Municipal Solid Waste Management in a Decentralized Composting Scenario: Assessment of the Process Reproducibility and Quality of the Obtained Composts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composting Procedure
2.2. Analytical Determinations
2.2.1. Physico-Chemical and Chemical Determinations
2.2.2. Microbiological Determinations
2.3. Statistical Methods
3. Results and Discussion
3.1. Thermal Profile of the Composting Heaps
3.2. Development of the Composting Processes
3.2.1. Changes of the Physico-Chemical and Chemical Parameters in the Composting Processes
3.2.2. OM Decomposition
3.3. Quality of the Composts Obtained
3.3.1. Agronomic Value
3.3.2. Environmental Potential Risks: Potentially Toxic Elements (EPTs) and Microbial Pathogen Groups
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, S.; Kant, A.; Sevda, S.; Aminabhavi, T.M.; Garlapati, V.K. A waste-based circular economy approach for phycoremediation of X-ray developer solution. Environ. Pollut. 2023, 316, 120530. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez Galicia, F.; Coria Páez, A.L.; Tejeida Padilla, R. A Study and Factor Identification of Municipal Solid Waste Management in Mexico City. Sustainability 2019, 11, 6305. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development Series; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Ganesh, K.S.; Sridhar, A.; Vishali, S. Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities—A review. Chemosphere 2022, 287, 132221. [Google Scholar] [CrossRef] [PubMed]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and vegetable waste management: Conventional and emerging approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef] [PubMed]
- Santamarta, J.C.; Miklin, L.; Gomes-Nadal, C.O.; Rodríguez-Alcántara, J.S.; Rodríguez-Martín, J.; Cruz-Pérez, N. Waste Management and Territorial Impact in the Canary Islands. Land 2023, 12, 212. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Qian, X.; Shen, G.; Wang, Z.; Guo, C.; Liu, Y.; Lei, Z.; Zhang, Z. Co-composting of livestock manure with rice straw: Characterization and establishment of maturity evaluation system. Waste Manag. 2014, 34, 530–535. [Google Scholar] [CrossRef]
- EU. Directive 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste. Off. J. EU 2018, L 150, 109. [Google Scholar]
- BOE. Ley 7/2022, de 8 de Abril, de Residuos y Suelos Contaminados para una Economía Circular. Boletín Off. Estado N° 85, de 09/04/2022. 2022. Available online: https://www.boe.es/eli/es/l/2022/04/08/7/con (accessed on 10 October 2023).
- DOGVA. Ley 5/2022, de 29 de noviembre, de la Generalitat, de residuos y suelos contaminados para el fomento de la economía circular en la Comunitat Valenciana. Diari Of. General. Valencia. 2022, 9482, 64009–64096. [Google Scholar]
- Mihai, F.C.; Plana, R.; Taherzadeh, M.J.; Aswathi, M.K.; Ezeah, C. Bioremediation of organic contaminants based on biowaste composting practices. In Handbook of Bioremediation; Academic Press: Cambridge, MA, USA, 2020; pp. 701–714. [Google Scholar]
- Policastro, G.; Cesaro, A. Composting of Organic Solid Waste of Municipal Origin: The Role of Research in Enhancing Its Sustainability. Int. J. Environ. Res. Public Health 2022, 20, 312. [Google Scholar] [CrossRef]
- Sadeghi, S.; Nafez, A.H.; Nikaeen, M.; Mohammadi, F.; Tady, D.J.; Hatamzadeh, M. Microbial indicators in municipal solid waste compost and their fate after land application of compost. J. Environ. Health Sci. Eng. 2022, 21, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Miguel, N.; López, A.; Jojoa-Sierra, S.D.; Fernández, J.; Gómez, S.; Ormad, M.P. Physico-chemical and microbiological control of the composting process of the organic fraction of municipal solid waste: A pilot-scale experience. Int. J. Environ. Res. Public Health 2022, 19, 15449. [Google Scholar] [CrossRef]
- Sláviková, M.; Báreková, A.; Tátošová, L.; Ducsay, L. Phytotoxicity testing of composts from biodegradable municipal waste. J. Ecol. Eng. 2022, 23, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.A.; Paredes, C.; Marhuenda-Egea, F.C.; Pérez-Espinosa, A.; Bernal, M.P.; Moral, R. Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere 2008, 72, 551–557. [Google Scholar] [CrossRef] [PubMed]
- DIN EN 12176:1998; Characterization of Sludge—Determination of pH Value. Deutsches Institut für Normung: Berlin, Germany, 1998.
- CEN EN 13039:1999; Soil Improvers and Growing Media-Determination of Organic Matter and Ash. European Committee for Standardization: Brussels, Belgium, 1999.
- Lax, A.; Roig, A.; Costa, F. A method for determining the cation-exchange capacity of organic materials. Plant Soil 1986, 94, 349–355. [Google Scholar] [CrossRef]
- Zucconi, F.; Pera, A.; Forte, M.; de Bertoldi, M. Evaluating toxicity of immature compost. BioCycle 1981, 22, 54–57. [Google Scholar]
- Brinton, W.F.; Evans, E.; Droffner, M.L. A standardized Dewar test for evaluation of compost self-heating. Biocycle 1995, 36, 1–16. [Google Scholar]
- Vico, A.; Pérez-Murcia, M.D.; Bustamante, M.A.; Agulló, E.; Marhuenda-Egea, F.C.; Sáez, J.A.; Paredes, C.; Pérez-Espinosa, A.; Moral, R. Valorization of date palm (Phoenix dactylifera L.) pruning biomass by co-composting with urban and agri-food sludge. J. Environ. Manag. 2018, 226, 408–415. [Google Scholar] [CrossRef]
- Gao, X.; Yang, F.; Yan, Z.; Zhao, J.; Li, S.; Nghiem, L.; Li, G.; Luo, W. Humification and maturation of kitchen waste during indoor composting by individual households. Sci. Total Environ. 2022, 814, 152509. [Google Scholar] [CrossRef]
- Assandri, D.; Pampuro, N.; Zara, G.; Bianco, A.; Cavallo, E.; Budroni, M. Co-Composting of Brewers’ Spent Grain with Animal Manures and Wheat Straw: Influence of Two Composting Strategies on Compost Quality. Agronomy 2021, 11, 1349. [Google Scholar] [CrossRef]
- EU. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertiliser products, amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and re-pealing Regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, L 170, 1. [Google Scholar]
- Villar-Comesaña, I.; Alves, D.; Mato, S.; Romero, X.M.; Varela, B. Decentralized composting of organic waste in a European rural region: A case study in Allariz (Galicia, Spain). IntechOpen 2017, 4, 53–79. [Google Scholar]
- Shammas, N.K.; Wang, L.K. Biosolids Composting. In Biosolids Treatment Processes; Handbook of Environmental Engineering; Wang, L.K., Shammas, N.K., Hung, Y.T., Eds.; Humana Press: Totowa, NJ, USA, 2007; Volume 6. [Google Scholar]
- Panaretou, V.; Vakalis, S.; Ntolka, A.; Sotiropoulos, A.; Moustakas, K.; Malamis, D.; Loizidou, M. Assessing the alteration of physicochemical characteristics in composted organic waste in a prototype decentralized composting facility. Environ. Sci. Pollut. Res. 2019, 26, 20232–20247. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Pandey, A.K.; Khan, J.; Bundela, P.S.; Wong, J.W.C.; Selvam, A. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour. Technol. 2014, 168, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Naher, U.A.; Sarkar, M.I.U.; Jahan, A.; Biswas, J.C. Co-Composting Urban Waste, Plant Residues, and Rock Phosphate: Biochemical Characterization and Evaluation of Compost Maturity. Commun. Soil Sci. Plant Anal. 2018, 49, 6. [Google Scholar] [CrossRef]
- Tong, B.; Wang, X.; Wang, S.; Ma, L.; Ma, W. Transformation of nitrogen and carbon during composting of manure litter with different methods. Bioresour. Technol. 2019, 293, 122046. [Google Scholar] [CrossRef] [PubMed]
- Sáez, J.A.; Clemente, R.; Bustamante, M.Á.; Yañez, D.; Bernal, M.P. Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm—Agronomical and environmental implications. J. Environ. Manag. 2017, 192, 57–67. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Zhang, S.; Wang, Y.; Shao, X.; Wu, D. Analysis of raw materials and products characteristics from composting and anaerobic digestion in rural areas. J. Clean. Prod. 2022, 338, 130455. [Google Scholar] [CrossRef]
- Storino, F.; Plana, R.; Usanos, M.; Morales, D.; Aparicio-Tejo, P.; Muro, J.; Irigoyen, I. Integration of a Communal Henhouse and Community Composter to Increase Motivation in Recycling Programs: Overview of a Three-Year Pilot Experience in Noáin (Spain). Sustainability 2018, 10, 690. [Google Scholar] [CrossRef]
- Alves, D.; Villar, I.; Mato, S. Community composting strategies for biowaste treatment: Methodology, bulking agent and compost quality. Environ. Sci. Pollut. Res. 2023, 1–13. [Google Scholar] [CrossRef]
- Zaman, B.; Hardyanti, N.; Purwono Ramadan, B.S. An innovative thermal composter to accelerate food waste decomposition at the household level. Bioresour. Technol. Rep. 2022, 19, 101203. [Google Scholar]
- Sánchez, A. Decentralized Composting of Food Waste: A Perspective on Scientific Knowledge. Front. Chem. Eng. 2022, 4, 850308. [Google Scholar] [CrossRef]
- Iglesias Jiménez, E.; Pérez García, V. Determination of maturity indices for city refuse composts. Agric. Ecosyst. Environ. 1992, 38, 331–343. [Google Scholar] [CrossRef]
- Jara-Samaniego, J.; Pérez-Murcia, M.D.; Bustamante, M.A.; Pérez-Espinosa, A.; Paredes, C.; López, M.; López-Lluch, D.B.; Gavilanes-Terán, I.; Moral, R. Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production. J. Clean. Prod. 2017, 141, 1349–1358. [Google Scholar] [CrossRef]
- Luo, Y.; Liang, J.; Zeng, G.; Chen, M.; Mo, D.; Li, G.; Zhang, D. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Manag. 2018, 71, 109–114. [Google Scholar] [CrossRef]
- BOE. Real Decreto 529/2023, de 20 de Junio, por el que se Modifica el Real Decreto 506/2013, de 28 de Junio, Sobre Productos Fertilizantes. Boletín Off. Estado N° 164, 51119–51207. 2023. Available online: https://www.boe.es/eli/es/rd/2023/06/20/529 (accessed on 21 October 2023).
OFSMW1 | OFSMW2 | OFSMW3 | UPW1 | UPW2 | UPW3 | |
---|---|---|---|---|---|---|
Dry weight (%) | 31.8 ± 5.6 | 27.7 ± 0.6 | 40.9 ± 7.1 | 78.6 ± 2.0 | 68.2 ± 1.6 | 52.6 ± 1.8 |
pH | 6.5 ± 0.1 | 6.0 ± 0.0 | 5.6 ± 0.0 | 9.0 ± 0.1 | 6.9 ± 0.1 | 8.4 ± 0.1 |
EC (dS/m) | 5.5 ± 0.0 | 6.1 ± 0.1 | 6.1 ± 0.1 | 3.3 ± 0.0 | 1.8 ± 0.0 | 1.7 ± 0.0 |
OM (%) | 69.1 ± 0.5 | 75.7 ± 0.6 | 71.7 ± 1.2 | 78.2 ± 0.6 | 63.7 ± 0.6 | 47.5 ± 0.5 |
TOC (%) | 39.1 ± 0.3 | 45.8 ± 0.3 | 44.4 ± 0.3 | 41.3 ± 0.3 | 38.8 ± 0.3 | 31.1 ± 0.2 |
TN (%) | 2.4 ± 0.0 | 2.9 ± 0.0 | 3.1 ± 0.0 | 1.0 ± 0.0 | 1.1 ± 0.0 | 1.6 ± 0.0 |
TOC/TN ratio | 16.4 ± 0.1 | 15.8 ± 0.1 | 14.5 ± 0.1 | 41.2 ± 0.8 | 35.0 ± 0.3 | 19.8 ± 0.2 |
P (g/kg) | 6.3 ± 0.2 | 4.4 ± 0.1 | 9.6 ± 0.1 | 1.6 ± 0.1 | 1.0 ± 0.0 | 6.6 ± 0.1 |
Fe (mg/kg) | 359 ± 7 | 274 ± 11 | 1880 ± 16 | 1315 ± 30 | 1720 ± 21 | 1832 ± 41 |
Cu (mg/kg) | 11.3 ± 0.2 | 9.8 ± 0.1 | 11.1 ± 0.1 | 7.6 ± 0.1 | 9.1 ± 0.1 | 15.3 ± 0.6 |
Mn (mg/kg) | 32.8 ± 0.3 | 34.0 ± 0.5 | 67.1 ± 0.5 | 53.8 ± 1.4 | 81.4 ± 0.7 | 109.9 ± 1.9 |
Zn (mg/kg) | 39.9 ± 0.7 | 29.1 ± 1.0 | 44.9 ± 0.6 | 25.0 ± 0.6 | 32.2 ± 0.3 | 45.8 ± 0.4 |
Cd (mg/kg) | 0.64 ± 0.01 | 0.37 ± 0.01 | 0.14 ± 0.01 | 0.07 ± 0.01 | 0.13 ± 0.01 | 0.14 ± 0.01 |
Cr (mg/kg) | 11.1 ± 1.0 | 9.8 ± 1.4 | 43.0 ± 1.2 | 24.2 ± 4.5 | 26.3 ± 3.7 | 32.5 ± 2.3 |
OFSMW4 | OFSMW5 | OFSMW6 | UPW4 | UPW5 | UPW6 | |
---|---|---|---|---|---|---|
Dry weight (%) | 28.1 ± 3.0 | 17.7 ± 0.2 | 42.9 ± 4.0 | 81.1 ± 0.6 | 57.8 ± 3.9 | 69.0 ± 1.0 |
pH | 7.7 ± 0.1 | 5.3 ± 0.0 | 5.8 ± 0.0 | 6.4 ± 0.1 | 7.1 ± 0.1 | 6.6 ± 0.1 |
EC (dS/m) | 3.4 ± 0.0 | 6.0 ± 0.0 | 6.0 ± 0.0 | 6.6 ± 0.1 | 2.7 ± 0.0 | 1.3 ± 0.0 |
OM (%) | 62.5 ± 0.4 | 83.7 ± 0.7 | 77.4 ± 0.6 | 74.3 ± 0.5 | 63.0 ± 0.5 | 76.8 ± 0.6 |
TOC (%) | 35.2 ± 0.3 | 44.0 ± 0.4 | 44.8 ± 0.4 | 41.7 ± 0.4 | 37.6 ± 0.3 | 41.1 ± 0.3 |
TN (%) | 1.4 ± 0.0 | 2.5 ± 0.0 | 2.6 ± 0.0 | 2.5 ± 0.0 | 1.2 ± 0.0 | 1.6 ± 0.0 |
TOC/TN ratio | 26.0 ± 0.3 | 17.7 ± 0.1 | 17.3 ± 0.1 | 16.9 ± 0.1 | 32.5 ± 0.3 | 25.9 ± 0.2 |
P (g/kg) | 6.3 ± 0.3 | 4.3 ± 0.2 | 4.8 ± 0.0 | 3.8 ± 0.1 | 1.5 ± 0.1 | 2.0 ± 0.1 |
Fe (mg/kg) | 1838 ± 60 | 421 ± 3.0 | 693 ± 5.0 | 740 ± 16 | 1254 ± 38 | 2684 ± 19 |
Cu (mg/kg) | 25.1 ± 0.5 | 16.2 ± 0.9 | 15.2 ± 0.1 | 14.2 ± 0.3 | 32.0 ± 1.3 | 14.1 ± 0.2 |
Mn (mg/kg) | 127.8 ± 4.2 | 44.0 ± 1.2 | 57.4 ± 0.4 | 49.3 ± 1.1 | 101.6 ± 4.9 | 120.6 ± 1.2 |
Zn (mg/kg) | 39.3 ± 1.7 | 28.5 ± 2.3 | 35.0 ± 0.3 | 35.7 ± 0.8 | 28.1 ± 1.4 | 46.8 ± 0.5 |
Cd (mg/kg) | 0.11 ± 0.01 | 0.05 ± 0.01 | 0.16 ± 0.01 | 0.08 ± 0.01 | 0.11 ± 0.01 | 0.59 ± 0.34 |
Cr (mg/kg) | 30.8 ± 1.5 | 17.3 ± 1.9 | 32.6 ± 0.5 | 36.6 ± 0.7 | 22.3 ± 0.8 | 38.8 ± 0.5 |
OFSMW (%) | UPW (%) | Weight (kg) | Length (m) | Width (m) | Height (m) | |
---|---|---|---|---|---|---|
Pile 1 | 84.2 | 15.8 | 10,496 | 12 | 2.8 | 1.2 |
Pile 2 | 85.8 | 14.2 | 6456 | 13 | 2.8 | 1.3 |
Pile 3 | 70.0 | 30.0 | 11,021 | 9.6 | 2.6 | 1.2 |
Pile 4 | 82.7 | 17.3 | 2663 | 7.5 | 2.5 | 1.4 |
Pile 5 | 76.1 | 23.9 | 2277 | 7.0 | 2.5 | 1.4 |
Pile 6 | 86.6 | 13.4 | 3075 | 4.6 | 2.6 | 1.0 |
Thermal Parameters | Pile 1 | Pile 2 | Pile 3 | Pile 4 | Pile 5 | Pile 6 |
---|---|---|---|---|---|---|
No. days > 40 °C | 84 | 58 | 119 | 94 | 67 | 100 |
No. days > 60 °C | 43 | 32 | 29 | 38 | 24 | 40 |
Max. temperature | 72 | 75 | 75 | 76 | 73 | 72 |
Average temperature | 44.1 | 36.2 | 47.6 | 46.2 | 39.9 | 45.9 |
Bio-oxidative days | 126 | 112 | 142 | 128 | 110 | 140 |
No. days > 40 °C/bio-oxidative | 0.667 | 0.518 | 0.838 | 0.734 | 0.609 | 0.714 |
Cumulative EXI2 | 231,590 | 163,363 | 119,930 | 187,289 | 148,275 | 110,656 |
EXI2 Ratio/No. days bio-oxidative | 1838 | 1459 | 845 | 1463 | 1348 | 790 |
pH | EC (dS m−1) | OM (%) | TN (%) | TOC (%) | TOC/TN | Na (g kg−1) | K (g kg−1) | P (g kg−1) | |
---|---|---|---|---|---|---|---|---|---|
Fontanars Pile 1: 84.2% OFSMW1 + 15.8% UPW1 | |||||||||
S1 | 7.4 ± 0.1 | 3.7 ± 0.1 | 66.6 ± 0.5 | 1.66 ± 0.02 | 35.9 ± 0.3 | 21.7 ± 0.2 | 4.1 ± 0.0 | 9.2 ± 0.1 | 3.0 ± 0.1 |
S2 | 7.7 ± 0.1 | 3.8 ± 0.0 | 54.7 ± 0.5 | 1.78 ± 0.06 | 38.4 ± 1.1 | 21.9 ± 0.1 | 4.8 ± 0.1 | 11.4 ± 0.1 | 4.8 ± 0.3 |
S3 | 7.7 ± 0.1 | 3.9 ± 0.1 | 54.5 ± 0.3 | 1.70 ± 0.02 | 31.2 ± 0.2 | 18.4 ± 0.1 | 4.2 ± 0.1 | 9.0 ± 0.1 | 3.4 ± 0.1 |
S4 | 8.1 ± 0.1 | 3.6 ± 0.1 | 49.3 ± 0.4 | 1.71 ± 0.05 | 29.6 ± 0.7 | 17.4 ± 0.1 | 3.6 ± 0.0 | 8.9 ± 0.1 | 4.1 ± 0.0 |
LSD | 0.2 | 0.12 | 1.62 | 0.18 | 1.0 | 1.98 | 0.11 | 0.20 | 0.49 |
Fontanars Pile 2: 85.8% OFSMW2 + 14.2% UPW2 | |||||||||
S1 | 7.1 ± 0.05 | 4.5 ± 0.04 | 56.4 ± 0.4 | 2.42 ± 0.02 | 36.1 ± 0.3 | 15.0 ± 0.2 | 5.5 ± 0.0 | 10.9 ± 0.5 | 6.4 ± 0.1 |
S2 | 8.2 ± 0.08 | 4.2 ± 0.04 | 53.4 ± 0.4 | 2.04 ± 0.02 | 32.6 ± 0.2 | 16.1 ± 0.1 | 5.8 ± 0.1 | 13.2 ± 0.2 | 7.0 ± 0.1 |
S3 | 8.4 ± 0.06 | 4.3 ± 0.06 | 52.2 ± 0.3 | 2.40 ± 0.02 | 32.0 ± 0.2 | 13.4 ± 0.1 | 6.1 ± 0.1 | 15.1 ± 0.3 | 8.0 ± 0.1 |
S4 | 8.1 ± 0.06 | 4.1 ± 0.09 | 51.8 ± 0.3 | 1.87 ± 0.02 | 29.8 ± 0.2 | 16.0 ± 0.1 | 5.0 ± 0.1 | 12.1 ± 0.2 | 5.8 ± 0.1 |
LSD | 0.1 | 0.14 | 1.4 | 0.08 | 1.4 | 0.97 | 0.27 | 0.48 | 0.24 |
Fontanars Pile 3: 70% OFSMW3 + 30% UPW3 | |||||||||
S1 | 7.6 ± 0.06 | 3.4 ± 0.04 | 58.2 ± 0.8 | 2.42 ± 0.02 | 34.1 ± 0.2 | 14.2 ± 0.1 | 3.9 ± 0.0 | 11.6 ± 0.2 | 7.9 ± 0.1 |
S2 | 8.5 ± 0.07 | 2.9 ± 0.14 | 43.7 ± 1.1 | 1.61 ± 0.01 | 29.4 ± 0.2 | 18.4 ± 0.1 | 4.1 ± 0.1 | 10.4 ± 0.2 | 7.1 ± 0.1 |
S3 | 8.4 ± 0.06 | 3.3 ± 0.05 | 39.5 ± 1.1 | 1.66 ± 0.03 | 24.1 ± 0.3 | 14.6 ± 0.1 | 3.6 ± 0.1 | 9.3 ± 0.2 | 7.8 ± 0.1 |
S4 | 8.2 ± 0.06 | 3.2 ± 0.43 | 38.7 ± 2.8 | 1.78 ± 0.04 | 23.8 ± 0.5 | 13.4 ± 0.1 | 3.3 ± 0.1 | 8.9 ± 0.3 | 9.2 ± 0.1 |
LSD | 0.2 | 0.12 | 5.7 | 0.08 | 0.6 | 0.90 | 0.20 | 0.22 | 0.34 |
Carrícola Pile 4: 82.7% OFSMW4 + 17.3% UPW4 | |||||||||
S1 | 8.7 ± 0.05 | 3.5 ± 0.03 | 59.0 ± 0.5 | 2.11 ± 0.01 | 33.1 ± 0.3 | 15.8 ± 0.2 | 4.6 ± 0.0 | 15.5 ± 0.1 | 6.6 ± 0.1 |
S2 | 8.4 ± 0.06 | 4.8 ± 0.03 | 48.9 ± 0.8 | 1.90 ± 0.10 | 31.8 ± 0.4 | 16.3 ± 1.5 | 4.8 ± 0.1 | 11.4 ± 0.1 | 4.7 ± 0.3 |
S3 | 8.6 ± 0.06 | 5.6 ± 0.04 | 45.3 ± 0.4 | 2.59 ± 0.02 | 29.5 ± 0.6 | 11.5 ± 0.2 | 4.2 ± 0.0 | 8.9 ± 0.1 | 3.4 ± 0.1 |
S4 | 8.6 ± 0.09 | 5.3 ± 0.04 | 40.8 ± 0.7 | 1.89 ± 0.01 | 43.94 ± 0.2 | 12.7 ± 0.1 | 3.5 ± 0.0 | 8.9 ± 0.1 | 4.1 ± 0.0 |
LSD | 0.1 | 0.17 | 1.07 | 0.11 | 1.8 | 0.32 | 0.11 | 0.24 | 0.48 |
Carrícola Pile 5: 76.1% OFSMW5 + 23.9% UPW5 | |||||||||
S1 | 7.3 ± 0.05 | 5.3 ± 0.03 | 61.2 ± 0.7 | 1.93 ± 0.02 | 45.5 ± 0.4 | 23.7 ± 0.2 | 4.0 ± 0.1 | 23.3 ± 0.2 | 3.7 ± 0.1 |
S2 | 8.7 ± 0.06 | 5.4 ± 0.03 | 59.9 ± 0.6 | 2.14 ± 0.03 | 28.5 ± 0.9 | 13.4 ± 0.7 | 6.6 ± 0.1 | 20.1 ± 0.2 | 8.3 ± 0.1 |
S3 | 8.7 ± 0.06 | 5.0 ± 0.07 | 38.7 ± 0.4 | 2.17 ± 0.02 | 26.7 ± 0.2 | 12.4 ± 0.1 | 6.6 ± 0.1 | 21.3 ± 0.2 | 8.1 ± 0.1 |
S4 | 8.7 ± 0.06 | 6.1 ± 0.06 | 38.3 ± 0.4 | 2.14 ± 0.01 | 25.6 ± 0.3 | 12.1 ± 0.1 | 7.1 ± 0.1 | 21.0 ± 0.1 | 7.5 ± 0.1 |
LSD | 0.2 | 0.14 | 0.99 | 0.11 | 0.7 | 0.37 | 0.14 | 0.86 | 0.25 |
Carrícola Pile 6: 86.6% OFSMW6 + 13.4% UPW6 | |||||||||
S1 | 8.1 ± 0.05 | 5.3 ± 0.03 | 53.3 ± 0.5 | 2.21 ± 0.02 | 32.6 ± 0.2 | 14.9 ± 0.1 | 6.3 ± 0.1 | 19.3 ± 0.2 | 6.7 ± 0.1 |
S2 | 8.9 ± 0.07 | 5.3 ± 0.04 | 47.9 ± 3.1 | 1.98 ± 0.01 | 28.5 ± 0.2 | 14.5 ± 0.2 | 6.8 ± 0.0 | 18.8 ± 0.1 | 7.8 ± 0.2 |
S3 | 8.5 ± 0.06 | 5.1 ± 0.02 | 42.8 ± 2.9 | 2.11 ± 0.06 | 26.9 ± 0.2 | 11.3 ± 0.6 | 6.5 ± 0.1 | 19.7 ± 0.2 | 11.8 ± 0.1 |
S4 | 8.5 ± 0.06 | 7.4 ± 0.06 | 38.6 ± 0.3 | 2.61 ± 0.01 | 23.6 ± 0.3 | 10.4 ± 0.2 | 8.3 ± 0.1 | 25.1 ± 0.2 | 7.9 ± 0.1 |
LSD | 0.2 | 0.61 | 4.39 | 0.05 | 0.9 | 0.31 | 0.20 | 0.56 | 0.22 |
Parameters | Compost 1 | Compost 2 | Compost 3 | Compost 4 | Compost 5 | Compost 6 |
---|---|---|---|---|---|---|
EC (dS m−1) | 3.6 ± 0.1 | 4.1 ± 0.1 | 3.2 ± 0.4 | 5.3 ± 0.0 | 6.1 ± 0.1 | 7.4 ± 0.1 |
TOC/TN ratio | 17.4 ± 0.1 | 16.0 ± 0.1 | 13.4 ± 0.1 | 12.7 ± 0.1 | 12.1 ± 0.1 | 10.4 ± 0.2 |
TN (g kg−1) | 17.1 ± 0.1 | 18.7 ± 0.2 | 17.8 ± 0.0 | 18.9 ± 0.5 | 21.4 ± 0.2 | 26.1 ± 0.4 |
P (g kg−1) | 4.1 ± 0.0 | 5.8 ± 0.1 | 9.2 ± 0.1 | 4.1 ± 0.0 | 7.5 ± 0.1 | 7.9 ± 0.1 |
K (g kg−1) | 8.9 ± 0.1 | 12.1 ± 0.2 | 8.9 ± 0.3 | 8.9 ± 0.1 | 21.0 ± 0.1 | 25.1 ± 0.2 |
Na (g kg−1) | 3.6 ± 0.0 | 5.0 ± 0.1 | 3.3 ± 0.1 | 3.5 ± 0.0 | 7.1 ± 0.1 | 8.3 ± 0.1 |
Ca (g kg−1) | 98.5 ± 1.8 | 112.2 ± 1.4 | 153.8 ± 1.3 | 132.4 ± 2.9 | 137.9 ± 1.7 | 129.6 ± 1.6 |
Mg (g kg−1) | 6.4 ± 0.1 | 7.0 ± 0.1 | 9.0 ± 0.2 | 10.6 ± 0.1 | 13.9 ± 0.1 | 12.9 ± 0.1 |
Fe (mg kg−1) | 3253 ± 27 | 2855 ± 58 | 2390 ± 21 | 3284 ± 31 | 4358 ± 43 | 3029 ± 36 |
Mn (mg kg−1) | 107.8 ± 0.9 | 120.5 ± 2.2 | 81.0 ± 1.7 | 171.1 ± 3.1 | 213.3 ± 2.9 | 155.2 ± 2.1 |
Cu (mg kg−1) | 15.1 ± 0.3 | 19.8 ± 0.5 | 20.9 ± 0.3 | 34.7 ± 1.0 | 57.2 ± 0.7 | 68.1 ± 1.7 |
Zn (mg kg−1) | 48.1 ± 1.6 | 56.9 ± 1.0 | 66.5 ± 1.0 | 79.1 ± 1.1 | 84.2 ± 0.8 | 109.3 ± 1.2 |
Parameters | Compost 1 | Compost 2 | Compost 3 | Compost 4 | Compost 5 | Compost 6 |
---|---|---|---|---|---|---|
CEC (meq 100 g−1 OM) | 92.8 ± 3.4 | 113.1 ± 1.1 | 101.9 ± 0.8 | 109.0 ± 1.0 | 102.8 ± 7.8 | 114.7 ± 0.9 |
Cha (%) | 4.4 ± 0.2 | 5.1 ± 0.2 | 2.8 ± 0.0 | 5.5 ± 0.1 | 5.2 ± 0.1 | 5.3 ± 0.2 |
Cfa (%) | 1.7 ± 0.0 | 1.7 ± 0.0 | 1.2 ± 0.0 | 1.7 ± 0.0 | 1.5 ± 0.0 | 1.6 ± 0.0 |
Cha/Chf | 2.6 ± 0.1 | 3.0 ± 0.1 | 2.3 ± 0.0 | 3.2 ± 0.0 | 3.5 ± 0.0 | 3.3 ± 0.1 |
GI (%) | 116.1 ± 0.1 | 64.0 ± 3.7 | 109.1 ± 0.8 | 96.2 ± 7.9 | 51.1 ± 1.2 | 95.5 ± 1.0 |
Stability test 1 | V, stable | V, stable | V, stable | V, stable | V, stable | V, stable |
Compost 1 | Compost 2 | Compost 3 | Compost 4 | Compost 5 | Compost 6 | |
---|---|---|---|---|---|---|
Potentially toxic elements | ||||||
Co (mg kg−1) | 2.3 ± 0.0 | 1.8 ± 0.1 | 1.4 ± 0.0 | 2.2 ± 0.1 | 2.0 ± 0.0 | 1.5 ± 0.2 |
Cr (mg kg−1) | 24.3 ± 0.3 | 29.8 ± 0.8 | 22.1 ± 1.3 | 27.2 ± 0.3 | 54.5 ± 7.0 | 24.5 ± 0.5 |
Cd (mg kg−1) | 0.38 ± 0.00 | 0.37 ± 0.00 | 0.37 ± 0.02 | 0.35 ± 0.01 | 0.35 ± 0.00 | 0.41 ± 0.01 |
Pb (mg kg−1) | 6.6 ± 0.1 | 7.0 ± 0.1 | 9.2 ± 0.2 | 10.6 ± 0.1 | 20.8 ± 5.8 | 11.5 ± 0.2 |
Ni (mg kg−1) | 8.3 ± 0.1 | 8.1 ± 0.1 | 7.4 ± 0.3 | 10.5 ± 0.2 | 18.3 ± 2.6 | 10.3 ± 0.1 |
As (mg kg−1) | 2.6 ± 0.2 | 0.8 ± 0.8 | 2.4 ± 2.4 | 2.4 ± 0.2 | 1.3 ± 0.5 | 0.9 ± 0.5 |
Microbial pathogen groups | ||||||
Total coliforms | 2.30 × 101 | <3 | 1.50 × 102 | 2.40 × 103 | 1.10 × 103 | 4.30 × 101 |
Escherichia coli | <10 | <10 | <10 | 2.40 × 102 | 9.30 × 101 | 2.30 × 101 |
Clostridium perfringens | <10 | <10 | <10 | <10 | <10 | <10 |
Streptococcus faecalis | 3.50 × 102 | <10 | 4.90 × 102 | 1.40 × 103 | <10 | 1.70 × 104 |
Salmonella spp. | ND | ND | ND | ND | ND | ND |
Listeria monocytogenes | D | ND | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Alonso, C.; Pérez-Murcia, M.D.; Sánchez-Méndez, S.; Martínez-Sabater, E.; Irigoyen, I.; López, M.; Nogués, I.; Paredes, C.; Orden, L.; García-Rández, A.; et al. Municipal Solid Waste Management in a Decentralized Composting Scenario: Assessment of the Process Reproducibility and Quality of the Obtained Composts. Agronomy 2024, 14, 54. https://doi.org/10.3390/agronomy14010054
Álvarez-Alonso C, Pérez-Murcia MD, Sánchez-Méndez S, Martínez-Sabater E, Irigoyen I, López M, Nogués I, Paredes C, Orden L, García-Rández A, et al. Municipal Solid Waste Management in a Decentralized Composting Scenario: Assessment of the Process Reproducibility and Quality of the Obtained Composts. Agronomy. 2024; 14(1):54. https://doi.org/10.3390/agronomy14010054
Chicago/Turabian StyleÁlvarez-Alonso, Cristina, María Dolores Pérez-Murcia, Silvia Sánchez-Méndez, Encarnación Martínez-Sabater, Ignacio Irigoyen, Marga López, Isabel Nogués, Concepción Paredes, Luciano Orden, Ana García-Rández, and et al. 2024. "Municipal Solid Waste Management in a Decentralized Composting Scenario: Assessment of the Process Reproducibility and Quality of the Obtained Composts" Agronomy 14, no. 1: 54. https://doi.org/10.3390/agronomy14010054
APA StyleÁlvarez-Alonso, C., Pérez-Murcia, M. D., Sánchez-Méndez, S., Martínez-Sabater, E., Irigoyen, I., López, M., Nogués, I., Paredes, C., Orden, L., García-Rández, A., & Bustamante, M. Á. (2024). Municipal Solid Waste Management in a Decentralized Composting Scenario: Assessment of the Process Reproducibility and Quality of the Obtained Composts. Agronomy, 14(1), 54. https://doi.org/10.3390/agronomy14010054