Enhancing the Propagation and Cultivation Framework of Greek Rosa canina L. Germplasm via Sustainable Management Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greek Rosa canina Germplasm
2.2. Asexual Propagation
2.3. Experimental Cultivation of Four Rosa canina Genotypes under Distinct Fertilization Regimes
2.4. Determination of Rosehip Fruit Size Growth Patterns and Yield of Cultivated Greek Rosa canina Genotypes
2.5. Determination of Macro- and Micro-Elements in the Leaves of Cultivated Greek Rosa canina Genotypes
2.6. Statistical Analysis
3. Results
3.1. Asexual Propagation of Greek Rosa canina Germplasm
3.2. Rosehip Development Patterns and Yield of Greek Rosa canina Genotypes as Affected by Fertilization
3.3. Inorganic Element Content in Leaves of Greek Rosa canina Genotypes as Affected by Fertilization
4. Discussion
4.1. Asexual Propagation of Greek Rosa canina Germplasm
4.2. Rosehip Development Patterns and Yield of Cultivated Greek Rosa canina Genotypes
4.3. Inorganic Element Content in Leaves of Greek Rosa canina Genotypes as Affected by Fertilization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, climate change and sustainability: The case of EU-28. Ecol. Indic. 2019, 105, 525–543. [Google Scholar] [CrossRef]
- Czyżewski, B.; Matuszczak, A.; Miśkiewicz, R. Public goods versus the farm price-cost squeeze: Shaping the sustainability of the EU’s common agricultural policy. Technol. Econ. Dev. 2019, 25, 82–102. [Google Scholar] [CrossRef]
- Rokicki, T.; Perkowska, A.; Klepacki, B.; Bórawski, P.; Bełdycka-Bórawska, A.; Michalski, K. Changes in energy consumption in agriculture in the EU countries. Energies 2021, 14, 1570. [Google Scholar] [CrossRef]
- Rossi, R.; The EU Fruit and Vegetable Sector: Main Features, Challenges and Prospects. EPRS: European Parliamentary Research Service. Belgium. 2019. Available online: https://policycommons.net/artifacts/1335181/the-eu-fruit-and-vegetable-sector/1941483/ (accessed on 20 September 2023).
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Muluneh, M.G. Impact of climate change on biodiversity and food security: A global perspective—A review article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Baldermann, S.; Blagojevic, L.; Frede, K.; Klopsch, R.; Neugart, S.; Neumann, A.; Ngwene, B.; Norkeweit, J.; Schröter, D.; Schröter, A.; et al. Are neglected plants the food for the future? Crit. Rev. Plant Sci. 2016, 35, 106–119. [Google Scholar] [CrossRef]
- FAO. Promoting Neglected and Underutilized Crop Species. 2017. Available online: http://www.fao.org/news/story/en/item/1032516/icode/ (accessed on 5 September 2023).
- Singh, A.; Dubey, P.K.; Chaurasia, R.; Dubey, R.K.; Pandey, K.K.; Singh, G.S.; Abhilash, P.C. Domesticating the undomesticated for global food and nutritional security: Four steps. Agronomy 2019, 9, 491. [Google Scholar] [CrossRef]
- Hunter, D.; Borelli, T.; Beltrame, D.M.; Oliveira, C.N.; Coradin, L.; Wasike, V.W.; Wasilwa, L.; Mwai, J.; Manjella, A.; Samarasinghe, G.W.L.; et al. The potential of neglected and underutilized species for improving diets and nutrition. Planta 2019, 250, 709–729. [Google Scholar] [CrossRef]
- Libiad, M.; Khabbach, A.; El Haissoufi, M.; Anestis, I.; Lamchouri, F.; Bourgou, S.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Greveniotis, V.; Tsiripidis, I.; et al. Agro-alimentary potential of the neglected and underutilized local endemic plants of Crete (Greece), Rif-Mediterranean coast of Morocco and Tunisia: Perspectives and challenges. Plants 2021, 10, 1770. [Google Scholar] [CrossRef]
- Bourgou, S.; Ben Haj Jilani, I.; Karous, O.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Libiad, M.; Khabbach, A.; El Haissoufi, M.; Lamchouri, F.; Greveniotis, V.; et al. Medicinal-cosmetic potential of the local endemic plants of Crete (Greece), Northern Morocco and Tunisia: Priorities for conservation and sustainable exploitation of neglected and underutilized phytogenetic resources. Biology 2021, 10, 1344. [Google Scholar] [CrossRef]
- Maloupa, E.; Karapatzak, E.; Ganopoulos, I.; Karydas, A.; Papanastasi, K.; Kyrkas, D.; Yfanti, P.; Nikisianis, N.; Zahariadis, A.; Kosma, I.S.; et al. Molecular authentication, phytochemical evaluation and asexual propagation of wild-growing Rosa canina L. (Rosaceae) genotypes of northern Greece for sustainable exploitation. Plants 2021, 10, 2634. [Google Scholar] [CrossRef] [PubMed]
- Karapatzak, E.; Dichala, O.; Papanastasi, K.; Manthos, I.; Ganopoulos, I.; Karydas, A.; Badeka, A.V.; Kosma, I.S.; Kyrkas, D.; Yfanti, P.; et al. A multifaceted evaluation approach for Greek native neglected and underutilized forest fruit trees and shrubs as natural sources of antioxidants: Consolidating the framework for their sustainable agronomic exploitation. Plants 2023, 12, 1642. [Google Scholar] [CrossRef] [PubMed]
- Strid, A. Mountain Flora of Greece, Volume 1; Cambridge University Press: Cambridge, UK, 1986; pp. 387–399. ISBN 9780748602070. [Google Scholar]
- Ayati, Z.; Amiri, M.S.; Ramezani, M.; Delshad, E.; Sahebkar, A.; Emami, S.A. Phytochemistry, traditional uses and pharmacological profile of rose hip: A review. Curr. Pharm. Des. 2018, 24, 4101–4124. [Google Scholar] [CrossRef] [PubMed]
- Paunović, D.; Kalušević, A.; Petrović, T.; Urošević, T.; Djinović, D.; Nedović, V.; Popović-Djordjević, J. Assessment of chemical and antioxidant properties of fresh and dried rosehip (Rosa canina L.). Not. Bot. Horti Agrobot. 2018, 47, 108–113. [Google Scholar] [CrossRef]
- Gruenwald, J.; Uebelhack, R.; Moré, M.I. Rosa canina–Rose hip pharmacological ingredients and molecular mechanics counteracting osteoarthritis–A systematic review. Phytomedicine 2019, 60, 152958. [Google Scholar] [CrossRef] [PubMed]
- Kerasioti, E.; Apostolou, A.; Kafantaris, I.; Chronis, K.; Kokka, E.; Dimitriadou, C.; Tzanetou, E.N.; Priftis, A.; Koulocheri, S.D.; Haroutounian, S.A.; et al. Polyphenolic composition of Rosa canina, Rosa sempervivens and Pyrocantha coccinea extracts and assessment of their antioxidant activity in human endothelial cells. Antioxidants 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Tastekin, B.; Çiftci, G. Antioxidant capacity and antibacterial potential of rosehip (Rosa canina) fruits grown. J. Anatol. Environ. Animal Sci. 2023, 8, 103–109. [Google Scholar] [CrossRef]
- Comino, E.; Marengo, P. Root tensile strength of three shrub species: Rosa canina, Cotoneaster dammeri and Juniperus horizontalis: Soil reinforcement estimation by laboratory tests. Catena 2010, 82, 227–235. [Google Scholar] [CrossRef]
- Sariyildiz, T.; Savaci, G. Ability of green cover from sainfoin (Onobrychis viciifolia Scop.) and dog rose (Rosa canina L.) to control erosion and improve soil organic carbon and nitrogen stocks in terraces of Northwest Turkey. Euro-Mediterr. J. Environ. Integr. 2020, 5, 1–15. [Google Scholar] [CrossRef]
- Slavov, A.; Vasileva, I.; Stefanov, L.; Stoyanova, A. Valorization of wastes from the rose oil industry. Rev. Environ. Sci. Biotechnol. 2017, 16, 309–325. [Google Scholar] [CrossRef]
- Črnivec, I.G.O.; Muri, P.; Djinović, P.; Pintar, A. Biogas production from spent rose hips (Rosa canina L.): Fraction separation, organic loading and co-digestion with N-rich microbial biomass. Bioresour. Technol. 2014, 171, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Blythe, E.K.; Sibley, J.L.; Tilt, K.M.; Ruter, J.M. Methods of auxin application in cutting propagation: A Review of 70 Years of Scientific Discovery and Commercial Practice. J. Environ. Hortic. 2007, 25, 166–185. [Google Scholar] [CrossRef]
- Hassanpour, H.; Ali Shiri, M. Propagation of Iranian cornelian cherry (Cornus mas L.) by rooted stem cuttings. Not. Sci. Biol. 2014, 6, 192–195. [Google Scholar] [CrossRef]
- Pradeep Kumar, K.; Prabhat Kumar, D.; Pradipta Kumar, M.; Pratap Chandra, P. Effect of auxins on rooting of stem cuttings in Hypericum gaitii. J. Herbs Spices Medic. Plants 2020, 26, 423–434. [Google Scholar] [CrossRef]
- Izadi, Z.; Zarei, H.; Alizadeh, M. Studies on vegetative propagation of Rosa canina. Indian J. Hort. 2012, 69, 598–601. Available online: https://www.researchgate.net/publication/289199400_Studies_on_vegetative_propagation_of_Rosa_canina (accessed on 5 October 2023).
- Shidiki, A.A.; Ambebe, T.F.; Mendi, A.G. A comparative evaluation of Indole-3-Butyric Acid and plant extracts as potential rooting enhancers in cuttings of Vitex diversifolia and Cordia milleneii. Int. J. For. Anim. Fish. Res. 2019, 3, 154–159. [Google Scholar] [CrossRef]
- Rajan, R.P.; Singh, G. A review on the use of organic rooting substances for propagation of horticulture crops. Plant Arch. 2021, 21, 685–692. [Google Scholar] [CrossRef]
- Pacholczak, A.; Jędrzejuk, A.; Sobczak, M. Shading and natural rooting biostimulator enhance potential for vegetative propagation of dogwood plants (Cornus alba L.) via stem cuttings. S. Afr. J. Bot. 2017, 109, 34–41. [Google Scholar] [CrossRef]
- Monder, M.J.; Pacholczak, A. Polyphenolic acid changes in stem cuttings of Rosa cultivars in relation to phenological stage and rooting enhancers. Agronomy 2023, 13, 1405. [Google Scholar] [CrossRef]
- Aishwarya, P.P.; Seenivasan, N.; Naik, D.S. Coconut water as a root hormone: Biological and chemical composition and applications. Pharma Innov. 2022, 11, 1678–1681. [Google Scholar] [CrossRef]
- Yong, J.W.H.; Ge, L.; Ng, Y.F.; Tan, S.N. The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 2009, 14, 5144–5164. [Google Scholar] [CrossRef] [PubMed]
- Sharrif Moghaddasi, M.; Verma, S.K. Aloe vera their chemicals composition and applications: A review. Int. J. Biol. Med. Res. 2011, 2, 466–471. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5f796a1687d765f8fea948aa68ab653d53ab3bcb (accessed on 9 December 2023).
- Koshila Ravi, R.; Muthukumar, T. Perspectives on the role of arbuscular mycorrhizal fungi in the in vivo vegetative plant propagation. In Biofertilizers for Sustainable Agriculture and Environment; Giri, B., Prasad, R., Wu, Q.S., Varma, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 55, pp. 83–107. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from Past Successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef] [PubMed]
- Karapatzak, E.; Papagrigoriou, T.; Papanastasi, K.; Dichala, O.; Karydas, A.; Nikisianis, N.; Patakioutas, G.; Lazari, D.; Krigas, N.; Maloupa, E. From the wild to the field: Documentation, propagation, pilot cultivation, fertilization, and phytochemical evaluation of the neglected and underutilized Amelanchier ovalis Medik. (Rosaceae). Plants 2023, 12, 1142. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.J.; General Guidelines for Organic Crop Production. University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, EDIS, Gainesville, FL, USA. 2004. Available online: https://ufdc.ufl.edu/ir00000276/00001 (accessed on 15 September 2023).
- Gaskell, M.; Smith, R.; Mitchell, J.; Koike, S.T.; Fouche, C.; Hartz, T.; Horwath, W.; Jackson, L. Soil fertility management for organic crops. UC ANR Publ. 2007, 7249. [Google Scholar] [CrossRef]
- Demirkiran, A.R.; Cengiz, M.C. Effects of different organic materials and chemical fertilizers on nutrition of pistachio (Pistacia vera L.) in organic arboriculture. Afr. J. Biotechnol. 2010, 9, 6320–6328. Available online: https://www.ajol.info/index.php/ajb/article/view/92254 (accessed on 1 October 2023).
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Kai, T.; Adhikari, D. Effect of organic and chemical fertilizer application on apple nutrient content and orchard soil condition. Agriculture 2021, 11, 340. [Google Scholar] [CrossRef]
- Hu, Y.; Zhan, P.; Thomas, B.W.; Zhao, J.; Zhang, X.; Yan, H.; Zhang, Z.; Chen, S.; Shi, X.; Zhang, Y. Organic carbon and nitrogen accumulation in orchard soil with organic fertilization and cover crop management: A global meta-analysis. Sci. Total Environ. 2022, 852, 158402. [Google Scholar] [CrossRef]
- Karagiannis, E.; Michailidis, M.; Skodra, C.; Molassiotis, A.; Tanou, G. Silicon influenced ripening metabolism and improved fruit quality traits in apples. Plant Physiol. Biochem. 2021, 166, 270–277. [Google Scholar] [CrossRef]
- Scagel, C.F. Changes in cutting composition during early stages of adventitious rooting of miniature rose altered by inoculation with arbuscular mycorrhizal fungi. J. Amer. Soc. Hort. Sci. 2004, 129, 624–634. [Google Scholar] [CrossRef]
- Aryan, S.; Gulab, G.; Safi, Z.; Durani, A.; Raghib, M.G.; Kakar, K.; Zahid, T.; Baber, B.M.; Ahlawat, Y.K.; Moussa, I.M.; et al. Enhancement of propagation using organic materials and growth hormone: A study on the effectiveness of growth and rooting of pomegranate cuttings. Horticulturae 2023, 9, 999. [Google Scholar] [CrossRef]
- Arrobas, M.; Ribeiro, A.; Barreales, D.; Pereira, E.L.; Rodrigues, M.Â. Soil and foliar nitrogen and boron fertilization of almond trees grown under rainfed conditions. Europ. J. Agron. 2019, 106, 39–48. [Google Scholar] [CrossRef]
- Sete, P.B.; Comin, J.J.; Ciotta, M.N.; Salume, J.A.; Thewes, F.; Brackmann, A.; Toselli, M.; Nava, G.; Rozane, D.E.; Loss, A.; et al. Nitrogen fertilization affects yield and fruit quality in pear. Sci. Hortic. 2019, 258, 108782. [Google Scholar] [CrossRef]
- Solhjoo, S.; Gharaghani, A.; Fallahi, E. Calcium and potassium foliar sprays affect fruit skin color, quality attributes, and mineral nutrient concentrations of ‘Red Delicious’ apples. Int. J. Fruit Sci. 2017, 17, 358–373. [Google Scholar] [CrossRef]
- Kuzin, A.; Solovchenko, A. Essential role of potassium in apple and its implications for management of orchard fertilization. Plants 2021, 10, 2624. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012; ISBN 978-0-12-384905-2. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.; Nagarajan, L.; Roy, A.; Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 2015, 51, 897–911. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Schulin, R.; Chaney, R.L.; Daneshbakhsh, B.; Afyuni, M. Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agron. Sustain. Dev. 2010, 30, 83–107. [Google Scholar] [CrossRef]
- Li, Y.-M.; Elson, M.; Zhang, D.; He, Z.; Sicher, R.C.; Baligar, V. Macro and micro nutrient uptake parameters and use efficiency in cacao genotypes as influenced by levels of soil applied K. Int. J. Plant Soil Sci. 2015, 7, 80–90. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Papadakis, I.E.; Papaioannou, A.; Chatzissavvidis, C.; Giannakoula, A. Comparative study effects between manure application and a controlled-release fertilizer on the growth, nutrient uptake, photosystem II activity and photosynthetic rate of Olea europaea L. (cv. ‘Koroneiki’). Sci. Hortic. 2020, 264, 109176. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Garcia-Franco, N.; Almagro, M.; Ruiz-Navarro, A.; Albaladejo, J.; de Aguilar, J.M.; Gonzalez, D.; Querejeta, J.I. Decreased foliar nitrogen and crop yield in organic rainfed almond trees during transition from reduced tillage to no-tillage in a dryland farming system. Europ. J. Agron. 2013, 49, 149–157. [Google Scholar] [CrossRef]
GR-1-BBGK-19,674 | ||||||
---|---|---|---|---|---|---|
Rooting Enhancer | Root Number | Average Root Length (mm) | % Rooting | |||
Apical Cuttings | Sub-Apical Cuttings | Apical Cuttings | Sub-Apical Cuttings | Apical Cuttings | Sub-Apical Cuttings | |
Control | 5.80 (±0.90) abc | 4.83 (±0.81) c | 4.156 (±0.387) ab | 3.415 (±0.253) bc | 50.0 (±9.2) bc | 40.0 (±9.1) bcde |
IBA (2500 ppm) | 8.21 (±0.47) a | 8.20 (±1.12) a | 3.786 (±0.250) bc | 3.928 (±0.292) ab | 80.0 (±7.4) a | 50.0 (±9.2) bc |
BIOSHELL ZFE (0.2% w/v) | 6.00 (±1.47) abc | 4.00 (±1.48) c | 2.154 (±0.819) c | 3.757 (±0.797) bc | 13.3(±6.3) e | 16.6 (±6.9) de |
Coconut water (75%) | 4.33 (±0.65) c | 6.50 (±1.06) abc | 5.346 (±0.685) a | 4.156 (±0.387) ab | 60.0 (±9.1) ab | 26.6 (±8.2) cde |
IBA 0.25% | 4.46 (±0.52) c | 7.89 (±1.29) ab | 3.672 (±0.412) bc | 3.641 (±0.360) bc | 43.3 (±9.2) bcd | 30.0 (±8.5) cde |
Rizobac | 6.85 (±1.13) abc | 6.00 (±0.84) abc | 3.141 (±0.378) bc | 3.287 (±0.288) bc | 43.3 (±9.2) bcd | 33.3 (±8.7) bcde |
GR-1-BBGK-19,674 | ||||||
---|---|---|---|---|---|---|
Rooting Enhancer | Root Number | Average Root Length (mm) | % Rooting | |||
1 Peat:3 Perlite | 1 Peat:3 Perlite + Mycorrhizae | 1 Peat:3 Perlite | 1 Peat:3 Perlite + Mycorrhizae | 1 Peat:3 Perlite | 1 Peat:3 Perlite + Mycorrhizae | |
Control | 4.00 (±1.30) ab | 4.29 (±1.50) ab | 1.429 (±0.714) a | 1.619 (±0.415) a | 25.0 (±9.9) bcd | 35.0 (±10.9) bc |
Coconut water (75%) | 3.50 (±0.77) ab | 2.50 (±0.50) ab | 1.125 (±0.217) a | 0.958 (±0.208) a | 40.0 (±11.2) bc | 10.0 (±6.8) d |
IBA (2500 ppm) | 5.63 (±0.89) ab | 6.60 (±0.79) a | 1.521 (±0.163) a | 1.642 (±0.243) a | 80.0 (±9.1) a | 50.0 (±11.4) b |
Rizobac | 1.67 (±0.66) b | 0.733 (±0.145) a | 00.0 (±0.0) e | 15.0 (±8.1) cd | ||
Rooting gel | 4.09 (±0.73) ab | 2.75 (±0.85) ab | 0.740 (±0.113) a | 1.104 (±0.490) a | 50.0 (±11.4) b | 20.0 (±9.1) cd |
GR-1-BBGK-19,635 | ||||||
Control | 2.00 (±0.26) bc | 2.89 (±0.53) bc | 0.487 (±0.029) d | 0.855 (±0.195) cd | 33.0 (±9.8) a | 38.0 (±10.1) a |
IBA (2500 ppm) | 4.46 (±0.61) a | 3.47 (±0.44) ab | 2.423 (±0.285) ab | 2.833 (±0.362) a | 54.0 (±10.4) a | 63.0 (±10.1) a |
Coconut water (75%) | 2.50 (±0.45) bc | 3.10 (±0.37) abc | 1.293 (±0.204) cd | 1.660 (±0.373) bc | 67.0 (±9.8) a | 42.0 (±10.3) a |
Rizobac | 2.25 (±0.52) bc | 2.62 (±0.40) bc | 1.275 (±0.293) cd | 0.838 (±0.179) cd | 50.0 (±10.4) a | 54.0 (±10.4) a |
Rooting gel | 2.58 (±0.60) bc | 1.78 (±0.40) c | 1.450 (±0.245) cd | 1.288 (±0.598) cd | 50.0 (±10.4) a | 38.0 (±10.1) a |
GR-1-BBGK-19,674 | |||
---|---|---|---|
Rooting Enhancer | Root Number | Average Root Length (mm) | % Rooting |
Aloe vera 99.7% | 1.83 (±0.20) a | 5.753 (±0.731) a | 45.0 (±8.0) a |
Control | 1.72 (±0.15) a | 6.155 (±0.556) a | 45.0 (±8.0) a |
IBA (2500 ppm) | 1.78 (±0.13) a | 7.029 (±0.523) a | 68.0 (±7.5) a |
Rooting gel | 1.70 (±0.08) a | 6.129 (±0.320) a | 50.0 (±4.0) a |
GR-1-BBGK-19,635 | ||||||
---|---|---|---|---|---|---|
Rooting Enhancer | Root Number | Average Root Length (mm) | % Rooting | |||
No Pre-Treatment | Mycorrhizal Pre-Treatment | No Pre-Treatment | Mycorrhizal Pre-Treatment | No Pre-Treatment | Mycorrhizal Pre-Treatment | |
Control | 2.30 (±0.22) bc | 2.88 (±0.37) abc | 5.062 (±0.479) b | 5.044 (±0.600) b | 100 (±0.0) a | 85.0 (±8.2) ab |
Coconut water (75%) | 1.94 (±0.24) c | 2.47 (±0.17) bc | 7.177 (±0.588) a | 6.639 (±0.382) ab | 90.0 (±6.9) ab | 85.0 (±8.2) ab |
IBA (2500 ppm) | 3.00 (±0.33) ab | 3.47 (±0.34) a | 5.641 (±1.218) ab | 6.182 (±0.356) ab | 55.0 (±11.4) c | 75.0 (±9.9) abc |
Rizobac | 2.59 (±0.21) abc | 2.54 (±0.31) abc | 6.786 (±0.629) ab | 6.028 (±0.769) ab | 85.0 (±8.2) ab | 70.0 (±10.5) bc |
Rooting gel | 2.93 (±0.42) ab | 2.58 (±0.24) abc | 5.622 (±0.733) ab | 6.947 (±0.506) ab | 70.0 (±10.5) bc | 95.0 (±5.0) ab |
Genotype | Fertilization Regime | N | P | K | Ca | Mg |
---|---|---|---|---|---|---|
GR-1-BBGK-19,191 | Control | 29.79 ± 0.27 ab | 3.32 ± 0.16 a | 12.63 ± 0.59 a | 13.79 ± 0.84 ab | 3.35 ± 0.12 bcd |
Conventional | 31.98 ± 2.17 a | 2.70 ± 0.11 bcd | 12.81 ± 0.66 a | 11.20 ± 0.39 d | 3.33 ± 0.10 bcd | |
Organic | 26.20 ± 1.65 cd | 2.78 ± 0.19 bc | 12.31 ± 0.96 a | 13.75 ± 1.12 ab | 3.35 ± 0.30 bcd | |
GR-1-BBGK-19,674 | Control | 25.80 ± 0.63 cd | 2.83 ± 0.16 bc | 10.75 ± 0.98 bc | 13.53 ± 1.38 ab | 3.29 ± 0.32 cd |
Conventional | 23.00 ± 2.05 e | 2.16 ± 0.06 e | 10.30 ± 0.32 bc | 13.29 ± 0.53 bc | 2.96 ± 0.07 d | |
Organic | 25.98 ± 0.55 cd | 2.94 ± 0.17 bc | 10.84 ± 0.59 b | 13.93 ± 1.18 ab | 3.20 ± 0.22 d | |
GR-1-BBGK-19,635 | Control | 29.07 ± 0.20 b | 2.61 ± 0.13 cd | 9.77 ± 0.49 cd | 10.74 ± 0.71 d | 3.70 ± 0.27 abc |
Conventional | 30.40 ± 1.77 ab | 2.75 ± 0.11 bc | 9.04 ± 0.27 d | 11.38 ± 0.35 d | 3.78 ± 0.16 ab | |
Organic | 28.84 ± 1.97 b | 2.70 ± 0.02 bcd | 10.70 ± 0.29 bc | 11.36 ± 1.36 d | 4.01 ± 0.49 a | |
GR-1-BBGK-19,193 | Control | 23.97 ± 0.94 de | 2.48 ± 0.15 d | 8.95 ± 0.52 d | 15.15 ± 0.89 a | 3.88 ± 0.20 a |
Conventional | 27.89 ± 0.73 bc | 2.75 ± 0.02 bc | 12.51 ± 0.10 a | 11.94 ± 0.05 cd | 3.40 ± 0.01 bcd | |
Organic | 25.36 ± 1.03 de | 2.82 ± 0.07 bc | 11.11 ± 0.38 b | 13.90 ± 0.28 ab | 3.68 ± 0.10 abc |
Genotype | Fertilization Regime | Cu | Fe | Zn | Mn | B |
---|---|---|---|---|---|---|
GR-1-BBGK-19,191 | Control | 5.412 ± 0.280 c | 29.956 ± 0.257 de | 16.136 ± 0.853 cd | 147.900 ± 2.685 b | 76.113 ± 0.771 ef |
Conventional | 8.245 ± 1.020 ab | 31.070 ± 1.153 cd | 19.510 ± 0.711 a | 98.930 ± 2.259 g | 68.736 ± 2.136 g | |
Organic | 7.125 ± 0.112 b | 28.926 ± 0.291 e | 14.840 ± 0.180 de | 107.266 ± 2.478 f | 79.993 ± 1.256 de | |
GR-1-BBGK-19,674 | Control | 7.340 ± 0.362 b | 31.170 ± 1.549 cd | 18.120 ± 0.848 b | 155.866 ± 4.952 a | 99.656 ± 4.280 a |
Conventional | 7.868 ± 0.220 ab | 38.613 ± 0.127 a | 14.716 ± 0.355 e | 139.633 ± 2.936 c | 90.820 ± 1.935 c | |
Organic | 8.413 ± 0.334 a | 36.870 ± 0.888 a | 17.966 ± 0.524 b | 120.400 ± 1.824 de | 94.570 ± 1.003 bc | |
GR-1-BBGK-19,635 | Control | 8.501 ± 0.259 a | 37.746 ± 0.661 a | 15.990 ± 0.347 cde | 76.546 ± 1.540 i | 83.086 ± 2.108 d |
Conventional | 7.240 ± 0.320 b | 31.150 ± 0.815 cd | 16.180 ± 0.475 cd | 78.736 ± 2.654 i | 96.693 ± 3.489 ab | |
Organic | 5.907 ± 0.762 c | 32.246 ± 1.017 bc | 16.283 ± 0.365 c | 92.670 ± 0.800 h | 78.126 ± 0.138 ef | |
GR-1-BBGK-19,193 | Control | 5.933 ± 0.257 c | 32.213 ± 2.706 bc | 12.400 ± 1.545 f | 146.233 ± 8.450 b | 91.363 ± 5.171 c |
Conventional | 8.649 ± 0.116 a | 34.066 ± 0.539 b | 15.910 ± 0.970 cde | 114.466 ± 0.776 e | 71.980 ± 0.386 fg | |
Organic | 7.215 ± 0.137 b | 38.590 ± 0.919 a | 15.153 ± 0.730 cde | 121.900 ± 4.194 d | 83.303 ± 0.785 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoriadou, K.; Tanou, G.; Karapatzak, E.; Papanastasi, K.; Koularmanis, K.; Tsaroucha, I.; Stavropoulos, G.; Maloupa, E. Enhancing the Propagation and Cultivation Framework of Greek Rosa canina L. Germplasm via Sustainable Management Techniques. Agronomy 2024, 14, 25. https://doi.org/10.3390/agronomy14010025
Grigoriadou K, Tanou G, Karapatzak E, Papanastasi K, Koularmanis K, Tsaroucha I, Stavropoulos G, Maloupa E. Enhancing the Propagation and Cultivation Framework of Greek Rosa canina L. Germplasm via Sustainable Management Techniques. Agronomy. 2024; 14(1):25. https://doi.org/10.3390/agronomy14010025
Chicago/Turabian StyleGrigoriadou, Katerina, Georgia Tanou, Eleftherios Karapatzak, Katerina Papanastasi, Konstantinos Koularmanis, Irene Tsaroucha, Georgios Stavropoulos, and Eleni Maloupa. 2024. "Enhancing the Propagation and Cultivation Framework of Greek Rosa canina L. Germplasm via Sustainable Management Techniques" Agronomy 14, no. 1: 25. https://doi.org/10.3390/agronomy14010025
APA StyleGrigoriadou, K., Tanou, G., Karapatzak, E., Papanastasi, K., Koularmanis, K., Tsaroucha, I., Stavropoulos, G., & Maloupa, E. (2024). Enhancing the Propagation and Cultivation Framework of Greek Rosa canina L. Germplasm via Sustainable Management Techniques. Agronomy, 14(1), 25. https://doi.org/10.3390/agronomy14010025