Biological Control of Three Fungal Diseases in Strawberry (Fragaria × ananassa) with Arbuscular Mycorrhizal Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. AMF Application
2.3. Pathogen Inoculation
2.4. Determination of the Antagonist Effects against Pathogens
2.4.1. Estimation of Disease Scale and Severity
2.4.2. Determination of Plant Growth Parameters
2.4.3. Determination of Total Phenol Content and Antioxidant Activity
2.4.4. Determination of Phosphorus Content
2.4.5. Determination of AMF Activity
Determination of Mycorrhizal Dependence
Determination of AMF Colonization Rate
Determination of AMF Spore Density in Soil
2.5. Statistical Analyses
3. Results
3.1. The Effect of AMF Treatments on the Disease Severity
3.2. Effect of AMF Species Treatments on Growth in Ro-, Fo-, and Aa-Infected Plants
3.3. Effect of AMF Species Treatments on Total Phenolic Content, Antioxidant Activity, and Total Phosphorus Content in Ro-, Fo-, and Aa-Infected Plants
3.4. Evaluation of AMF Root Colonization, Spore Density, and Mycorrhizal Dependence in Ro-, Fo-, and Aa-Infected Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nguyen, V.T.; Nguyen, D.H.; Nguyen, H.V. Combination effects of calcium chloride and nano-chitosan on the postharvest quality of strawberry (Fragaria × ananassa Duch.). Postharvest Biol. Technol. 2020, 162, 111103. [Google Scholar] [CrossRef]
- Darnell, R.L.; Cantliffe, D.J.; Kirschbaum, D.S.; Chandler, C.K.; Janick, J. The physiology of flowering in strawberry. Hortic. Rev. 2010, 28, 325–345. [Google Scholar]
- Giampieri, F.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Alvarez-Suarez, J.M.; Afrin, S.; Bompadre, S.; Battino, M. Strawberry as a health promoter: An evidence based review. Food Funct. 2015, 6, 1386–1398. [Google Scholar] [CrossRef] [PubMed]
- Flores-Félix, J.D.; Velázquez, E.; García-Fraile, P.; González-Andrés, F.; Silva, L.R.; Rivas, R. Rhizobium and Phyllobacterium bacterial inoculants increase bioactive compounds and quality of strawberries cultivated in field conditions. Food Res. Int. 2018, 111, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Voća, S.; Žlabur, J.Š.; Dobričević, N.; Jakobek, L.; Šeruga, M.; Galić, A.; Pliestić, S. Variation in the bioactive compound content at three ripening stages of strawberry fruit. Molecules 2014, 19, 10370–10385. [Google Scholar] [CrossRef]
- FAO. Available online: https://www.fao.org/faostat/en/#home (accessed on 18 April 2020).
- Balcı, G. The effects of melatonin applications on the intake of some mineral elements in strawberries under alkaline stress conditions. Anadolu J. Agric. Sci. 2022, 37, 97–112. [Google Scholar]
- Tüik. Available online: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (accessed on 15 May 2020).
- Demirer-Durak, E.; Demirci, E. Anastomosis groups and pathogenicity of Rhizoctonia species from strawberry plants in Erzurum province, Turkey. Fresenius Environ. Bull. 2018, 27, 4206–4211. [Google Scholar]
- Kesimci, T.G.; Durak, E.D.; Demirci, E. Rhizoctonia species from strawberry plants in Erzincan, Turkey: Anastomosis groups and pathogenicity. J. Anim. Plant Sci. 2022, 32, 721–728. [Google Scholar]
- Maas, J.L. Compendium of Strawberry Diseases, 2nd ed.; APS Press: Beltsville, MD, USA, 1998; 138p. [Google Scholar]
- Hancock, J.F. Strawberries; CABI Publishing, University Press: Cambridge, UK, 1999; 273p. [Google Scholar]
- Martin, S.B. Identification, isolation frequency, and pathogenicity of anastomosis groups of binucleate Rhizoctonia spp. from strawberry roots. Phytopathology 1988, 78, 379–384. [Google Scholar] [CrossRef]
- Botha, A.; Denman, S.; Lamprecht, S.C.; Mazzola, M.; Crous, P.W. Characterization and pathogenicity of Rhizoctonia isolates associated with black root rot of strawberries in the Western Cape Province, South Africa. Australas. Plant Pathol. 2003, 35, 195–201. [Google Scholar] [CrossRef]
- LaMondia, J.A. Interaction of Pratylenchus penetrans and Rhizoctonia fragariae in strawberry black root rot. J. Nematol. 2003, 35, 17. [Google Scholar] [PubMed]
- Manici, L.M.; Caputo, F.; Baruzzi, G. Additional experiences to elucidate then microbial component of soil suppressivenes towards strawberry black root rot complex. Ann. Appl. Biol. 2005, 146, 421–431. [Google Scholar] [CrossRef]
- Molot, P.M.; Ferrière, H. Susceptibility of Strawberry Cultivars to Rhizoctonia solani and R. fragariae as Influenced by Inoculation Technique, Seasonal Variations and Physiological Condition of the Plants. In Proceedings of the International Strawberry Symposium, Cesena, Italy, 22–27 May 1988. [Google Scholar]
- Demirer-Durak, E.; Demirci, E. Pathogenicity of Fusarium species isolated from strawberry plants in Erzurum province. Plant Prot. Bull. 2014, 54, 247–253. [Google Scholar]
- Patil, J.S.; Suryawanshi, N.S. Fruit rot of strawberry caused by Alternaria alternata control using homoeopathic medicines. Int. J. Pharm. Sci. Invent. 2014, 3, 57–58. [Google Scholar]
- Dinler, H.; Benlioglu, S.; Benlioglu, K. Occurrence of Fusarium wilt caused by Fusarium oxysporum on strawberry transplants in Aydın Province in Turkey. Australas. Plant Dis. Notes 2016, 11, 10. [Google Scholar] [CrossRef]
- Ceja-Torres, L.F.; Mora-Aguilera, G.; Mora-Aguilera, A. Agronomical management influence on the spatiotemporal progress of strawberry dry wilt in Michoacan, Mexico. Afr. J. Agric. Res. 2014, 9, 513–520. [Google Scholar]
- Juber, K.S.; Al-Juboory, H.H.; Al-Juboory, S.B. Fusarium wilt disease of strawberry caused by Fusarium oxysporum f. sp. fragariae in Iraq and its control. J. Exp. Biol. Agric. 2014, 2, 419–427. [Google Scholar]
- Errifi, A.; Touhamı, A.O.; Mouden, N.; El Batnan, A.M.; El Hazzat, N.; Selmaoui, K.; Douira, A. Pathogenicity of Rhizoctonia solani towards distinct varieties of cultivated strawberry plants in Morocco. Plant Cell Biotechnol. Mol. Biol. 2019, 20, 1086–1099. [Google Scholar]
- Rao, G.S.; Reddy, N.N.R.; Surekha, C. Induction of plant systemic resistance in Legumes Cajanus cajan, Vigna radiata, Vigna mungo against plant pathogens Fusarium oxysporum and Alternaria alternata—A Trichoderma viride mediated reprogramming of plant defense mechanism. Int. J. Recent Sci. Res. 2015, 6, 4270–4280. [Google Scholar]
- Mouden, N.; Benkirane, R.; Ouazzani Touhami, A.; Douira, A. Fungal species associated with collapsed strawberry plants cultivated in strawberries plantations in Morocco. Int. J. Curr. Res. 2016, 8, 29108–29117. [Google Scholar]
- Youssef, S.A.; Tartoura, K.A.; Abdelraouf, G.A. Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biol. Control 2016, 100, 79–86. [Google Scholar] [CrossRef]
- Sekmen Cetinel, A.H.; Gokce, A.; Erdik, E.; Cetinel, B.; Cetinkaya, N. The Effect of Trichoderma citrinoviride treatment under salinity combined to Rhizoctonia solani infection in strawberry (Fragaria x ananassa Duch.). Agronomy 2021, 11, 1589. [Google Scholar] [CrossRef]
- Durak Demirer, E. Anastomosis Groups, Pathogenicity and Biological Control of Rhizoctonia Species Isolated from Strawberry Plants in Erzurum Province. Ph.D. Thesis, Ataturk University, Institute of Natural and Applied Sciences, Erzurum, Turkey, 2011. [Google Scholar]
- Ragab, M.M.; Ashour, A.M.A.; Abdel-Kader, M.M.; El-Mohamady, R.; Abdel-Aziz, A. In vitro evaluation of some fungicides alternatives against Fusarium oxysporum the causal of wilt disease of pepper (Capsicum annum L.). Int. J. Agric. Forest 2012, 2, 70–77. [Google Scholar]
- Li, N.; Wang, C.; Li, X.; Liu, M. Effects of earthworms and arbuscular mycorrhizal fungi on preventing Fusarium oxysporum infection in the strawberry plant. Plant Soil 2019, 443, 139–153. [Google Scholar] [CrossRef]
- Pandit, M.A.; Kumar, J.; Gulati, S.; Bhandari, N.; Mehta, P.; Katyal, R.; Kaur, J. Major biological control strategies for plant pathogens. Pathogens 2022, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Vierheilig, H. Regulatory mechanisms during the plant arbuscular mycorrhizal fungus interaction. Can. J. Bot. 2004, 82, 1166–1176. [Google Scholar] [CrossRef]
- Bona, E.; Lingua, G.; Manassero, P.; Cantamessa, S.; Marsano, F.; Todeschini, V.; Berta, G. AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 2015, 25, 181–193. [Google Scholar] [CrossRef]
- Kurokura, T.; Hıraıde, S.; Shımamura, Y.; Yamane, K. PGPR improves yield of strawberry species under less-fertilized conditions. Environ. Control Biol. 2017, 55, 121–128. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Sas-Paszt, L.; Mikiciuk, M.; Derkowska, E.; Trzciński, P.; Głuszek, S.; Rudnicka, J. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza 2019, 29, 489–501. [Google Scholar] [CrossRef]
- Lazcano, C.; Boyd, E.; Holmes, G.; Hewavitharana, S.; Pasulka, A.; Ivors, K. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci. Rep. 2021, 11, 3188. [Google Scholar] [CrossRef]
- López-García, Á.; Azcón-Aguilar, C.; Barea, J.M. The interactions between plant life form and fungal traits of arbuscular mycorrhizal fungi determine the symbiotic community. Oecologia 2014, 176, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Siddiqui, Z.; Wiemken, A. Arbuscular mycorrhizal fungi and Rhizobium to control plant fungal diseases. In Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 263–292. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: London, UK, 1997; pp. 9–161. [Google Scholar]
- Boyno, G.; Demir, S. Plant-mycorrhiza communication and mycorrhizae in inter-plant communication. Symbiosis 2022, 86, 155–168. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Cano, C.; Bago, A.; Ruiz-Lozano, J.M. A gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding a binding protein is up-regulated by drought stress in some mycorrhizal plants. Environ. Exp. Bot. 2007, 60, 251–256. [Google Scholar] [CrossRef]
- Sharon, M.; Freeman, S.; Kuninaga, S.; Sneh, B. Genetic diversity, anastomosis groups and virulence of Rhizoctonia spp. from strawberry. Eur. J. Plant Pathol. 2007, 117, 247–265. [Google Scholar] [CrossRef]
- Matsubara, Y.; Hirano, I.; Sassa, D.; Koshikawa, K. Increased tolerance to Fusarium wilt in mycorrhizal strawberry plants raised by capillary watering methods. Environ. Control Biol. 2004, 42, 185–191. [Google Scholar] [CrossRef]
- Zhao, X.; Zhen, W.; QI, Y.; Liu, X.; Yin, B. Coordinated effects of root autotoxic substances and Fusarium oxysporum Schl. f. sp. fragariae on the growth and replant disease of strawberry. Front. Agric. China 2009, 3, 34–39. [Google Scholar] [CrossRef]
- Nam, M.H.; Park, M.S.; Kim, H.G.; Yoo, S.J. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. J. Microbiol. Biotechnol. 2009, 19, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Muyolo, N.G.; Lıpps, P.E.; Schmıtthenner, A.F. Reactions of dry bean, lima bean, and soybean cultivars to Rhizoctonia root and hypocotyl rot and web blight. Plant Dis. 1993, 77, 234–238. [Google Scholar] [CrossRef]
- Townsend, G.K.; Heuberger, J.W. Methods for estimating losses caused by diseases in fungicide experiments. Plant Dis. Rep. 1943, 27, 340–343. [Google Scholar]
- Kacar, B. Practice Guide of Plant Nutrition; Ankara University, Publications of Agricultural Faculty: Ankara, Turkey, 1984. [Google Scholar]
- Swain, T.; Hillis, W. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Barton, C.J. Photometric analysis of phosphate rock. Anal. Biochem. 1948, 20, 1068–1073. [Google Scholar] [CrossRef]
- Declerck, S.; Plenchette, C.; Strullu, D. Mycorrhizal dependency of banana (Musa acuminata, AAA group) cultivar. Plant Soil. 1995, 176, 183–187. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Gerdemann, J.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Zambolim, L.; Schenck, N.C. Reduction of the effects of pathogenic, root-infecting fungi on soybean by the mycorrhizal fungus, Glomus mosseae. Phytopathology 1983, 73, 1402–1405. [Google Scholar] [CrossRef]
- Bayözen, A.; Yildiz, A. Determination of mycorrhizae interactions and pathogenicity of Rhizoctonia solani Kühn isolated from strawberry and Xanthium strumarium. Turk. J. Biol. 2009, 33, 53–57. [Google Scholar] [CrossRef]
- Turhan, P.; Demir, S. The effects of some biological control agents against black root rot disease (Rhizoctonia solani Kühn.) on strawberry. Turk. J. Biol. Control 2013, 4, 125–140. [Google Scholar]
- Srisakaram, K.; Lumyong, S. Effects of vesicular arbuscular mycorrhizae on growth and resistance to Rhizoctonia fragariae of strawberry. Philipp J. Biotechnol. 1995, 6, 56–57. [Google Scholar]
- Mazur, S.; Nadziakiewicz, M.; Kurzawińska, H.; Nawrocki, J. Effectiveness of mycorrhizal fungi in the protection of juniper, rose, yew and highbush blueberry against Alternaria alternata. Folia Hortic. 2019, 31, 117–127. [Google Scholar] [CrossRef]
- Matrood, A.A.; Khrieba, M.I.; Okon, O.G. Synergistic interaction of Glomus mosseae and Trichoderma harzianum in the induction of systemic resistance of Cucumis sativus L. to Alternaria alternata (Fr.). Plant Sci. Today 2020, 7, 101–108. [Google Scholar] [CrossRef]
- Grabowski, M.A.; Louws, F.J.; Fernandez, G.E. Use of VA mycorrhizae in annual strawberry production systems. Phytopathology 1999, 88, S29. [Google Scholar]
- Sharma, M.P.; Adholeya, A. Effect of arbuscular mycorrhizal fungi and phosphorus fertilization on the post vitro growth and yield of micropropagated strawberry grown in a sandy loam soil. Can. J. Bot. 2004, 82, 322–328. [Google Scholar] [CrossRef]
- Boyraz, N.; Sürel, B. Roles of phenolics in plant diseases resistance. Selçuk Univ. Agric. Fac. J. 2004, 18, 56–69. [Google Scholar]
- Rabie, G.H. Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi. Mycopathologia 1998, 141, 159–166. [Google Scholar] [CrossRef]
- Şavur, O.B. The Effects of Arbuscular Mycorrhizal Fungi (AMF) and Salicylic Acid Applications Against Crown and Root Rot Disease (Fusarium oxysporum f.sp. radicis- lycopersici Jarvis & Shoemaker) on the Some of Growth and Yield Parameters and Disease Severity of Tomato (Solanum lycopersicum L.) Plant. Ph.D. Thesis, Van Yuzuncu Yil University, Institute of Natural and Applied Sciences, Van, Turkey, 2015. [Google Scholar]
- Boyno, G.; Demir, S.; Rezaee Danesh, Y. Effects of some biological agents on the growth and biochemical parameters of tomato plants infected with Alternaria solani (Ellis & Martin) Sorauer. Eur. J. Plant Pathol. 2022, 162, 19–29. [Google Scholar]
- Hayman, D.S. Practical aspects of vesicular arbuscular mycorrhiza. In Advances in Agricultural Microbiology; Subba Rao, N.S., Ed.; Butterworths: London, UK, 1982; p. 325. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Demir, S. Studies on the Formation of Vesicular—Arbuscular Mycorrhizae (VAM) in Some Culture Plants and It’s Role on Plant Growth and Resistance Against Plant Pathogens. Ph.D. Thesis, Ege University, Institute of Natural and Applied Sciences, İzmir, Turkey, 1998. [Google Scholar]
- Hassan Dar, G.H.; Zargar, M.Y.; Beigh, G.M. Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L.) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb. Ecol. 1997, 34, 74–80. [Google Scholar] [CrossRef]
- Akköprü, A.; Demir, S. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J. Phytopathol. 2005, 153, 544–550. [Google Scholar] [CrossRef]
- Yao, M.; Tweddell, R.; Desilets, H. Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 2002, 12, 235–242. [Google Scholar]
- Mirmajlessi, S.M.; Bahram, M.; Mänd, M.; Najdabbasi, N.; Mansouripour, S.; Loit, E. Survey of soil fungal communities in strawberry fields by Illumina amplicon sequencing. Eurasian Soil Sci. 2018, 51, 682–691. [Google Scholar] [CrossRef]
- St-Arnaud, M.; Hamel, C.; Caron, M.; Fortin, J.A. Inhibition of Pythium ultimum in roots and growth substrate of mycorrhizal Tagetes patula colonized with Glomus intraradices. Can. J. Plant Pathol. 1994, 16, 187–194. [Google Scholar] [CrossRef]
- Mark, G.L.; Cassells, A.C. Genotype-dependence in the interaction between Glomus fistulosum, Phytophthora fragariae and the wild strawberry (Fragaria vesca). Plant Soil 1996, 185, 233–239. [Google Scholar] [CrossRef]
- Taïbi, K.; del Campo, A.D.; Mulet, J.M.; Flors, J.; Aguado, A. Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions. New For. 2014, 45, 603–624. [Google Scholar] [CrossRef]
- Mulet, J.M.; Porcel, R.; Yenush, L. Modulation of potassium transport to increase abiotic stress tolerance in plants. J. Exp. Bot. 2023, erad333, in press. [Google Scholar] [CrossRef] [PubMed]
Treatments | |||
---|---|---|---|
Non-Pathogen | Pathogen | ||
R. fragariae | F. oxysporum | A. alternata | |
NC | Rf | Fo | Aa |
Gm | Rf + Gm | Fo + Gm | Aa + Gm |
Fm | Rf + Fm | Fo + Fm | Aa + Fm |
Gm + Fm | Rf + Gm + Fm | Fo + Gm + Fm | Aa + Gm + Fm |
Treatments | Disease Severity (%) | ||
---|---|---|---|
R. fragariae (Rf) | F. oxysporum (Fo) | A. alternata (Aa) | |
PC | 81.25 ± 11.96 b* | 50.00 ± 5.77 b | 42.50 ± 7.50 b |
Gm | 20.00 ± 0.01 a | 30.00 ± 5.77 a | 20.00 ± 0.01 a |
Fm | 20.00 ± 0.01 a | 25.00 ± 0.01 a | 20.00 ± 0.01 a |
Gm + Fm | 20.00 ± 0.01 a | 25.00 ± 0.01 a | 20.00 ± 0.01 a |
Treatments | Plant Fresh Weight (g) | Plant Dry Weight (g) | Plant Length (cm) | |
---|---|---|---|---|
NC | 6.05 ± 0.68 c* | 1.30 ± 0.12 c | 23.00 ± 0.16 c | |
Gm | 13.06 ± 0.38 a | 3.49 ± 0.21 a | 37.25 ± 0.47 a | |
Non-pathogen | Fm | 8.17 ± 0.52 b | 2.51 ± 0.10 b | 38.50 ± 0.95 a |
Gm + Fm | 8.34 ± 0.75 b | 1.87 ± 0.18 bc | 29.25 ± 2.28 b | |
Rf | 3.86 ± 0.27 c | 0.51 ± 0.01 c | 10.75 ± 1.25 d | |
Rf + Gm | 7.79 ± 0.23 b | 1.50 ± 0.09 b | 31.50 ± 2.46 b | |
R. fragariae | Rf + Fm | 7.30 ± 0.25 b | 1.40 ± 0.07 b | 26.25 ± 1.54 c |
Rf + Gm + Fm | 10.50 ± 1.31 a | 2.86 ± 0.07 a | 34.50 ± 1.75 a | |
Fo | 4.75 ± 0.29 c | 1.07 ± 0.33 b | 28.50 ± 3.70 c | |
Fo + Gm | 9.41 ± 1.10 b | 2.25 ± 0.28 a | 38.25 ± 2.01 a | |
F. oxysporum | Fo + Fm | 12.27 ± 0.92 a | 2.71 ± 0.06 a | 35.75 ± 1.93 a |
Fo + Gm + Fm | 11.08 ± 0.52 a | 2.70 ± 0.16 a | 34.50 ± 1.44 b | |
Aa | 4.10 ± 0.59 c | 1.08 ± 0.11 c | 27.75 ± 2.05 c | |
Aa + Gm | 9.96 ± 0.26 b | 2.18 ± 0.15 b | 32.75 ± 1.31 b | |
A. alternata | Aa + Fm | 12.55 ± 0.87 ab | 2.41 ± 0.12 ab | 37.50 ± 1.75 ab |
Aa + Gm + Fm | 13.13 ± 1.15 a | 2.68 ± 0.19 a | 41.00 ± 1.47 a |
Treatment Comparison | Student’s t-Test | ||
---|---|---|---|
Plant Fresh Weight (g) | Plant Dry Weight (g) | Plant Length (cm) | |
Nc/Rf | 19.05 ** | 6.76 ** | 8.59 ** |
Gm/Rf + Gm | 60.47 ** | 34.33 ** | 9.05 ** |
Fm/Rf + Fm | 11.43 ** | 14.46 ** | 7.80 ** |
Gm + Fm/Rf + Gm + Fm | −14.85 ** | −13.48 ** | −4.38 ** |
Nc/Fo | 9.42 ** | 2.18 ns | −4.23 ** |
Gm/Fo + Gm | 60.47 ** | 34.33 ** | 9.05 ** |
Fm/Fo + Fm | −52.46 ** | −3.29 * | 1.20 ns |
Gm + Fm/Fo + Gm + Fm | −43.58 ** | −11.96 ** | −6.41 ** |
Nc/Aa | 21.69 ** | 2.73 * | −3.54 * |
Gm/Aa + Gm | 44.64 ** | 24.50 ** | 5.21 ** |
Fm/Aa + Fm | −27.54 ** | 0.84 ns | 1.60 ns |
Gm + Fm/Aa + Gm + Fm | −49.68 ** | −10.37 ** | −13.21 ** |
Treatments | Total Phenolic Content (725 nm) (mg ga/100 g) | Total Phenolic Content (700 nm) (mg ga/100 g) | Total Antioxidant Content (593 nm) (µmol TE/g) | P Content (ppm) | |
---|---|---|---|---|---|
Non-pathogen | NC | 6.00 ± 1.01 c* | 6.00 ± 0.99 c | 1.44 ± 0.11 b | 2731.24 ± 172.01 c |
Gm | 16.60 ± 0.89 b | 16.00 ± 0.96 b | 7.95 ± 1.65 a | 4038.87 ± 118.88 b | |
Fm | 19.83 ± 2.31 a | 19.70 ± 2.34 a | 8.90 ± 1.23 a | 4172.23 ± 103.52 b | |
Gm + Fm | 18.10 ± 2.04 a | 18.00 ± 2.03 a | 9.26 ± 0.85 a | 4892.87 ± 319.69 a | |
R. fragariae | Rf | 16.30 ± 1.46 b | 16.23 ± 1.44 b | 10.36 ± 0.27 b | 3196.79 ± 154.36 c |
Rf + Gm | 18.33 ± 0.34 a | 18.36 ± 0.35 a | 10.59 ± 0.09 a | 4532.94 ± 167.56 b | |
Rf + Fm | 19.03 ± 0.53 a | 19.00 ± 0.46 a | 10.40 ± 1.03 a | 4735.77 ± 194.66 b | |
Rf + Gm + Fm | 18.23 ± 0.71 a | 18.06 ± 0.65 a | 10.45 ± 0.30 a | 5018.33 ± 152.85 a | |
F. oxysporum | Fo | 10.80 ± 0.76 b | 10.70 ± 0.77 b | 10.07 ± 0.19 b | 3089.94 ± 193.31 c |
Fo + Gm | 22.36 ± 0.40 a | 22.40 ± 0.44 a | 13.41 ± 0.32 a | 4428.51 ± 201.05 b | |
Fo + Fm | 25.86 ± 1.25 a | 25.76 ± 1.28 a | 13.57 ± 0.26 a | 4255.40 ± 289.61 b | |
Fo + Gm + Fm | 21.23 ± 1.82 a | 21.26 ± 1.86 a | 13.84 ± 0.29 a | 4940.94 ± 173.92 a | |
A. alternata | Aa | 17.63 ± 1.06 c | 17.56 ± 1.01 c | 9.02 ± 0.39 c | 3611.20 ± 225.27 c |
Aa + Gm | 21.06 ± 0.28 b | 21.13 ± 0.27 b | 12.73 ± 0.47 bc | 3760.45 ± 203.44 b | |
Aa + Fm | 22.93 ± 0.14 b | 23.16 ± 0.30 b | 12.87 ± 0.22 bc | 3823.94 ± 263.82 b | |
Aa + Gm + Fm | 25.90 ± 0.97 a | 25.76 ± 0.97 a | 14.75 ± 0.81 b | 4855.79 ± 325.27 a |
Treatment Comparison | Total Phenolic Content (725 nm) Student’s t-Test | Total Phenolic Content (700 nm) Student’s t-Test | Total Antioxidant Content (593 nm) Student’s t-test | P Content Student’s t-Test |
---|---|---|---|---|
Nc/Rf | −126.45 ** | −125.46 ** | −80.80 ** | −8.87 * |
Gm/Rf + Gm | −9.14 ** | −10,14 ** | −24.01 ** | −10.03 * |
Fm/Rf + Fm | 6.94 * | 8.56 * | −9.55 ** | −7.37 ** |
Gm + Fm/Rf + Gm + Fm | −2.07 ns | −0.68 ns | −11.62 ** | −1.95 ns |
Nc/Fo | −51.03 ** | −49.93 ** | −98.77 ** | −8.83 * |
Gm/Fo + Gm | −9.13 ** | −10.14 ** | −24.01 ** | −11.69 ** |
Fm/Fo + Fm | −45.45 ** | 59.61 ** | −30.36 ** | −1.58 ns |
Gm + Fm/Fo + Gm + Fm | −50.61 ** | −52.76 ** | −38.17 ** | −0.68 ns |
Nc/Aa | −107.20 ** | −109.85 ** | −72.05 ** | −38.11 ** |
Gm/Aa + Gm | −23.37 ** | 21.71 ** | −35.90 ** | 8.24 ** |
Fm/Aa + Fm | −27.20 ** | −45.71 ** | −24.81 ** | 3.17 * |
Gm + Fm/Aa + Gm + Fm | −184.94 ** | −208.06 ** | −29.79 ** | 0.29 ns |
Treatments | Mycorrhizal Root Colonization (%) | Spore Density (spores/g) | Mycorrhizal Dependency | |
---|---|---|---|---|
Non-Pathogen | Gm | 63.38 ± 2.28 a | 52.35 ± 1.56 a | +62.75 |
Fm | 64.17 ± 2.60 a | 53.05 ± 1.20 a | +48.20 | |
Gm + Fm | 57.33 ± 1.72 a | 46.45 ± 1.78 a | +30.48 | |
R. fragariae | Rf + Gm | 50.10 ± 2.16 a | 41.26 ± 1.68 a | +66.00 |
Rf + Fm | 55.66 ± 3.67 a | 38.80 ± 1.37 a | +63.57 | |
Rf + Gm + Fm | 53.84 ± 1.76 a | 39.00 ± 1.49 a | +82.16 | |
F. oxysporum | Fo + Gm | 55.63 ± 2.62 a | 33.07 ± 1.27 b* | +52.44 |
Fo + Fm | 57.68 ± 1.03 a | 62.92 ± 4.26 a | +60.51 | |
Fo + Gm + Fm | 55.12 ± 2.39 a | 32.25 ± 0.65 b | +60.37 | |
A. alternata | Aa + Gm | 56.50 ± 1.11 a | 31.47 ± 1.06 b | +50.45 |
Aa + Fm | 57.80 ± 2.17 a | 31.52 ± 0.91 b | +55.18 | |
Aa + Gm + Fm | 50.31 ± 1.60 a | 40.27 ± 2.81 a | +59.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir, S.; Durak, E.D.; Güneş, H.; Boyno, G.; Mulet, J.M.; Rezaee Danesh, Y.; Porcel, R. Biological Control of Three Fungal Diseases in Strawberry (Fragaria × ananassa) with Arbuscular Mycorrhizal Fungi. Agronomy 2023, 13, 2439. https://doi.org/10.3390/agronomy13092439
Demir S, Durak ED, Güneş H, Boyno G, Mulet JM, Rezaee Danesh Y, Porcel R. Biological Control of Three Fungal Diseases in Strawberry (Fragaria × ananassa) with Arbuscular Mycorrhizal Fungi. Agronomy. 2023; 13(9):2439. https://doi.org/10.3390/agronomy13092439
Chicago/Turabian StyleDemir, Semra, Emre Demirer Durak, Hasret Güneş, Gökhan Boyno, José M. Mulet, Younes Rezaee Danesh, and Rosa Porcel. 2023. "Biological Control of Three Fungal Diseases in Strawberry (Fragaria × ananassa) with Arbuscular Mycorrhizal Fungi" Agronomy 13, no. 9: 2439. https://doi.org/10.3390/agronomy13092439
APA StyleDemir, S., Durak, E. D., Güneş, H., Boyno, G., Mulet, J. M., Rezaee Danesh, Y., & Porcel, R. (2023). Biological Control of Three Fungal Diseases in Strawberry (Fragaria × ananassa) with Arbuscular Mycorrhizal Fungi. Agronomy, 13(9), 2439. https://doi.org/10.3390/agronomy13092439