Cloud-Based Framework for Precision Agriculture: Optimizing Scarce Water Resources in Arid Environments amid Uncertainties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optimization Model
- Soil–water balance constraint
- Water availability
- Irrigation water demand constraint
2.2. Uncertainties in the Optimization Model
- Determine uncertain variables suitable to be represented by the cloud model, assuming there are I factors;
- Collect measurement or experimental data series for i-th variable, assuming there are D numbers for i-th variable;
- Calculate the variable cloud Ci using a backward generator algorithm (details shown in Appendix C). The three numerical characteristics of cloud Ci for i-th variable are Exi, Eni and Hei;
- Generate cloud drops. Given a sampling number N, generate N-group cloud drops based on using a forward generator algorithm (Equation (6)). More details are shown in Appendix B.
- Integration into the optimization model. Bring the N-group of cloud drops (xin, μin) into the optimization model separately and run optimization model N times.
2.3. Irrigation Water Shortage Risk Evaluation
- Select the evaluation index factor and obtain classification standards from experts. Assume there are I indexes divided into J levels;
- Generate the classification cloud Cij for each level of each index factor using a backward generator algorithm (see Equation (A3) in Appendix C). The characteristic parameters of cloud Cij for the i-th index factor at the j-th level are Exij, Enij, and Heij;
- Assume there are K sets of samples for each i to be evaluated and calculate the value of the i-th index factor mik;
- For each set, calculate the certainty degree μijk of mik in the j-th Cij for every j as in Equation (7).
- For each k, repeat step 4. The certainty degree of the i-th index factor to the j-th level is calculated by the average of μijk.
- Normalization. In this study, the normalized certainty degree is called the relative membership degree, calculated as:
- Repeat steps 3–6 for each evaluation factor I;
- Obtain the comprehensive evaluation level. The level where the maximum Wj (Equation (10)) is located is the final evaluation level.
3. Case Study
3.1. Study Area
3.2. Data
4. Results and Discussion
4.1. Water Resources Allocation Schemes
4.2. Contribution of Uncertain Variables to the Variation in Results
4.3. Risk Evaluation of Irrigation Water Shortages
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Introduction of the Cloud Model
Appendix B. The Forward Cloud Generator
- Generate a normally distributed random number with expectation En and variance He2, i.e., ;
- Generate a normally distributed random number xi with expectation Ex and variance , i.e., ;
- Calculate ;
- xi with certainty degree of μi is a cloud drop in the domain;
- Repeat steps 1–4until n cloud drops are generated.
Appendix C. Two Backward Normal Cloud Generators
References
- Ickowitz, A.; Powell, B.; Rowland, D.; Jones, A.; Sunderland, T. Agricultural intensification, dietary diversity, and markets in the global food security narrative. Glob. Food Secur. 2019, 20, 9–16. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cirelli, A.; Arumí, J.L.; Rivera, D.; Boochs, P.W. Environmental effects of irrigation in arid and semi-arid Regions. Chil. J. Agr. Res. 2009, 69, 27–40. [Google Scholar] [CrossRef]
- Schmitt, R.J.P.; Rosa, L.; Daily, G.C. Global expansion of sustainable irrigation limited by water storage. Proc. Natl. Acad. Sci. USA 2022, 119, e2214291119. [Google Scholar] [CrossRef] [PubMed]
- Smolenaars, W.J.; Sommerauer, W.J.W.; van der Bolt, B.; Jamil, M.K.; Dhaubanjar, S.; Lutz, A.; Immerzeel, W.; Ludwig, F.; Biemans, H. Spatial adaptation pathways to reconcile future water and food security in the Indus River basin. Commun. Earth Environ. 2023, 4, 410. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 2020, 6, eaaz6031. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Ferede, T.; Gutta, D.G. Pathways to breaking the poverty trap in Ethiopia: Investments in agricultural water, education, and markets. Agric. Water Manag. 2009, 96, 1596–1604. [Google Scholar] [CrossRef]
- Antonelli, M.; Gilmont, M.; Roson, R. Water’s Green Economy: Alternative Pathways for Water Resource Development in Agriculture. L’Europe En Form. 2013, 365, 23–47. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Singh, V.P.; Fu, Q.; Liu, D.; Yang, G. Efficient allocation of agricultural land and water resources for soil environment protection using a mixed optimization-simulation approach under uncertainty. Geoderma 2019, 353, 55–69. [Google Scholar] [CrossRef]
- Bekri, E.; Disse, M.; Yannopoulos, P. Optimizing water allocation under uncertain system conditions for water and agriculture future scenarios in Alfeios River Basin (Greece)—Part B: Fuzzy-boundary intervals combined with multi-stage stochastic programming model. Water 2015, 7, 6427–6466. [Google Scholar] [CrossRef]
- Cunha, M.D. Water and environmental systems management under uncertainty: From scenario construction to robust solutions and adaptation. Water Resour. Manag. 2023, 37, 2271–2285. [Google Scholar] [CrossRef]
- Loucks, D.P.; van Beek, E. Water Resource Systems Planning and Management; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Sahoo, B.; Lohani, A.K.; Sahu, R.K. Fuzzy Multiobjective and Linear Programming Based Management Models for Optimal Land-Water-Crop System Planning. Water Resour. Manag. 2006, 20, 931–948. [Google Scholar] [CrossRef]
- Singh, S.K.; Yadav, S.P. Modeling and optimization of multi objective non-linear programming problem in intuitionistic fuzzy environment. Appl. Math. Model. 2015, 39, 4617–4629. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Nikoo, M.R.; Rakhshandehroo, G.R. Hydro-environmental management of groundwater resources: A fuzzy-based multi-objective compromise approach. J. Hydrol. 2017, 551, 540–554. [Google Scholar] [CrossRef]
- Xie, Y.L.; Xia, D.X.; Ji, L.; Huang, G.H. An inexact stochastic-fuzzy optimization model for agricultural water allocation and land resources utilization management under considering effective rainfall. Ecol. Indic. 2018, 92, 301–311. [Google Scholar] [CrossRef]
- Russell, S.O.; Campbell, P.F. Reservoir operating rules with fuzzy programming. J. Water Resour. Plan. Manag. 1996, 122, 165–170. [Google Scholar] [CrossRef]
- Ma, X.; Wang, H.; Yu, L.; Li, Y.; Fan, Y.; Zhang, J.; Zhang, J. Multi-preference based interval fuzzy-credibility optimization for planning the management of multiple water resources with multiple water-receiving cities under uncertainty. J. Hydrol. 2020, 591, 125259. [Google Scholar] [CrossRef]
- Wang, B.; Cai, Y.; Yin, X.A.; Tan, Q.; Hao, Y. An integrated approach of system dynamics, orthogonal experimental design and inexact optimization for supporting water resources management under uncertainty. Water Resour. Manag. 2017, 31, 1665–1694. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, N.; Guo, S.; Yue, Q.; Jiang, S.; Zhu, B.; Yu, X. Irrigation strategy optimization in irrigation districts with seasonal agricultural drought in southwest China: A copula-based stochastic multiobjective approach. Agric. Water Manag. 2023, 282, 108293. [Google Scholar] [CrossRef]
- Yue, Q.; Zhang, F.; Zhang, C.; Zhu, H.; Tang, Y.; Guo, P. A full fuzzy-interval credibility-constrained nonlinear programming approach for irrigation water allocation under uncertainty. Agric. Water Manag. 2020, 230, 105961. [Google Scholar] [CrossRef]
- Shan, B.Y.; Guo, S.S.; Wang, Y.Z.; Li, H.; Guo, P. Vine copula and cloud model-based programming approach for agricultural water allocation under uncertainty. Stoch. Environ. Res. Risk Assess. 2021, 35, 1895–1915. [Google Scholar] [CrossRef]
- Mahjouri, N.; Abbasi, M.R. Waste load allocation in rivers under uncertainty: Application of social choice procedures. Environ. Monit. Assess. 2015, 187, 5. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, P. FLFP: A fuzzy linear fractional programming approach with double-sided fuzziness for optimal irrigation water allocation. Agric. Water Manag. 2018, 199, 105–119. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.; Gan, W. A new cognitive model: Cloud model. Int. J. Intell. Syst. 2009, 24, 357–375. [Google Scholar] [CrossRef]
- Lu, H.; Ren, L.; Chen, Y.; Tian, P.; Liu, J. A cloud model based multi-attribute decision making approach for selection and evaluation of groundwater management schemes. J. Hydrol. 2017, 555, 881–893. [Google Scholar] [CrossRef]
- Zhang, S.; Xiang, M.; Xu, Z.; Wang, L.; Zhang, C. Evaluation of water cycle health status based on a cloud model. J. Clean. Prod. 2020, 245, 118850. [Google Scholar] [CrossRef]
- Li, D.; Meng, H.; Shi, X. Membership clouds and membership cloud generators. J. Comput. Res. Dev. 1995, 32, 15–20. [Google Scholar]
- Liao, Y.J.; Zhao, H.T.; Jiang, Y.; Ma, Y.K.; Luo, X.; Li, X.Y. An innovative method based on cloud model learning to identify high-risk pollution intervals of storm-flow on an urban catchment scale. Water Res. 2019, 165, 115007. [Google Scholar] [CrossRef]
- Xu, J.; Ding, R.; Li, M.; Dai, T.; Zheng, M.; Yu, T.; Sui, Y. A new Bayesian network model for risk assessment based on cloud model, interval type-2 fuzzy sets and improved D-S evidence theory. Inf. Sci. 2022, 618, 336–355. [Google Scholar] [CrossRef]
- Liu, P.; Liu, X. Multi-attribute group decision-making method based on cloud distance operators with linguistic information. Int. J. Fuzzy Syst. 2016, 19, 1011–1024. [Google Scholar] [CrossRef]
- Yang, X.; Yan, L.; Peng, H.; Gao, X. Encoding words into Cloud models from interval-valued data via fuzzy statistics and membership function fitting. Knowl.-Based Syst. 2014, 55, 114–124. [Google Scholar] [CrossRef]
- Deng, W.; Wang, G. A novel water quality data analysis framework based on time-series data mining. J. Environ. Manag. 2017, 196, 365–375. [Google Scholar] [CrossRef]
- Gao, Y. An optimization algorithm based on cloud model. In Proceedings of the 2009 International Conference on Computational Intelligence and Security, Beijing, China, 11–14 December 2009; pp. 84–87. [Google Scholar]
- Jensen, M.E. Water consumption by agricultural plants. In Plant Water Consumption and Response; Water Deficits and Plant Growth; Kozlowski, T.T., Ed.; Academic Press: New York, NY, USA, 1968; Volume II, pp. 1–22. [Google Scholar]
- Kang, S.; Cai, H. Agricultural Water Management; China Agriculture Press: Beijing, China, 1996. [Google Scholar]
- Li, M.; Guo, P.; Singh, V.P.; Yang, G. An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation. Agric. Water Manag. 2016, 177, 10–23. [Google Scholar] [CrossRef]
- Déqué, M.; Rowell, D.P.; Lüthi, D.; Giorgi, F.; Christensen, J.H.; Rockel, B.; Jacob, D.; Kjellström, E.; de Castro, M.; van den Hurk, B. An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Clim. Chang. 2007, 81, 53–70. [Google Scholar] [CrossRef]
- Bosshard, T.; Carambia, M.; Goergen, K.; Kotlarski, S.; Krahe, P.; Zappa, M.; Schär, C. Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour. Res. 2013, 49, 1523–1536. [Google Scholar] [CrossRef]
- Gu, W.; Shao, D.; Jiang, Y. Risk evaluation of water shortage in source area of Middle Route Project for South-to-North Water Transfer in China. Water Resour. Manag. 2012, 26, 3479–3493. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 327. [Google Scholar]
- Zhang, L.; Guo, P.; Fang, S.; Li, M. Monthly optimal reservoirs operation for multicrop deficit irrigation under fuzzy stochastic uncertainties. J. Appl. Math. 2014, 2014, 105391. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Ma, M.; Liu, X. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions. J. Hydrol. 2017, 555, 80–94. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, C.; Yan, Z.; Guo, S.; Wang, Y.; Guo, P. An interval nonlinear multiobjective programming model with fuzzy-interval credibility constraint for crop monthly water allocation. Agric. Water Manag. 2018, 209, 123–133. [Google Scholar] [CrossRef]
- Li, D.; Wang, S.; Li, D. Spatial Data Mining: Theory and Application; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Liu, C.; Feng, M.; Dai, X.; Li, D. A new algorithm of backward cloud. J. Syst. Simul. 2004, 16, 2417–2420. [Google Scholar] [CrossRef]
- Liu, D.; Wang, D.; Wu, J.; Wang, Y.; Wang, L.; Zou, X.; Chen, Y.; Chen, X. A risk assessment method based on RBF artificial neural network—Cloud model for urban water hazard. J. Intell. Fuzzy Syst. 2014, 27, 2409–2416. [Google Scholar] [CrossRef]
Risk Level | Reliability | Vulnerability | Resiliency | Consistency Index | Risk Degree |
---|---|---|---|---|---|
Low risk level (I) | R1 ≤ 0.2 | R2 ≤ 0.2 | R3 > 0.8 | R4 > 0.8 | R5 ≤ 0.2 |
Lower middle risk level (II) | 0.2 < R1 ≤ 0.4 | 0.2 < R2 ≤ 0.4 | 0.6 < R3 ≤ 0.8 | 0.6 < R4 ≤ 0.8 | 0.2 < R5 ≤ 0.4 |
Middle risk level (III) | 0.4 < R1 ≤ 0.6 | 0.4 < R2 ≤ 0.6 | 0.4 < R3 ≤ 0.6 | 0.4 < R4 ≤ 0.6 | 0.4 < R5 ≤ 0.6 |
Upper middle risk level (IV) | 0.6 < R1 ≤ 0.8 | 0.6 < R2 ≤ 0.8 | 0.2 < R3 ≤ 0.4 | 0.2 < R4 ≤ 0.4 | 0.6 < R5 ≤ 0.8 |
High risk level (V) | R1 > 0.8 | R2 > 0.8 | R3 ≤ 0.2 | R4 ≤ 0.2 | R5 > 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Tang, P.; Zhou, T.; Liu, J.; Li, F.; Shan, B. Cloud-Based Framework for Precision Agriculture: Optimizing Scarce Water Resources in Arid Environments amid Uncertainties. Agronomy 2024, 14, 45. https://doi.org/10.3390/agronomy14010045
Zhang F, Tang P, Zhou T, Liu J, Li F, Shan B. Cloud-Based Framework for Precision Agriculture: Optimizing Scarce Water Resources in Arid Environments amid Uncertainties. Agronomy. 2024; 14(1):45. https://doi.org/10.3390/agronomy14010045
Chicago/Turabian StyleZhang, Fan, Peixi Tang, Tingting Zhou, Jiakai Liu, Feilong Li, and Baoying Shan. 2024. "Cloud-Based Framework for Precision Agriculture: Optimizing Scarce Water Resources in Arid Environments amid Uncertainties" Agronomy 14, no. 1: 45. https://doi.org/10.3390/agronomy14010045
APA StyleZhang, F., Tang, P., Zhou, T., Liu, J., Li, F., & Shan, B. (2024). Cloud-Based Framework for Precision Agriculture: Optimizing Scarce Water Resources in Arid Environments amid Uncertainties. Agronomy, 14(1), 45. https://doi.org/10.3390/agronomy14010045