Estimation of Plant Height and Biomass of Rice Using Unmanned Aerial Vehicle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Data Collection and Processing
2.3.1. In Situ Data Collection
2.3.2. Multispectral Data Pre-Processing and Analysis
2.3.3. Vegetation Index Construction
2.3.4. Dimensionality Reduction in Data
2.4. Model Construction and Accuracy Evaluation
2.4.1. ELM
2.4.2. PSO-ELM
2.4.3. BPNN
2.4.4. Accuracy Evaluation
3. Results
3.1. Characteristics of Situ Data Changes
3.1.1. Statistical Analysis of Plant Height and Biomass
3.1.2. Characteristics of Plant Height Changes in Different Treatments
3.1.3. Variation in Biomass Composition between Irrigation Treatments
3.2. Correlation Analysis of Spectral Index with Rice Plant Height and Biomass
3.3. Factor Analysis Dimensionality Reduction
3.4. Inverse Results of Rice Plant Height and Biomass from Different Models
3.5. Validation of Rice Plant Height and Biomass Accuracy for Different Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halder, D.; Saha, J.K.; Biswas, A. Accumulation of Essential and Non-Essential Trace Elements in Rice Grain: Possible Health Impacts on Rice Consumers in West Bengal, India. Sci. Total Environ. 2020, 706, 135944. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, Y.; Mao, W.; Sui, H.; Yong, L.; Yang, D.; Jiang, D.; Zhang, L.; Gong, Y. Dietary Cadmium Exposure Assessment among the Chinese Population. PLoS ONE 2017, 12, e0177978. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, J.; Zhang, W.; Cui, Z.; Ma, W.; Chen, X.; Jiang, R. Nutrient Use Efficiencies of Major Cereal Crops in China and Measures for Improvement. Acta Pedol. Sin. 2008, 45, 915–924. [Google Scholar]
- Xiaotang, J.; Liu, X.; Zou, G.; Wang, Z.; Zhang, F. Evaluation of Nitrogen Loss Way in Winter Wheat and Summer Maize Rotation System. Sci. Agric. Sin. 2002, 35, 1493–1499. [Google Scholar]
- Yan, X.; Jin, J.; He, P.; Liang, M. Recent Advances in Technology of Increasing Fertilizer Use Efficiency. Sci. Agric. Sin. 2008, 41, 450–459. [Google Scholar]
- Ma, G.X.; Yu, F.; Cao, D.; Niu, K. Calculation of Agricultural Non-Point Source Pollution Emission in China and Its Long-Term Forecast. Acta Sci. Circumstantiae 2012, 32, 489–497. [Google Scholar]
- Chen, Y.; Zhai, T.; Wang, F.; Shi, M.; Gao, X. Effects of Nitrogen Fertilizer on Greenhouse Gas Emissions and Maize Yield in Yellow Soils. J. Southwest Univ. Nat. Sci. Ed. 2022, 44, 37–47. [Google Scholar]
- Chen, X.; Strokal, M.; Kroeze, C.; Supit, I.; Wang, M.; Ma, L.; Chen, X.; Shi, X. Modeling the Contribution of Crops to Nitrogen Pollution in the Yangtze River. Environ. Sci. Technol. 2020, 54, 11929–11939. [Google Scholar] [CrossRef]
- Fu, Y.-Y.; Wang, J.-H.; Yang, G.-J.; Song, X.-Y.; Xu, X.-G.; Feng, H.-K. Band Depth Analysis and Partial Least Square Regression Based Winter Wheat Biomass Estimation Using Hyperspectral Measurements. Spectrosc. Spectr. Anal. 2013, 33, 1315–1319. [Google Scholar] [CrossRef]
- Adeluyi, O.; Oluseun; Harris, A.; Foster, T.; Clay, G.D. Exploiting Centimetre Resolution of Drone-Mounted Sensors for Estimating Mid-Late Season above Ground Biomass in Rice. Eur. J. Agron. 2022, 132, 126411. [Google Scholar] [CrossRef]
- Thi Phan, A.T.; Takahashi, K.; Rikimaru, A.; Higuchi, Y. Method for Estimating Rice Plant Height without Ground Surface Detection Using Laser Scanner Measurement. J. Appl. Remote Sens. 2016, 10, 046018. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, Z.; Peng, J.; Huang, Y.; Li, J.; Zhang, J.; Yang, B.; Liao, X. Estimating Maize above-Ground Biomass Using 3D Point Clouds of Multi-Source Unmanned Aerial Vehicle Data at Multi-Spatial Scales. Remote Sens. 2019, 11, 2678. [Google Scholar] [CrossRef]
- Li, S.; Xu, D.; Fan, K.; Chen, J.; Tong, X.; Xin, X.; Wang, X. Research of Grassland Aboveground Biomass Inversion Based on Uav and Satellite Remoting Sensing. Remote Sens. Technol. Appl. 2022, 37, 272–278. [Google Scholar]
- Guo, X.-Y.; Li, K.; Shao, Y.; Lopez-Sanchez, J.M.; Wang, Z.-Y. Inversion of Rice Height Using Multitemporal Tandem-X Polarimetric Interferometry Sar Data. Spectrosc. Spectr. Anal. 2020, 40, 878–884. [Google Scholar]
- Sun, S.; Liu, L.; Hu, Z.; Yu, X. Inversion Method of Sugarcane Plant Height Based on Sentinel-1a Dual-Polarization Time Series Data. Trans. Chin. Soc. Agric. Mach. 2022, 53, 186–194. [Google Scholar]
- Wu, S.; Yang, P.; Ren, J.; Chen, Z.; Liu, C.; Li, H. Winter Wheat Lai Inversion Considering Morphological Characteristics at Different Growth Stages Coupled with Microwave Scattering Model and Canopy Simulation Model. Remote Sens. Environ. 2020, 240, 111681. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, E.; Li, Z.; Zhao, L.; Ji, Y.; Zhang, Y.; Liu, Z. Rape (Brassica napus L.) Growth Monitoring and Mapping Based on Radarsat-2 Time-Series Data. Remote Sens. 2018, 10, 206. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Horneck, D.A.; Spinelli, C.B.; Turner, R.W.; Bruce, A.E.; Gadler, D.J.; Brungardt, J.J.; Hamm, P.B. Monitoring Nitrogen Status of Potatoes Using Small Unmanned Aerial Vehicles. Precis. Agric. 2018, 19, 314–333. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y.; Dai, C.; Fang, S.; Gong, Y.; Wu, X.; Zhu, R.; Liu, K. Remote Prediction of Yield Based on Lai Estimation in Oilseed Rape under Different Planting Methods and Nitrogen Fertilizer Applications. Agric. For. Meteorol. 2019, 271, 116–125. [Google Scholar] [CrossRef]
- Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-Based Multispectral Remote Sensing for Precision Agriculture: A Comparison between Different Cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Luo, S.; Jiang, X.; Yang, K.; Li, Y.; Fang, S. Multispectral Remote Sensing for Accurate Acquisition of Rice Phenotypes: Impacts of Radiometric Calibration and Unmanned Aerial Vehicle Flying Altitudes. Front. Plant Sci. 2022, 13, 958106. [Google Scholar] [CrossRef] [PubMed]
- Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef]
- Han, S.; Zhao, Y.; Cheng, J.; Zhao, F.; Yang, H.; Feng, H.; Li, Z.; Ma, X.; Zhao, C.; Yang, G. Monitoring Key Wheat Growth Variables by Integrating Phenology and Uav Multispectral Imagery Data into Random Forest Model. Remote Sens. 2022, 14, 3723. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Chang, L.; Qin, Y.; Chen, J.; Qin, Y.; Du, J.; Yi, S.; Wang, Y. Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 851. [Google Scholar] [CrossRef]
- Sharma, P.; Leigh, L.; Chang, J.; Maimaitijiang, M.; Caffe, M. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning. Sensors 2022, 22, 601. [Google Scholar] [CrossRef]
- Priya, S.; Shibasaki, R. National Spatial Crop Yield Simulation Using Gis-Based Crop Production Model. Ecol. Model. 2001, 136, 113–129. [Google Scholar] [CrossRef]
- Narmilan, A.; Gonzalez, F.; Salgadoe, A.S.A.; Kumarasiri, U.W.L.M.; Weerasinghe, H.A.S.; Kulasekara, B.R. Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from Uav Multispectral Imagery. Remote Sens. 2022, 14, 1140. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Q.; Shang, J.; Liu, C.; Zhuang, T.; Ding, J.; Xian, Y.; Zhao, L.; Wang, W.; Zhou, G.; et al. UAV- and Machine Learning-Based Retrieval of Wheat Spad Values at the Overwintering Stage for Variety Screening. Remote Sens. 2021, 13, 5166. [Google Scholar] [CrossRef]
- Ye, H.; Huang, W.; Huang, S.; Cui, B.; Dong, Y.; Guo, A.; Ren, Y.; Jin, Y. Identification of Banana Fusarium Wilt Using Supervised Classification Algorithms with UAV-Based Multi-Spectral Imagery. Int. J. Agric. Biol. Eng. 2020, 13, 136–142. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 25–29 July 2004. [Google Scholar]
- Feng, Y.; Hao, W.; Li, H.; Cui, N.; Gong, D.; Gao, L. Machine Learning Models to Quantify and Map Daily Global Solar Radiation and Photovoltaic Power. Renew. Sustain. Energy Rev. 2020, 118, 109393. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W. Prediction of Rainfall Time Series Using Modular Soft Computing Methods. Eng. Appl. Artif. Intell. 2013, 26, 997–1007. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, K.; Zhou, Y.; Wang, Z.; Qiao, J.; Wang, Y.; Fan, X.; Nong, Y.; Zi, W. Prediction of Cooling Moisture Content after Cut Tobacco Drying Process Based on a Particle Swarm Optimization-Extreme Learning Machine Algorithm. Math. Biosci. Eng. 2021, 18, 2496–2507. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Wang, Z.; Luo, L.; Ren, C. Integrating Avhrr and Modis Data to Monitor Ndvi Changes and Their Relationships with Climatic Parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 528–536. [Google Scholar] [CrossRef]
- Melillos, G.; Hadjimitsis, D.G. Detecting Underground Structures in Vegetation Indices Time Series Using Histograms. In Proceedings of the Conference on Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXV, Online, 27 April–8 May 2020. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the Modis Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xu, L.Y.; Xie, X.D.; Li, S. Correlation Analysis of the Urban Heat Island Effect and the Spatial and Temporal Distribution of Atmospheric Particulates Using Tm Images in Beijing. Environ. Pollut. 2013, 178, 102–114. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Themistocleous, K.; Hadjimitsis, D.G. Detecting Underground Structures in Vegetation Indices (Msr, Rdvi, Osavi, Irg) Time Series Using Histograms. In Proceedings of the 8th International Conference on Remote Sensing and Geoinformation of the Environment (RSCy), Paphos, Cyprus, 16–18 March 2020. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from Eos-Modis. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Miura, T.; Huete, A.R.; Yoshioka, H. Evaluation of Sensor Calibration Uncertainties on Vegetation Indices for Modis. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1399–1409. [Google Scholar] [CrossRef]
- Blackburn, G.A. Spectral Indices for Estimating Photosynthetic Pigment Concentrations: A Test Using Senescent Tree Leaves. Int. J. Remote Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A Broad-Band Leaf Chlorophyll Vegetation Index at the Canopy Scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Gong, P.; Pu, R.L.; Biging, G.S.; Larrieu, M.R. Estimation of Forest Leaf Area Index Using Vegetation Indices Derived from Hyperion Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1355–1362. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Zou, Y.; Ma, C. Dynamic Change of Red Edge Vegetation Index within a Growth Cycle in Arid Area under Coal Mining Stress. J. China Coal Soc. 2021, 46, 1508–1520. [Google Scholar]
- Dash, J.; Curran, P.J. The Meris Terrestrial Chlorophyll Index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Feng, W.; Wu, Y.; He, L.; Ren, X.; Wang, Y.; Hou, G.; Wang, Y.; Liu, W.; Guo, T. An Optimized Non-Linear Vegetation Index for Estimating Leaf Area Index in Winter Wheat. Precis. Agric. 2019, 20, 1157–1176. [Google Scholar] [CrossRef]
- Xue, L.H.; Cao, W.X.; Luo, W.H.; Dai, T.B.; Zhu, Y. Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance. Agron. J. 2004, 96, 135–142. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Gao, H.; Huang, G.-B.; Song, S.; You, K. Trends in Extreme Learning Machines: A Review. Neural Netw. 2015, 61, 32–48. [Google Scholar]
- Yiguo, X.; Bai, C.; Qiu, D.; Kong, F.; Li, Z. Predicting Rockburst with Database Using Particle Swarm Optimization and Extreme Learning Machine. Tunn. Undergr. Space Technol. 2020, 98, 103287. [Google Scholar]
- Haibo, L.; Zou, D.; Li, Z.; Khan, M.J.; Lu, Y. Dynamic Evaluation of Drilling Leakage Risk Based on Fuzzy Theory and PSO-SVR Algorithm. Future Gener. Comput. Syst. Int. J. Escience 2019, 95, 454–466. [Google Scholar]
- Zhang, Z.; Tan, C.; Xu, C.; Chen, S.; Han, W.; Li, Y. Retrieving Soil Moisture Content in Field Maize Root Zone Based on UAV Multispectral Remote Sensing. Trans. Chin. Soc. Agric. Mach. 2019, 50, 246–257. [Google Scholar]
- Zhu, H.; Tang, Z.; Shi, A.; Wen, T.; Wen, C.; Xue, H.; Wang, X. Effects of Irrigation Patterns and Combined Application of Organic Fertilizer on Rice Yield, Photosynthetic Characteristics and Nitrogen Use Efficiency. Soils 2022, 54, 700–707. [Google Scholar]
- Zhu, Y.; Song, B.; Yang, W.; Zhang, Y.; Gao, Z.; Chen, X. Effects of Reduced Nitrogen Application on Rice Growth, Yield and Economy Profits under Dry Farming Conditions. Ecol. Environ. Sci. 2021, 30, 2150–2156. [Google Scholar]
- Kangjing, L.; Wang, X.; Lin, W.; Chen, Z.; Li, Y. Advancement in Physioecological Studies on Yield Formation in Rice (Oryza sativa L.). Chin. J. Eco Agric. 2002, 10, 59–61. [Google Scholar]
- Van Der Straeten, D.; Zhou, Z.Y.; Prinsen, E.; Van Onckelen, H.A.; Van Montagu, M.C. A Comparative Molecular-Physiological Study of Submergence Response in Lowland and Deepwater Rice. Plant Physiol. 2001, 125, 955–968. [Google Scholar] [CrossRef] [PubMed]
- Stempliuk, S.; Menotti, D. Agriculture Multispectral UAV Image Registration Using Salient Features and Mutual Information. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Sun, G.; Huang, W.; Chen, P.; Gao, S.; Wang, X. Advances in Uav-Based Multispectral Remote Sensing Applications. Trans. Chin. Soc. Agric. Mach. 2018, 49, 1–17. [Google Scholar]
- Sauter, M. Rice in Deep Water: How to Take Heed against a Sea of Troubles. Naturwissenschaften 2000, 87, 289–303. [Google Scholar] [CrossRef]
- Lavery, M.R.; Acharya, P.; Sivo, S.A.; Xu, L. Number of Predictors and Multicollinearity: What Are Their Effects on Error and Bias in Regression? Commun. Stat. Simul. Comput. 2019, 48, 27–38. [Google Scholar] [CrossRef]
Test Treatment | Test Facilities | Process Number | Repeat | Water Level | Nitrogen Application kg/hm2 | Deep Percolation mm/d | Measurement Indicators |
---|---|---|---|---|---|---|---|
IN | Potted plants | W1 | 8 | 80~85% Field Moisture Capacity | 225 | 3 | Plant height Biomass |
W2 | 8 | 3~5 cm | 225 | 3 | |||
W3 | 8 | 15~20 cm | 225 | 3 | |||
NN | Soil pit method | S1N1 | 6 | 3~5 cm | 0 | 3 | Plant height |
S1N2 | 6 | 3~5 cm | 150 | 3 | |||
S1N3 | 6 | 3~5 cm | 225 | 3 | |||
S1N4 | 6 | 3~5 cm | 300 | 3 | |||
S1N5 | 6 | 3~5 cm | 375 | 3 | |||
S2N1 | 6 | 3~5 cm | 0 | 5 | |||
S2N2 | 6 | 3~5 cm | 150 | 5 | |||
S2N3 | 6 | 3~5 cm | 225 | 5 | |||
S2N4 | 6 | 3~5 cm | 300 | 5 | |||
S2N5 | 6 | 3~5 cm | 375 | 5 |
Spectral Indices | Calculation Formula | Reference |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | NDVI = (B5 − B4)/(B5 + B4) | [34] |
Ratio Vegetation Index (RVI) | RVI = B5/B4 | [35] |
Enhanced Vegetation Index (EVI) | EVI = 2.5 × (B5 − B4)/(B5 + 6 × B4 − 7.5 × B2 + 1) | [36] |
Difference Vegetation Index (DVI) | DVI = B5 − B4 | [37] |
Renormalized Difference Vegetation Index (RDVI) | RDVI = (B5 − B4)/Sqrt(B5 − B4) | [38] |
Green Normalized Difference Vegetation Index (GNDVI) | GNDVI = (B5 − B3)/(B5 + B3) | [39] |
Optimized Soil-Adjusted Vegetation Index (OSAVI) | OSAVI = (B5 − B4)/(B5 + B4 + 0.16) | [40] |
Atmospherically Resistant Vegetation Index (ARVI) | ARVI = (B5 − 2 × B4 + B2)/(B5 + 2 × B4 + B2) | [41] |
Structure Insensitive Pigment Index (SIPI) | SIPI = (B5 − B2)/(B5 − B4) | [42] |
Chlorophyll Index (CIgreen) | CIgreen = (B5/B2) − 1 | [43] |
Chlorophyll Index (CIred edge) | CIred edge = (B5/B4) − 1 | [44] |
Chlorophyll vegetation index (CVI) | CVI = B5 × B3/B22 | [45] |
Green Index (GI) | GI = B2/B3 | [36] |
Modified Chlorophyll Absorption Reflectance Vegetation Index (MCARI) | MCARI = (B4 − B3)−0.2 × (B4 − B2)/(B4/B3) | [46] |
Modified Non-linear Vegetation Index (MNVI) | MNVI = 1.5 × (B52 − B3)/(B52 + B3 + 0.5) | [47] |
Modified Simple Ratio Index (MSR) | MSR = B5/B3 − 1/Sqrt(B5/B3 + 1) | [48] |
MERIS Terrestrial Chlorophyll Index (MTCI) | MTCI = (B5 − B4)/(B4 − B3) | [49] |
Non-linear Vegetation Index (NLI) | NLI = (B52 − B3)/(B52 + B3) | [50] |
Ratio Vegetation Index2 (RVI2) | RVI2 = RVI = B5/B2 | [51] |
Modified Soil-Adjusted Vegetation Index (MSAVI) | MSAVI = (2 × B4 + 1 − Sqrt(2 × (2 × B4 + 1)−8 × (b4 − b3)))/2 | [51] |
Second Modified Triangular Vegetation Index (MTVI) | MTVI = 1.5 × (1.2 × (NIR-Green) − 2.5 × (Red-Green))Sqrt((2 × NIR + 1)² − (6 × NIR-5 Sqrt (Red)) − 0.5) | [51] |
Transformed Chlorophyll Absorption in Reflectance Index (TCARI) | TCARI = 3((B4 − B3) − 0.2 × B4/B3) | [52] |
Treatment | Number of Samples | Max | Min | Average | Standard Deviation | |
---|---|---|---|---|---|---|
JB | JB-Hi | 24 | 85.5 | 78.3 | 81.8 | 2.10 |
JB-Hn | 60 | 84.75 | 76.5 | 81.3 | 1.65 | |
HF | HF-Hi | 24 | 100 | 91 | 96.4 | 2.46 |
HF-Hn | 60 | 95.1 | 83.8 | 89.4 | 2.78 | |
HF-Bi | 24 | 49.60 | 42.62 | 45.66 | 2.27 | |
MM | MM-Hi | 24 | 101.2 | 90.7 | 95.7 | 2.6 |
MM-Hn | 60 | 97.4 | 77.6 | 90.79 | 4.2 | |
MM-Bi | 24 | 79.46 | 45.04 | 57.37 | 10.24 |
Spectral index | Correlation Coefficient (JB-H) | Spectral Index | Correlation Coefficient (HF-H) | Spectral Index | Correlation Coefficient (MM-H) |
---|---|---|---|---|---|
Band3 | −0.256 ** | TCARI | 0.694 *** | Band2 | 0.494 *** |
Clred edge | 0.328 *** | SIPI | −0.586 *** | Band3 | 0.442 *** |
Clgreen | 0.216 ** | RVI2 | −0.633 *** | Band4 | 0.537 *** |
Band2 | −0.254 ** | MTVI | 0.575 *** | Band5 | 0.502 *** |
Band4 | −0.301 | MCARI | 0.504 *** | DVI | 0.407 *** |
ARVI | 0.225 ** | Band4 | 0.691 *** | MACRI | 0.503 *** |
MSR | 0.266 ** | GNDVI | 0.732 *** | MNVI | 0.344 *** |
TCARI | −0.469 *** | ARVI | 0.512 *** | MSAVI | 0.324 *** |
RVI2 | 0.216 ** | Clgreen | −0.633 *** | MTVI | 0.369 *** |
NDVI | 0.238 ** | Clred edge | −0.48 *** | NLI | 0.346 *** |
MCARI | −0.373 *** | EVI | 0.454 *** | TCARI | 0.46 *** |
Spectral Index | Correlation Coefficient (HF-B) | Spectral Index | Correlation Coefficient (MM-B) |
---|---|---|---|
Band5 | 0.559 *** | Band3 | 0.389 * |
TCARI | 0.568 *** | RVI1 | −0.424 ** |
Band2 | 0.351 * | TCARI | 0.565 *** |
Band4 | 0.616 *** | MCARI | 0.649 *** |
RDVI | 0.434 ** | MTCI | −0.55 *** |
EVI | 0.458 ** | MSR | −0.392 * |
MCARI | 0.491 | GI | −0.439 * |
DVI | 0.564 | CIred edge | −0.519 *** |
MSAVI | 0.385 * | Band4 | 0.886 *** |
MNVI | 0.504 ** | Band5 | 0.433 ** |
JB | HF | MM | |
---|---|---|---|
Irrigation treatment | >189 | >95 | >75 |
Nitrogen application | >15 | >10 | >140 |
Model | Inverse Indicator | Training Set | Testing Set | RPD | ||
---|---|---|---|---|---|---|
Rc2 | RMSEc | Rv2 | RMSEv | |||
ELM | JB-H | 0.54 | 0.58 | 0.68 | 0.69 | 1.48 |
HF-H | 0.81 | 0.07 | 0.82 | 0.01 | 2.36 | |
MM-H | 0.89 | 0.06 | 0.83 | 0.09 | 2.39 | |
HF-B | 0.69 | 3.55 | 0.75 | 1.76 | 2.02 | |
MM-B | 0.86 | 3.91 | 0.84 | 2.47 | 2.50 | |
BPNN | JB-H | 0.26 | 0.53 | 0.27 | 0.85 | 1.17 |
HF-H | 0.70 | 0.04 | 0.76 | 0.77 | 2.03 | |
MM-H | 0.72 | 0.03 | 0.79 | 0.52 | 2.17 | |
HF-B | 0.64 | 0.27 | 0.71 | 2.06 | 1.59 | |
MM-B | 0.65 | 2.42 | 0.61 | 6.29 | 1.59 | |
PSO-ELM | JB-H | 0.43 | 1.30 | 0.47 | 1.95 | 1.37 |
HF-H | 0.74 | 2.12 | 0.83 | 1.99 | 2.46 | |
MM-H | 0.75 | 2.17 | 0.79 | 2.83 | 2.19 | |
HF-B | 0.82 | 1.08 | 0.82 | 1.08 | 2.33 | |
MM-B | 0.97 | 1.61 | 0.94 | 6.53 | 4.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, E.; Shao, G.; Zhu, X.; Zhang, W.; Dai, Y.; Lu, J. Estimation of Plant Height and Biomass of Rice Using Unmanned Aerial Vehicle. Agronomy 2024, 14, 145. https://doi.org/10.3390/agronomy14010145
Song E, Shao G, Zhu X, Zhang W, Dai Y, Lu J. Estimation of Plant Height and Biomass of Rice Using Unmanned Aerial Vehicle. Agronomy. 2024; 14(1):145. https://doi.org/10.3390/agronomy14010145
Chicago/Turabian StyleSong, Enze, Guangcheng Shao, Xueying Zhu, Wei Zhang, Yan Dai, and Jia Lu. 2024. "Estimation of Plant Height and Biomass of Rice Using Unmanned Aerial Vehicle" Agronomy 14, no. 1: 145. https://doi.org/10.3390/agronomy14010145
APA StyleSong, E., Shao, G., Zhu, X., Zhang, W., Dai, Y., & Lu, J. (2024). Estimation of Plant Height and Biomass of Rice Using Unmanned Aerial Vehicle. Agronomy, 14(1), 145. https://doi.org/10.3390/agronomy14010145