Genome-Wide Identification and Expression Analysis of FAR1/FHY3 Gene Family in Cucumber (Cucumis sativus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Sequence Analysis of Cucumber FAR1/FHY3 Genes
2.2. Phylogenetic Analysis of Cucumber FAR1/FHY3 Genes
2.3. Gene Structure and Chromosomal Localization Analysis of Cucumber FAR1/FHY3 Genes
2.4. Gene Structure and Conserved Motif Analysis of Cucumber FAR1/FHY3 Genes
2.5. Cis-Acting Element Analysis of Cucumber FAR1/FHY3 Genes
2.6. Collinearity Analysis of Cucumber FAR1/FHY3 Genes
2.7. Plant Materials, Cultivation Conditions and Treatments
2.8. RNA Isolation and qRT-PCR Analysis
3. Results
3.1. Identification and Characterization of FAR1/FHY3 Genes in Cucumber
3.2. Genomic Structure and Protein Domain Analysis of FAR1/FHY3 Members in Cucumber
3.3. Conserved Motifs of Cucumber FAR1/FHY3 Proteins
3.4. Chromosomal Location of Cucumber FAR1/FHY3 Genes
3.5. Phylogenetic and Collinearity Analysis of FAR1/FHY3 Family Genes Cucumber
3.6. Cis-Element in FAR1/FHY3 Gene Promoter of Cucumber
3.7. Expression Analysis of Cucumber FAR1/FHY3 Genes in Different Tissues
3.8. Expression Analysis of Cucumber FAR1/FHY3 Genes under Different Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tripathi, S.; Hoang, Q.T.N.; Han, Y.J.; Kim, J.I. Regulation of photomorphogenic development by plant phytochromes. Int. J. Mol. Sci. 2019, 20, 6165. [Google Scholar] [CrossRef] [PubMed]
- Heijde, M.; Ulm, R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 2012, 17, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Voitsekhovskaja, O.V. Phytochromes and other (photo)receptors of information in plants. Russ. J. Plant Physiol. 2019, 66, 351–364. [Google Scholar] [CrossRef]
- Li, F.W.; Rothfels, C.J.; Melkonian, M.; Villarreal, J.C.; Stevenson, D.W.; Graham, S.W.; Wong, G.K.; Mathews, S.; Pryer, K.M. The origin and evolution of phototropins. Front. Plant Sci. 2015, 6, 637. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H. Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. Trends Plant Sci. 2015, 20, 453–461. [Google Scholar] [CrossRef]
- Lin, R.; Teng, Y.; Park, H.-J.; Ding, L.; Black, C.; Fang, P.; Wang, H. Discrete and essential roles of the multiple domains of Arabidopsis FHY3 in mediating phytochrome a signal transduction. Plant Physiol. 2008, 148, 981–992. [Google Scholar] [CrossRef]
- Hu, J. Genome-wide identification and characterization of the FAR1/FHY3 Family in populus trichocarpa torr. & gray and expression analysis in light response. Forests 2021, 12, 1385. [Google Scholar] [CrossRef]
- Dai, J.; Sun, J.; Peng, W.; Liao, W.; Zhou, Y.; Zhou, X.R.; Qin, Y.; Cheng, Y.; Cao, S. FAR1/FHY3 transcription factors positively regulate the salt and temperature stress responses in Eucalyptus grandis. Front. Plant Sci. 2022, 13, 883654. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, H.; Hong, Y.; Liang, X.; Li, S.; Liu, H.; Li, H.; Wang, R.; Deng, Q.; Jiang, H.; et al. Genome-wide identification and expression of FAR1 Gene Family provide insight into pod development in peanut (Arachis hypogaea). Front. Plant Sci. 2022, 13, 893278. [Google Scholar] [CrossRef]
- Liu, Z.; An, C.; Zhao, Y.; Xiao, Y.; Bao, L.; Gong, C.; Gao, Y. Genome-wide identification and characterization of the CsFHY3/FAR1 gene family and expression analysis under Biotic and abiotic stresses in tea plants (Camellia sinensis). Plants 2021, 10, 570. [Google Scholar] [CrossRef]
- Lin, R.; Wang, H. Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol. 2004, 136, 4010–4022. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Ding, L.; Casola, C.; Ripoll, D.R.; Feschotte, C.; Wang, H. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 2007, 318, 1302–1305. [Google Scholar] [CrossRef] [PubMed]
- Hudson, M.E.; Lisch, D.R.; Quail, P.H. The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J. For. Cell Mol. Biol. 2003, 34, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhou, Q.; Zhao, Y.; Li, Q.; Liu, Y.; Ma, M.; Wang, B.; Shen, R.; Zheng, Z.; Wang, H. FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis flowering. Mol. Plant 2020, 13, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, G. FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) family proteins in Arabidopsis growth and development. Front. Plant Sci. 2018, 9, 692. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wang, W.; Chen, D.; Ji, Q.; Jing, Y.; Wang, H.; Lin, R. Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis. Plant Cell 2012, 24, 1984–2000. [Google Scholar] [CrossRef]
- Tang, W.; Ji, Q.; Huang, Y.; Jiang, Z.; Bao, M.; Wang, H.; Lin, R. FAR-RED ELONGATED HYPOCOTYL3 and FAR-RED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol. 2013, 163, 857–866. [Google Scholar] [CrossRef]
- Miao, Y.; Luo, X.; Gao, X.; Wang, W.; Li, B.; Hou, L. Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings. Sci. Hortic. 2020, 272, 109577. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Sun, J.; Mao, X.; Wang, J.; Wang, J.; Liu, H.; Zheng, H.; Zhen, Z.; Zhao, H.; et al. Genome-wide characterization and identification of trihelix transcription factor and expression profiling in response to abiotic stresses in rice (Oryza sativa L.). Int. J. Mol. Sci. 2019, 20, 251. [Google Scholar] [CrossRef]
- Liu, M.; Fu, Q.; Ma, Z.; Sun, W.; Huang, L.; Wu, Q.; Tang, Z.; Bu, T.; Li, C.; Chen, H. Genome-wide investigation of the MADS gene family and dehulling genes in tartary buckwheat (Fagopyrum tataricum). Planta 2019, 249, 1301–1318. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Li, H.; Zhao, P. Genome-wide identification and transcriptional expression of the PAL gene family in common walnut (Juglans Regia L.). Genes 2019, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Pan, X.; Wang, C.; Yun, F.; Huang, D.; Yao, Y.; Gao, R.; Ye, F.; Liu, X.; Liao, W. Genome-wide identification and expression analysis of serine hydroxymethyltransferase (SHMT) gene family in tomato (Solanum lycopersicum). PeerJ 2022, 10, e12943. [Google Scholar] [CrossRef] [PubMed]
- Chou, K.C.; Shen, H.B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Luo, S.; Zhang, Z.; Liu, Z.; Qiao, Y.; Gao, X.; Yu, J.; Zhang, G. Identification and expression profile analysis of the SnRK2 gene family in cucumber. PeerJ 2022, 10, e13994. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Niu, L.; Yu, J.; Liao, W.; Xie, J.; Yu, J.; Lv, J.; Xiao, X.; Hu, L.; Wu, Y. Proteomic investigation of S-nitrosylated proteins during NO-induced adventitious rooting of cucumber. Int. J. Mol. Sci. 2019, 20, 5363. [Google Scholar] [CrossRef]
- Qu, F.; Jiang, J.; Xu, J.; Liu, T.; Hu, X. Drip irrigation and fertilization improve yield, uptake of nitrogen, and water-nitrogen use efficiency in cucumbers grown in substrate bags. Plant Soil Environ. 2019, 6, 328–335. [Google Scholar] [CrossRef]
- Gao, R.; Luo, Y.; Yun, F.; Wu, X.; Wang, P.; Liao, W. Genome-Wide Identification, Expression Profile, and Alternative Splicing Analysis of CAMTA Family Genes in Cucumber (Cucumis sativus L.). Agronomy 2021, 11, 1827. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Yang, L.; Liu, N.; Yang, J.; Zhou, X.K.; Xia, Y.C.; He, Y.; He, Y.Q.; Gong, H.J.; Ma, D.F.; et al. Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber. BMC Plant. Biol. 2019, 19, 345. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-H.; Cheng, Y.-H.; Yang, E.C.; Chuang, L.-Y.; Lin, Y.-D. Multiobjective optimization-driven primer design mechanism: Towards user-specified parameters of PCR primer. Brief. Bioinform. 2022, 23, bbac121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hu, L.; Wu, H.; Jiang, L.; Liu, S. Genome-wide identification and transcriptional expression analysis of cucumber superoxide dismutase (SOD) family in response to various abiotic stresses. Int. J. Genom. 2017, 2017, 7243973. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Deng, X.W. Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. Embo J. 2002, 21, 1339–1349. [Google Scholar] [CrossRef]
- Chen, Q.; Song, Y.; Liu, K.; Su, C.; Yu, R.; Li, Y.; Yang, Y.; Zhou, B.; Wang, J.; Hu, G. Genome-wide identification and functional characterization of FAR1-RELATED SEQUENCE (FRS) family members in potato (Solanum tuberosum). Plants 2023, 12, 2575. [Google Scholar] [CrossRef]
- Yu, J.; Wang, L.; Guo, H.; Liao, B.; King, G.; Zhang, X. Genome evolutionary dynamics followed by diversifying selection explains the complexity of the Sesamum indicum genome. BMC Genom. 2017, 18, 257. [Google Scholar] [CrossRef]
- Weidemüller, P.; Kholmatov, M.; Petsalaki, E.; Zaugg, J.B. Transcription factors: Bridge between cell signaling and gene regulation. Proteomics 2021, 21, e2000034. [Google Scholar] [CrossRef]
- Yang, S.W.; Jang, I.-C.; Henriques, R.; Chua, N.-H. FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE associate with the Arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome A signals for inhibition of hypocotyl elongation. Plant Cell 2009, 21, 1341–1359. [Google Scholar] [CrossRef]
- Ouyang, X.; Li, J.; Li, G.; Li, B.; Chen, B.; Shen, H.; Huang, X.; Mo, X.; Wan, X.; Lin, R.; et al. Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 2011, 23, 2514–2535. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, A.A.; Potokina, E.K.; Salina, E.A. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines. BMC Plant Biol. 2017, 17, 172. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, H.; An, C.; Shi, Y.; Liu, X.; Yuan, W.; Zhang, B.; Yang, J.; Yu, C.; Gao, H. Arabidopsis FRS4/CPD25 and FHY3/CPD45 work cooperatively to promote the expression of the chloroplast division gene ARC5 and chloroplast division. Plant J. 2013, 75, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Siddiqui, H.; Teng, Y.; Lin, R.; Wan, X.Y.; Li, J.; Lau, O.S.; Ouyang, X.; Dai, M.; Wan, J.; et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat. Cell Biol. 2011, 13, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.; Koustenis, A.; Theodorou, G.; Somers, D.E.; Kay, S.A.; Whitelam, G.C.; Devlin, P.F. Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell 2006, 18, 2506–2516. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ouyang, X.; Yang, P.; Lau, O.S.; Li, G.; Li, J.; Chen, H.; Deng, X.W. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell 2012, 24, 4590–4606. [Google Scholar] [CrossRef]
- Stirnberg, P.; Zhao, S.; Williamson, L.; Ward, S.; Leyser, O. FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. Plant J. 2012, 71, 907–920. [Google Scholar] [CrossRef]
- Paço, A.; Freitas, R.; Vieira-da-Silva, A. Conversion of DNA sequences: From a transposable element to a tandem repeat or to a gene. Genes 2019, 10, 1014. [Google Scholar] [CrossRef]
- Mansouri, M.; Naghavi, M.R.; Alizadeh, H.; Mohammadi-Nejad, G.; Mousavi, S.A.; Salekdeh, G.H.; Tada, Y. Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Funct. Integr. Genom. 2019, 19, 13–28. [Google Scholar] [CrossRef]
Gene Name | Forward Primer Sequence (5′-3′) | Reverse Primer Sequence (5′-3′) |
---|---|---|
CsFAR1 | TGGCAAACGCTTGTTGACAG | TGCAGGTATCCATCGACTGC |
CsFAR2 | CTGTTGTGGCCTCGTCAAGA | AACAGCCATGTGGTCAGGAG |
CsFAR3 | CCTCAAGAACTCAAGACCGTGATG | TCCTTCCACCCTCTCGCATAATC |
CsFAR4 | TGTCTGCTCCAACTGCCAAGG | TTTCAACATCTTCCCACACCAACTG |
CsFAR5 | TCCGAACGACGACGCCTTC | CCATCTTCCTCAACCAATTCTCCAC |
CsFAR6 | TGGATGTTGATGAAGGAGAGTTTGG | TTTGAATCTGTGAGTTGTGCTTGAC |
CsFAR7 | GCTTGCGTGACGATGATAAGG | GAACGGTGAATCCAACACGC |
CsFAR8 | TGTGAGGCAGAGGGCAGAAAC | CCAGGTGAGAGAGGATGCGTATG |
CsFAR9 | CCAGGTGAGAGAGGATGCGTATG | CCTTGAATGCTCTGTTGGCTGAC |
CsFAR10 | ATCGGCAGCTCATGGTCTACTC | CTGGCTCGCAATTCACCTTCC |
CsFAR11 | CTTGGGTTCTGTTGGTTTTGTTGAC | CCGAATCCACCTCCACCTCTG |
CsFAR12 | CTTCGGGAGGAGAATTTGAGATCG | GTAGTAGGCAGTTCCATCGCTATTG |
CsFAR13 | TGCCGTGCTGCCTCCATC | GCCGTTCCACCATTCGTTGAG |
CsFAR14 | AGAGATAGGAAATCAGTGCGTTGTG | GGAAGAAGGCGAACTTGGTCATC |
CsFAR15 | TTGAGAAGAGGTGGCAGAAGTTG | CCATTCGTGAAGATGTGCATAAGC |
CsFAR16 | CCTCTCAGCAGTCTTGGTGG | TGGCAGCTTCTTCAGACTCG |
CsFAR17 | GTGAAGAGTGAGACAGTGCCATC | GTGAAGAGTGAGACAGTGCCATC |
CsFAR18 | GGAGTTTGAATCTGAGGAGTCTGTC | CCGCACCATCACGCATCG |
CsFAR19 | GCCATTATTACCGACGACATTGC | CGTGTCATCAAGGTCAGGAAGAG |
CsFAR20 | ACCCTCTCTTACCAGTGAGCAATC | CTTCCTTCCATGATGACCACCTAAC |
CsActin | TGGACTCTGGTGATGGTGTTA | CAATGAGGGATGGCTGGAAAA |
Gene | Gene ID | Chr. No. | Chr. Location | Length (aa) | Mol. Wt. (kDa) | pI | Instability Index | Aliphatic Index | Grand Average of Hydropathicity | Subcellular Localization |
---|---|---|---|---|---|---|---|---|---|---|
CsFAR1 | Csa_1G057030 | 1 | 6289393–6292939 | 855 | 98,227.11 | 8.53 | 55.46 | 69.30 | −0.577 | Nucleus. |
CsFAR2 | Csa_1G600950 | 1 | 23317773–23323685 | 876 | 99,141.71 | 5.94 | 48.19 | 73.38 | −0.443 | Nucleus. |
CsFAR3 | Csa_3G150180 | 3 | 10205529–10208691 | 788 | 90,617.81 | 8.31 | 47.68 | 74.51 | −0.464 | Chloroplast. Nucleus. |
CsFAR4 | Csa_3G811580 | 3 | 31128753–31133962 | 283 | 32,739.57 | 7.65 | 59.49 | 71.98 | −0.575 | Chloroplast. Cytoplasm. |
CsFAR5 | Csa_4G006400 | 4 | 1108119–1110798 | 672 | 77,927.58 | 5.08 | 42.49 | 75.42 | −0.523 | Nucleus. |
CsFAR6 | Csa_4G006410 | 4 | 1113075–1115564 | 669 | 77,316.64 | 5.61 | 40.80 | 82.57 | −0.407 | Chloroplast. |
CsFAR7 | Csa_4G015740 | 4 | 2030697–2032669 | 255 | 29,762.52 | 5.82 | 54.49 | 70.27 | −0.863 | Nucleus. |
CsFAR8 | Csa_4G017090 | 4 | 2263706–2268092 | 270 | 31,065.94 | 6.33 | 46.67 | 82.63 | −0.688 | Chloroplast. |
CsFAR9 | Csa_4G056770 | 4 | 4882886–4886283 | 808 | 94,208 | 8.17 | 54.71 | 73.02 | −0.588 | Nucleus. |
CsFAR10 | Csa_4G056780 | 4 | 4888663–4893732 | 555 | 62,862.94 | 6.99 | 51.83 | 68.18 | −0.661 | Chloroplast. |
CsFAR11 | Csa_4G618450 | 4 | 19741128–19744369 | 775 | 89,318.44 | 7.61 | 45.75 | 70.34 | −0.505 | Nucleus. Vacuole. |
CsFAR12 | Csa_5G003630 | 5 | 291625–297967 | 494 | 56,958.92 | 6.9 | 49.22 | 76.64 | −0.428 | Chloroplast. |
CsFAR13 | Csa_5G175740 | 5 | 7336329–7339280 | 855 | 98,441.65 | 8.23 | 40.30 | 77.44 | −0.364 | Nucleus. |
CsFAR14 | Csa_6G511070 | 6 | 26338871–26341932 | 692 | 80,019.07 | 6.01 | 44.80 | 81.16 | −0.326 | Chloroplast. Nucleus. |
CsFAR15 | Csa_6G538640 | 6 | 28958065–28962125 | 747 | 86,692.18 | 6.33 | 48.60 | 72.58 | −0.536 | Nucleus. |
CsFAR16 | Csa_7G029420 | 7 | 1561910–1565564 | 826 | 95,151.41 | 6.32 | 52.01 | 73.85 | −0.523 | Chloroplast. Nucleus. |
CsFAR17 | Csa_7G031740 | 7 | 1799957–1802915 | 602 | 68,955.26 | 6.64 | 39.13 | 91.00 | −0.251 | Chloroplast. |
CsFAR18 | Csa_7G372900 | 7 | 13359283–13362340 | 222 | 25,360.79 | 8.94 | 50.36 | 72.88 | −0.632 | Chloroplast. Nucleus. |
CsFAR19 | Csa_7G375750 | 7 | 13662027–13671093 | 725 | 80,007.84 | 6.22 | 33.10 | 86.15 | −0.255 | Cell membrane. Cell wall. |
CsFAR20 | Csa_7G432410 | 7 | 17215746–17217833 | 404 | 46,899.12 | 8.60 | 39.92 | 70.64 | −0.656 | Nucleus. |
Protein | Alpha Helix (%) | Beta Turn (%) | Random Coil (%) | Extended Strand (%) |
---|---|---|---|---|
CsFAR1 | 40.47 | 2.92 | 45.61 | 10.99 |
CsFAR2 | 40.41 | 4.11 | 40.87 | 14.61 |
CsFAR3 | 44.8 | 4.44 | 37.94 | 12.82 |
CsFAR4 | 31.80 | 6.01 | 41.70 | 20.49 |
CsFAR5 | 42.41 | 4.61 | 37.65 | 15.33 |
CsFAR6 | 45.29 | 4.48 | 35.87 | 14.35 |
CsFAR7 | 40.39 | 5.10 | 38.43 | 16.08 |
CsFAR8 | 40.37 | 4.07 | 40.74 | 14.81 |
CsFAR9 | 43.44 | 2.97 | 41.71 | 11.88 |
CsFAR10 | 38.02 | 3.42 | 47.75 | 10.81 |
CsFAR11 | 40.52 | 2.97 | 43.23 | 13.29 |
CsFAR12 | 42.91 | 6.48 | 35.22 | 15.38 |
CsFAR13 | 46.67 | 4.91 | 33.45 | 14.97 |
CsFAR14 | 46.24 | 4.05 | 35.12 | 14.6 |
CsFAR15 | 42.44 | 2.81 | 42.30 | 12.45 |
CsFAR16 | 41.77 | 4.36 | 39.95 | 13.92 |
CsFAR17 | 46.35 | 4.98 | 36.05 | 12.62 |
CsFAR18 | 39.19 | 5.86 | 38.74 | 16.22 |
CsFAR19 | 23.17 | 5.52 | 41.93 | 29.38 |
CsFAR20 | 38.37 | 5.20 | 42.33 | 14.11 |
Motif | Width (aa) | Motif Sequence |
---|---|---|
Motif 1 | 29 | EPYVGMEFESEEDAYEFYNEYARRVGFSV |
Motif 2 | 50 | PFAPFIGVNHHGQSVLLGCALLADETLESFAWLFKTWLRAMSGRPPKTIJ |
Motif 3 | 50 | WNKSNSEVSCSCRLFEYKGYLCRHALIVLQILGIKSJPSQYILKRWTRBA |
Motif 4 | 20 | DSGKWVVTKFVKEHNHELLP |
Motif 5 | 41 | FEKRWQKMVDKFGLRDBEWJQSLYSDREKWVPVYLRDTFLA |
Motif 6 | 29 | LRNVFWVDAKSRADYSYFGDVVYFDTTYR |
Motif 7 | 29 | PVLKSPSPFEKQMAKLYTHEIFKKFQVEV |
Motif 8 | 36 | TDQDKALKEAIAEVFPETRHRFSLWHILEKIPEKLS |
Motif 9 | 41 | SRVQRYNNLCRRAIKLIEEGSLSQESYNIALZALEEALKKC |
Motif 10 | 18 | RPRPSTRTGCKAMMHVKK |
Element | Sequence | Description |
---|---|---|
ABRE | (C/T) ACGTG (G/T) | cis-acting element involved in the abscisic acid responsiveness |
AuxRR-core | GGTCCAT | cis-acting regulatory element involved in auxin responsiveness |
CGTCA-motif | CGTCA | cis-acting regulatory element involved in the Me-JA-responsiveness |
TATC-box | TATCCCA | cis-acting element involved in gibberellin-responsiveness |
TCA-element | CCATCTTTTT | cis-acting element involved in salicylic acid responsiveness |
GC-motif | CCCCCG | enhancer-like element involved in anoxic specific inducibility |
LTR | CCGAAA | cis-acting element involved in low-temperature responsiveness |
MBS | CAACTG | MYB binding site involved in drought-inducibility |
ARE | AAACCA | cis-acting regulatory element essential for the anaerobic induction |
G-Box | CACGTG | cis-acting regulatory element involved in light responsiveness |
O2-site | GTTGACGTGA | cis-acting regulatory element involved in zein metabolism regulation |
TGA-element | TGACGTAA | auxin-responsive element |
circadian | CAAAGATATC | cis-acting regulatory element involved in circadian control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, Y.; Qiao, Y.; Lu, S.; Yao, K.; Wang, C.; Liao, W. Genome-Wide Identification and Expression Analysis of FAR1/FHY3 Gene Family in Cucumber (Cucumis sativus L.). Agronomy 2024, 14, 50. https://doi.org/10.3390/agronomy14010050
Li X, Li Y, Qiao Y, Lu S, Yao K, Wang C, Liao W. Genome-Wide Identification and Expression Analysis of FAR1/FHY3 Gene Family in Cucumber (Cucumis sativus L.). Agronomy. 2024; 14(1):50. https://doi.org/10.3390/agronomy14010050
Chicago/Turabian StyleLi, Xuelian, Yihua Li, Yali Qiao, Siting Lu, Kangding Yao, Chunlei Wang, and Weibiao Liao. 2024. "Genome-Wide Identification and Expression Analysis of FAR1/FHY3 Gene Family in Cucumber (Cucumis sativus L.)" Agronomy 14, no. 1: 50. https://doi.org/10.3390/agronomy14010050
APA StyleLi, X., Li, Y., Qiao, Y., Lu, S., Yao, K., Wang, C., & Liao, W. (2024). Genome-Wide Identification and Expression Analysis of FAR1/FHY3 Gene Family in Cucumber (Cucumis sativus L.). Agronomy, 14(1), 50. https://doi.org/10.3390/agronomy14010050