [CrossRef]
- Jackson, R.B.; Jobbágy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; Le Maitre, D.C.; McCarl, B.A.; Murray, B.C. Trading Water for Carbon with Biological Carbon Sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef]
- Pattanayak, S.K.; McCarl, B.A.; Sommer, A.J.; Murray, B.C.; Bondelid, T.; Gillig, D.; DeAngelo, B. Water Quality Co-Effects of Greenhouse Gas Mitigation in US Agriculture. Clim. Chang. 2005, 71, 341–372. [Google Scholar] [CrossRef]
- Feng, H.; Kurkalova, L.A.; Kling, C.L.; Gassman, P.W. Transfers and Environmental Co-Benefits of Carbon Sequestration in Agricultural Soils: Retiring Agricultural Land in the Upper Mississippi River Basin. Clim. Chang. 2007, 80, 91–107. [Google Scholar] [CrossRef]
- Plantinga, A.J.; Wu, J. Co-Benefits from Carbon Sequestration in Forests: Evaluating Reductions in Agricultural Externalities from an Afforestation Policy in Wisconsin. Land Econ. 2003, 79, 74–85. [Google Scholar] [CrossRef]
- Smith, P.; Goulding, K.W.; Smith, K.A.; Powlson, D.S.; Smith, J.U.; Falloon, P.; Coleman, K. Enhancing the Carbon Sink in European Agricultural Soils: Including Trace Gas Fluxes in Estimates of Carbon Mitigation Potential. Nutr. Cycl. Agroecosyst. 2001, 60, 237–252. [Google Scholar] [CrossRef]
- Lal, R. Beyond Copenhagen: Mitigating Climate Change and Achieving Food Security through Soil Carbon Sequestration. Food Secur. 2010, 2, 169–177. [Google Scholar] [CrossRef]
- Friel, S.; Dangour, A.D.; Garnett, T.; Lock, K.; Chalabi, Z.; Roberts, I.; Butler, A.; Butler, C.D.; Waage, J.; McMichael, A.J. Public Health Benefits of Strategies to Reduce Greenhouse-Gas Emissions: Food and Agriculture. Lancet 2009, 374, 2016–2025. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Canadell, J.G.; Yu, L.; Yu, L.; Zhang, W.; Smith, P.; Fischer, T.; Huang, Y. Climate Drives Global Soil Carbon Sequestration and Crop Yield Changes under Conservation Agriculture. Glob. Chang. Biol. 2020, 26, 3325–3335. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Su, Y.; Leewis, M.-C.; Chu, Y.-X.; Wang, J.; Ma, R.-C.; Wu, D.; Zhan, L.-T.; Herriott, I.C.; Leigh, M.B. Low O2 Level Enhances CH4-Derived Carbon Flow into Microbial Communities in Landfill Cover Soils. Environ. Pollut. 2020, 258, 113676. [Google Scholar] [CrossRef]
- Six, J.; Feller, C.; Denef, K.; Ogle, S.; de Moraes Sa, J.C.; Albrecht, A. Soil Organic Matter, Biota and Aggregation in Temperate and Tropical Soils-Effects of No-Tillage. Agronomie 2002, 22, 755–775. [Google Scholar] [CrossRef]
- Smith, K.A.; Ball, T.; Conen, F.; Dobbie, K.; Massheder, J.; Rey, A. Exchange of Greenhouse Gases between Soil and Atmosphere: Interactions of Soil Physical Factors and Biological Processes. Eur. J. Soil Sci. 2003, 54, 779–791. [Google Scholar] [CrossRef]
- Adewale, C.; Reganold, J.P.; Higgins, S.; Evans, R.; Carpenter-Boggs, L. Improving Carbon Footprinting of Agricultural Systems: Boundaries, Tiers, and Organic Farming. Environ. Impact Assess. Rev. 2018, 71, 41–48. [Google Scholar] [CrossRef]
- Salas Castelo, E.M. The Role of Factors That Influence the Adoption of the Australian Carbon Farming Initiative-Emissions Reduction Fund: A Mixed Methods Study. Ph.D. Thesis, James Cook University, Douglas, Australia, 2017. [Google Scholar] [CrossRef]
- Ando, A.W.; Coppess, J.; Gramig, B.; Liu, M.; Paulson, N. The Achilles Heels of Carbon Farming: Operational Constraints on the Next Cash Crop; SSRN: Rochester, NY, USA, 2022. [Google Scholar] [CrossRef]
- Sellars, S.; Schnitkey, G.; Zulauf, C.; Swanson, K.; Paulson, N. What Questions Should Farmers Ask about Selling Carbon Credits? Farmdoc Dly. 2021, 11, 59. [Google Scholar]
- Wongpiyabovorn, O.; Plastina, A.; Crespi, J.M. Challenges to Voluntary Ag Carbon Markets. Appl. Econ. Perspect. Policy 2023, 45, 1154–1167. [Google Scholar] [CrossRef]
- Masuda, Y.J.; Harden, S.C.; Ranjan, P.; Wardropper, C.B.; Weigel, C.; Ferraro, P.J.; Reddy, S.M.; Prokopy, L.S. Rented Farmland: A Missing Piece of the Nutrient Management Puzzle in the Upper Mississippi River Basin? J. Soil Water Conserv. 2021, 76, 5A–9A. [Google Scholar] [CrossRef]
- Olson, K. Applying for CSP on Rented Land; Center for Rural Affairs: Hartington, NE, USA, 2021. [Google Scholar]
- Schnitkey, G.; Swanson, K.; Paulson, N.; Zulauf, C. Impacts of Rental Arrangements on Cover Crop and Conservation Practice Adoption. Farmdoc Dly. 2021, 11, 106. [Google Scholar]
- Guthrie, G.; Kumareswaran, D. Carbon Subsidies, Taxes and Optimal Forest Management. Environ. Resour. Econ. 2009, 43, 275–293. [Google Scholar] [CrossRef]
- Lubowski, R.N.; Plantinga, A.J.; Stavins, R.N. Land-Use Change and Carbon Sinks: Econometric Estimation of the Carbon Sequestration Supply Function. J. Environ. Econ. Manag. 2006, 51, 135–152. [Google Scholar] [CrossRef]
- Tang, K.; Kragt, M.E.; Hailu, A.; Ma, C. Carbon Farming Economics: What Have We Learned? J. Environ. Manag. 2016, 172, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.; Polasky, S.; Lewis, D.J.; Plantinga, A.J.; Lonsdorf, E.; White, D.; Bael, D.; Lawler, J.J. Efficiency of Incentives to Jointly Increase Carbon Sequestration and Species Conservation on a Landscape. Proc. Natl. Acad. Sci. USA 2008, 105, 9471–9476. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, J.; Yasué, M. Generating Carbon Finance through Avoided Deforestation and Its Potential to Create Climatic, Conservation and Human Development Benefits. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1917–1924. [Google Scholar] [CrossRef]
- Garnaut, R. The Garnaut Review 2011: Australia in the Global Response to Climate Change; Cambridge University Press: Cambridge, UK, 2011; ISBN 1-107-69168-0. [Google Scholar]
- Eigenbrod, C.; Gruda, N. Urban Vegetable for Food Security in Cities. A Review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Corry, R.C. Global and Local Policy Forces for Landscape Perennialization in Central North American Agriculture. Geogr. Tidsskr.-Dan. J. Geogr. 2016, 116, 5–13. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin III, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S. Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Cornelissen, G.; Martinsen, V.; Shitumbanuma, V.; Alling, V.; Breedveld, G.D.; Rutherford, D.W.; Sparrevik, M.; Hale, S.E.; Obia, A.; Mulder, J. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia. Agronomy 2013, 3, 256–274. [Google Scholar] [CrossRef]
- Garrity, D.P.; Akinnifesi, F.K.; Ajayi, O.C.; Weldesemayat, S.G.; Mowo, J.G.; Kalinganire, A.; Larwanou, M.; Bayala, J. Evergreen Agriculture: A Robust Approach to Sustainable Food Security in Africa. Food Secur. 2010, 2, 197–214. [Google Scholar] [CrossRef]
- Krebs, J.; Bach, S. Permaculture—Scientific Evidence of Principles for the Agroecological Design of Farming Systems. Sustainability 2018, 10, 3218. [Google Scholar] [CrossRef]
Phase Number | Activity Description |
---|---|
Phase 1 | Research database identification using Web of Science, Scopus, Google Scholars, ScienceDirect, MDPI, and Springer.com |
Phase 2 | Assessment of the research papers with relevance for the subject published in prominent journals |
Phase 3 | Removal of papers that were found irrelevant to the subject or could cause scientific incoherence |
Phase 4 | Draft the actual paper, including the relevant literature |
1st Keyword Used | 2nd Keyword Used | Number of Research Papers | |
---|---|---|---|
Initial Search | After Filtering | ||
Carbon farming | Vegetable cultivation | 855 | 46 |
Carbon sequestration | 1054 | 73 | |
Organic biochar | 723 | 21 | |
Organic conservation tillage | 162 | 7 | |
Agroforestry | 136 | 6 | |
Organic cover crops | 398 | 19 | |
Organic nutrient management | 103 | 11 | |
Organic soil management | 908 | 34 | |
Permaculture | 50 | 11 | |
Organic carbon footprint | 206 | 6 | |
Urban farming system | 218 | 12 | |
Conservation farming | 309 | 14 | |
Regenerative practices | 188 | 11 | |
Zero budget farming | 7 | 2 | |
Total number of research papers | 5317 | 273 |
COUNTRY | Percentage of Organic Agricultural Land (%) | Organic Land Area (1000 Hectares) |
---|---|---|
Liechtenstein | 40.20 | 1 |
Austria | 26.50 | 679 |
Estonia | 23.00 | 227 |
Sweden | 20.20 | 607 |
Switzerland | 17.40 | 181 |
Italy | 16.70 | 2186 |
Czech Republic | 15.80 | 558 |
Latvia | 14.80 | 291 |
Finland | 14.40 | 328 |
Slovakia | 11.70 | 223 |
Denmark | 11.40 | 300 |
Germany | 10.80 | 1802 |
Spain | 10.80 | 2635 |
Slovenia | 10.80 | 52 |
Greece | 10.10 | 535 |
EU-27 | 9.60 | 15,600 |
France | 9.60 | 2777 |
Lithuania | 8.90 | 262 |
Croatia | 8.10 | 122 |
Portugal | 7.80 | 308 |
Belgium | 7.40 | 102 |
Hungary | 5.90 | 294 |
Cyprus | 5.70 | 8 |
Luxembourg | 5.20 | 7 |
Norway | 4.60 | 45 |
Romania | 4.30 | 579 |
Netherlands | 4.20 | 76 |
Poland | 3.50 | 509 |
United Kingdom | 2.80 | 489 |
Ireland | 1.90 | 87 |
Montenegro | 1.70 | 4 |
Bulgaria | 1.70 | 86 |
Turkey | 0.90 | 328 |
Serbia | 0.70 | 24 |
Republic of North Macedonia | 0.60 | 8 |
Malta | 0.60 | 0.1 |
Kosovo | 0.50 | 2 |
Iceland | 0.40 | 6 |
Bosnia and Herzegovina | 0.10 | 2 |
Albania | 0.10 | 1 |
STRENGTHS | References | WEAKNESS | References |
The organic vegetable system uses less energy and stores higher values of C per hectare | [53,166,167] | On a production unit bases, both energy use and carbon footprint are higher in organic vegetable growing | [165,166] |
Reduced soil erosion improves soil structure and water quality, and reduces sedimentation | [168,169] | Carbon lasting/persistence and stabilization | [170] |
Reducing tillage minimizes the use of irrigation water by increasing soil water-holding capacity | [168,169] | Political, economic, and social factors | [171] |
Improves water quality and ecology | [168,169,172,173] | C sequestration may lead to a cut in food and fiber production causing higher food prices and reducing exports. | [168,169] |
Soil health upgrade | [174,175] | Heightened N2O emission | [105,176] |
Food safety | [177] | ||
Public health welfare | [178] | ||
Carbon sequestration at the soil level is a process characterized by three features: naturalness, environment friendly, and cost-effective | [31,141,179] | ||
Enhances soil CH4 oxidization capacity | [180,181,182] | ||
OPPORTUNITIES | References | THREATS | References |
Integration of SOC monitoring and Carbon footprint into the organic farming certification process | [183] | Policymakers and farmers’ divergent targets and interests | [184] |
Use of stacking environmental credits so that payments overcome costs | [185] | Unattractive carbon contracts | [186,187] |
Facilitation of carbon farming contracts for leased farmland | [188,189,190] | Land ownership and the challenge of farm leasing | [185] |
Farmers could receive payments from the government grounded in the area of land enrolled in a GHG mitigation program | [191,192,193] | ||
Biodiversity preservation | [194] | ||
Poverty mitigation | [195] | ||
Infrastructure upgrading | [196] |
A New Type of Vegetable Cultivation System | Synergy with Organic Vegetable Cultivation | Expected Outcomes | References |
---|---|---|---|
Urban farming | Make use of recycled materials sourced from the local area, such as compost produced from bio-waste | Alleviates environmental footprint and actively contributes to the development of a sustainable bioeconomy | [39] |
Supply green areas within urban environments | Adjusts temperatures, mitigates air pollution, and enhances air quality, thereby fostering healthier and sustainable urban environments in response to climate change | [37] | |
Conservation farming | Precision farming and minimum tillage, crop rotation, and residue retention | Enhances crop yield in sandy, acidic soils | [200] |
Preservation and restoration of crucial soil characteristics, including organic carbon content, structure, and biological diversity and activity | Initiates a soil quality restoration process that addresses microbiological activity and soil fauna diversity | [34] | |
Agroforestry system | Integration of trees into annual food crop systems (both perennial and annual species): trees and vegetable crops | Tree leaves offer sufficient nutrients for building and sustaining soil fertility and supplying nutrients to plants | [35,201] |
Enhance carbon storage in both above-ground and below-ground components | |||
Zero Budget Natural Farming (ZBNF) | Natural resources and implementation of diverse cropping systems, and utilizing products derived from cow dung and urine to enhance soil biology | Significant positive contribution to preserving the ecosystem and mitigating the detrimental effects caused by agrochemicals | [38] |
Permaculture | The pursuit of enhancing beneficial connections between elements to attain optimal design and harness their synergistic potential | Minimizes waste, human labor, energy, and resource inputs while establishing systems that maximize benefits and achieve high holistic integrity and resilience | [36,202] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avasiloaiei, D.I.; Calara, M.; Brezeanu, P.M.; Gruda, N.S.; Brezeanu, C. The Evaluation of Carbon Farming Strategies in Organic Vegetable Cultivation. Agronomy 2023, 13, 2406. https://doi.org/10.3390/agronomy13092406
Avasiloaiei DI, Calara M, Brezeanu PM, Gruda NS, Brezeanu C. The Evaluation of Carbon Farming Strategies in Organic Vegetable Cultivation. Agronomy. 2023; 13(9):2406. https://doi.org/10.3390/agronomy13092406
Chicago/Turabian StyleAvasiloaiei, Dan Ioan, Mariana Calara, Petre Marian Brezeanu, Nazim S. Gruda, and Creola Brezeanu. 2023. "The Evaluation of Carbon Farming Strategies in Organic Vegetable Cultivation" Agronomy 13, no. 9: 2406. https://doi.org/10.3390/agronomy13092406
APA StyleAvasiloaiei, D. I., Calara, M., Brezeanu, P. M., Gruda, N. S., & Brezeanu, C. (2023). The Evaluation of Carbon Farming Strategies in Organic Vegetable Cultivation. Agronomy, 13(9), 2406. https://doi.org/10.3390/agronomy13092406