Use of Essential Oils and α-Pinene as Insecticides against Sitophilus zeamais and Their Effects on Maize Seed Germination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elimination of Infestation and Seed Moisture Balance
2.2. Sitophilus zeamais Rearing
2.3. Essential Oils and α-Pinene
2.4. Gas Chromatography and Mass Spectrometry for the Identification of Compounds
2.5. Contact Toxicity Test
2.6. Repellent Effect of Essential Oils and α-Pinene on S. zeamais
2.7. Fumigation Toxicity Tests
2.8. Persistence of the Insecticidal Effect of Essential Oils and α-Pinene on Stored Seeds
2.9. Residual Effect of Essential Oils and α-Pinene on the Germination of Stored Seeds
2.10. Statistical Analysis and Experimental Design
3. Results
3.1. Compound Identification
3.2. Contact Toxicity Test
3.3. Repellent Effect of Essential Oils and α-Pinene on S. zeamais
3.4. Fumigation Toxicity Tests
3.5. Persistence of the Insecticidal Effect of Essential Oils and α-Pinene on Stored Seeds
3.6. Residual Effect of Essential Oils and α-Pinene on the Germination of Stored Seeds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abraham, T. Arthropods associated with stored maize and farmer management practices in the Bako area, Western Ethiopia. Pest Manag. J. Ethiop. 1997, 1, 19–27. [Google Scholar]
- Soujanya, P.L.; Sekhar, J.C.; Kumar, P.; Sunil, N.; Prasad, C.V.; Mallavadhani, U.V. Potentiality of botanical agents for the management of post harvest insects of maize: A review. J. Food Sci. Technol. 2016, 53, 2169–2184. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.M.; Auad, A.M.; Mendes, S.M.; Frizzas, M.R. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot. 2014, 56, 50–54. [Google Scholar] [CrossRef]
- Tefera, T.; Demissie, G.; Mugo, S.; Beyene, Y. Yield and agronomic performance of maize hybrids resistant to the maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Crop Prot. 2013, 46, 94–99. [Google Scholar] [CrossRef]
- Del Arco, L.; Riudavets, J.; Campos-Rivela, J.M.; Martínez-Ferrer, M.T.; Agusti, N.; Castañé, C. Effectiveness of the parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae) in the control of Sitophilus zeamais and Rhyzopertha dominica in paddy rice. Biol. Control 2023, 18, 105216. [Google Scholar] [CrossRef]
- Nayak, M.K.; Collins, P.J.; Throne, J.E.; Wang, J.J. Biology and management of psocids infesting stored products. Annu. Rev. Entomol. 2014, 59, 279–297. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crop. Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Smith, S.E.; Barker, S.J.; Zhu, Y.G. Fast moves in arbuscular mycorrhizal symbiotic signalling. Trends Plant Sci. 2006, 11, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Walters, D. Plant Defense: Warding off Attack by Pathogens, Herbivores and Parasitic Plants, 1st ed.; John Wiley & Sons: West Sussex, UK, 2011; p. 231. [Google Scholar]
- Zuzarte, M.; Salgueiro, L. Essential oils chemistry. In Bioactive Essential Oils and Cancer; Sousa, D.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 19–61. [Google Scholar]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappalà, L. Essential oils in stored product insect pest control. J. Food Qual. 2018, 2018, 6906105. [Google Scholar] [CrossRef]
- Tenuta, M.C.; Tundis, R.; Xiao, J.; Loizzo, M.R.; Dugay, A.; Deguin, B. Arbutus species (Ericaceae) as source of valuable bioactive products. Crit. Rev. Food Sci. Nutr. 2019, 59, 864–881. [Google Scholar] [CrossRef]
- Pontes, W.J.T.; Oliveira, J.C.G.; Câmara, C.A.G.; Lopes, A.C.; Gondim-Júnior, M.G.C.; Oliveira, J.V.D. Chemical composition and acaricidal activity of the leaf and fruit essential oils of Protium heptaphyllum (Aubl.) Marchand (Burseraceae). Acta Amaz. 2017, 37, 103–109. [Google Scholar] [CrossRef]
- Svoboda, K.P.; Greenaway, R.I. Investigation of volatile oil glands of Satureja hortensis L. (summer savory) and phytochemical comparison of different varieties. Int. J. Aromather. 2003, 4, 196–202. [Google Scholar] [CrossRef]
- Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants, 2nd ed.; Lavoisier Tec & Doc: Paris, France, 1999; p. 1119. [Google Scholar]
- Giuliani, C.; Pellegrino, R.M.; Tirillini, B.; Bini, L.M. Do Non-Aromatic Labiatae Produce Essential Oil? The Case Study of Prasium majus L. Nat. Prod. Commun. 2008, 3, 2079–2084. [Google Scholar] [CrossRef]
- Kiran, S.; Prakash, B. Assessment of toxicity, antifeedant activity, and biochemical responses in stored-grain insects exposed to lethal and sublethal doses of Gaultheria procumbens L. essential oil. J. Agric. Food Chem. 2015, 63, 10518–10524. [Google Scholar] [CrossRef]
- Yazdgerdian, A.R.; Akhtar, Y.; Isman, M.B. Insecticidal effects of essential oils against woolly beech aphid, Phyllaphis fagi (Hemiptera: Aphididae) and rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae). J. Entomol. Zool. Stud. 2015, 3, 265–271. [Google Scholar]
- Shafaie, F.; Aramideh, S.; Valizadegan, O.R.; Safaralizadeh, M.H.; Hosseini-Gharalari, A. Efficacy of Herbal Essential Oils against Cowpea Weevil, Callosobruchus maculatus Fabricus, and Wheat Weevil, Sitophilus granarius L. Orient. J. Chem. 2019, 35, 1174. [Google Scholar] [CrossRef]
- Rodrigues, R.M.B.A. Bioatividade do óleo Essencial de Protium heptaphyllum (aubi.) e Limoneno no Controle de Callosobruchus maculatus. Master’s Dissertation, Federal University of Piauí, Teresina, Brazil, 2018. [Google Scholar]
- Kim, S.I.; Lee, D.W. Toxicity of basil and orange essential oils and their components against two coleopteran stored products insect pests. J. Asia Pac. Entomol. 2014, 17, 13–17. [Google Scholar] [CrossRef]
- Chaubey, M.K. Fumigant toxicity of essential oils and pure compounds against Sitophilus oryzae L. (Coleoptera: Curculionidae). Biol. Agric. Hortic. 2012, 28, 111–119. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, B.H.; Choi, W.S.; Park, B.S.; Kim, J.G.; Campbell, B.C. Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest. Manag. Sci. 2001, 57, 548–553. [Google Scholar] [CrossRef]
- Domene, M.P.; Glória, E.M.D.; Biagi, J.D.; Benedetti, B.C.; Martins, L. Efeito do tratamento com óleos essenciais sobre a qualidade fisiológica e sanitária das sementes de milho (Zea mays). Arq. Inst. Biol. 2016, 83. [Google Scholar] [CrossRef]
- Ribeiro, J.P.N.; Lima, M.I.S. Allelopathic effects of orange (Citrus sinensis L.) peel essential oil. Acta Bot. Bras. 2012, 26, 256–259. [Google Scholar] [CrossRef]
- Araújo, A.M.N.D.; Oliveira, J.V.D.; França, S.M.; Navarro, D.M.A.F.; Barbosa, D.R.S.; Dutra, K.D.A. Toxicity and repellency of essential oils in the management of Sitophilus zeamais. Rev. Bras. Eng. Agric. Ambient. 2019, 23, 372–377. [Google Scholar] [CrossRef]
- Craveiro, A.A. Óleos Essenciais de Plantas do Nordeste; UFC-Departamento de Química Orgânica e Inorgânica: Fortaleza, Brazil, 1981. [Google Scholar]
- Silva, E.A.J.; Estevam, E.B.B.; Silva, T.S.; Nicolella, H.D.; Furtado, R.A.; Alves, C.C.F.; Miranda, M.L.D. Antibacterial and antiproliferative activities of the fresh leaf essential oil of Psidium guajava L. (Myrtaceae). Braz. J. Biol. 2019, 79, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Dool, H.V.D.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of essential oil components by gas chromatography quadrupole mass spectroscopy. J. Am. Soc. Mass Spectrom 2005, 16, 1902–1903. [Google Scholar] [CrossRef]
- Rodrigues, R.M.B.A.; Fontes, L.S.; Brito, R.C.; Barbosa, D.R.S.; Citó, A.M.G.C.; Carmo, I.O.; de Jesus Sousa, E.M.; Silva, G.N. A sustainable approach in the management of Callosobruchus maculatus: Essential oil of Protium heptaphyllum and its major compound D-limonene as biopesticides. J. Plant Dis. Prot. 2022, 129, 831–841. [Google Scholar] [CrossRef]
- Barbosa, D.R.S.; Santos, R.B.V.; Santos, F.M.V.; Junior, P.J.S.; Neto, F.M.O.; Silva, G.N.; de Andrade Dutra, K.; do Amaral Ferraz Navarro, D.M. Evaluation of Cymbopogon flexuosus and Alpinia zerumbet essential oils as biopesticides against Callosobruchus maculatus. J. Plant Dis. Prot. 2022, 129, 125–136. [Google Scholar] [CrossRef]
- Matos, L.F.; Barbosa, D.R.S.; Lima, E.C.; Dutra, K.A.; Navarro, D.M.A.F.; Alves, J.L.R.; Silva, G.N. Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Ind. Crop. Prod. 2020, 125, 112088. [Google Scholar] [CrossRef]
- Araújo, A.M.N.; Faroni, L.R.D.; Oliveira, J.V.; Navarro, D.M.A.F.; Silva Barbosa, D.R.; Breda, M.O.; e Silva Barbosa, D.R.; Breda, M.O.; de Franca, S.M. Lethal and sublethal responses of Sitophilus zeamais populations to essential oils. J. Pest. Sci. 2017, 90, 589–600. [Google Scholar] [CrossRef]
- BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para Análise de Sementes, 1st ed.; MAPA/ACS: Brasília, Brazil, 2009. [Google Scholar]
- Maguire, J.D. Speed of Germination—Aid In Selection And Evaluation for Seedling Emergence and Vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- SAS INSTITUTE. SAS/STAT User’s Guide, Version 8.02; TS Level 2MO; SAS Institute Inc.: Cary, NC, USA, 2001. [Google Scholar]
- Nikolić, M.; Marković, T.; Mojović, M.; Pejin, B.; Savić, A.; Perić, T.; Marković, D.; Stević, T.; Soković, M. Chemical composition and biological activity of Gaultheria procumbens L. essential oil. Ind. Crops Prod. 2013, 49, 561–567. [Google Scholar] [CrossRef]
- Falasca, A.; Caprari, C.; De Felice, V.; Fortini, P.; Saviano, G.; Zollo, F.; Iorizzi, M. GC-MS analysis of the essential oils of Juniperus communis L. berries growing wild in the Molise region: Seasonal variability and in vitro antifungal activity. Biochem. Syst. Ecol. 2016, 69, 166–175. [Google Scholar] [CrossRef]
- Vasilijević, B.; Knežević-Vukčević, J.; Mitić-Ćulafić, D.; Orčić, D.; Francišković, M.; Srdic-Rajic, T.; Jovanović, M.; Nikolić, B. Chemical characterization, antioxidant, genotoxic and in vitro cytotoxic activity assessment of Juniperus communis var. saxatilis. Food Chem. Toxicol. 2018, 112, 118–125. [Google Scholar] [CrossRef]
- Granda, E.; Scoffoni, C.; Rubio-Casal, A.E.; Sack, L.; Valladares, F. Leaf and stem physiological responses to summer and winter extremes of woody species across temperate ecosystems. Oikos 2014, 123, 1281–1290. [Google Scholar] [CrossRef]
- Costa, E.C.C.; Christofoli, M.; Costa, G.C.; Peixoto, M.F.; Fernandes, J.B.; Forim, M.R.; Pereira, K.d.C.; Silva, F.G.; Cazal, C.d.M. Essential oil repellent action of plants of the genus Zanthoxylum against Bemisia tabaci biotype B (Homoptera: Aleyrodidae). Sci. Hortic. 2017, 226, 327–332. [Google Scholar] [CrossRef]
- Siani, A.C.; Garrido, I.S.; Monteiro, S.S.; Carvalho, E.S.; Ramos, M.F.S. Protium icicariba as a source of volatile essences. Biochem. Syst. Ecol. 2004, 32, 477–489. [Google Scholar] [CrossRef]
- Silva, J.R.; Zoghbi, M.G.B.; Pinto, A.C.; Godoy, R.L.O.; Amaral, A.C.F. Analysis of the Hexane Extracts From Seven Oleoresins of Protium Species. J. Essent. Oil Res. 2009, 21, 305–308. [Google Scholar] [CrossRef]
- Marques, D.D.; Sartori, R.A.; Lemos, T.L.G.; Machado, L.L.; Souza, J.S.N.D.; Monte, F.J.Q. Chemical composition of the essential oils from two subspecies of Protium heptaphyllum. Acta Amaz. 2010, 40, 227–230. [Google Scholar] [CrossRef]
- Lima, E.M.; Cazelli, D.S.P.; Pinto, F.E.; Mazuco, R.A.; Kalil, I.C.; Lenz, D.; Scherer, R.; de Andrade, T.U.; Endringer, D.C. Essential oil from the resin of Protium heptaphyllum: Chemical composition, cytotoxicity, antimicrobial activity, and antimutagenicity. Pharmacogn. Mag. 2016, 12, 42–46. [Google Scholar] [CrossRef]
- Albino, R.C.; Oliveira, P.C.; Prosdocimi, F.; Silva, O.F.; Bizzo, H.R.; Gama, P.E.; Sakuragui, C.M.; Furtado, C.; de Oliveira, D.R. Oxidation of monoterpenes in Protium heptaphyllum oleoresins. Phytochem 2017, 136, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Mobin, M.; Lima, S.G.; Almeida, L.; Takahashi, J.; Teles, J.; Szeszs, M.; Martins, M.; Carvalho, A.; Melhem, M. Análise MDGC-MS de óleos essenciais de Protium heptaphyllum (Aubl.) e sua atividade antifúngica contra espécies de Candida. Rev. Bras. Plan Med. 2016, 18, 531–538. [Google Scholar] [CrossRef]
- Anjos, T.O.; Silva, S.H.; Pereira, S.F.; Sousa, E.M.; Moraes, A.A.; Nascimento, L.D.; Cascaes, M.M.; Pinheiro, R.O.; Andrade, E.H.A. Avaliação do Rendimento e Composição Química do Óleo Essencial de Protium pallidum cuatrec. (Burseraceae) por Hidrodestilação e Arraste a Vapor. 58º Congresso Brasileiro de Química. ISBN 978-85-85905-23-1. Available online: http://www.abq.org.br/cbq/2018/trabalhos/7/2050-26916.html (accessed on 18 January 2020).
- Tisserand, R.; Young, R. Essential Oil Safety-E-Book: A Guide for Health Care Professionals; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2014, 4, 1934578X0900400. [Google Scholar] [CrossRef]
- Jayakumar, M.; Arivoli, S.; Raveen, R.; Tennyson, S. Repellent activity and fumigant toxicity of a few plant oils against the adult rice weevil Sitophilus oryzae Linnaeus 1763 (Coleoptera: Curculionidae). J. Entomol. Zool. Stud. 2017, 5, 324–335. [Google Scholar]
- Hashemi, S.M.; Rostaefar, A. Insecticidal Activity of Essential Oil from Juniperus communis L. subsp. hemisphaerica (Presl) Nyman against Two Stored Product Beetles. Ecol. Balk. 2014, 6, 87–93. [Google Scholar]
- Cao, J.; Pang, X.; Guo, S.; Wang, Y.; Geng, Z.; Sang, Y.; Guo, P.J.; Du, S.S. Pinene-rich essential oils from Haplophyllum dauricum (L.) G. Don display anti-insect activity on two stored-product insects. Int. Biodeter. Biodegr. 2019, 140, 1–8. [Google Scholar] [CrossRef]
- Mathur, Y.K.; Shanker, K.; Ram, S. Evaluation of some grain protectants against Callosobruchus chinensis Linn. on black gram. Bull. Grain Technol. 1985, 23, 253–259. [Google Scholar] [CrossRef]
- Kim, S.I.; Roh, J.Y.; Kim, D.H.; Lee, H.S.; Ahn, Y.J. Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. J. Stored. Prod. Res. 2003, 39, 293–303. [Google Scholar] [CrossRef]
- Schoonhoven, A.V. Use of Vegetable Oils to Protect Stored Beans from Bruchid Attack. J. Econ. Entomol. 1978, 71, 254–256. [Google Scholar] [CrossRef]
- Anjana, A.; Sone, L.A.; Gupta, K.C. Natural products as protectants of pulse beetles. Bull. Grain Technol. 1988, 26, 154–164. [Google Scholar]
- Cardiet, G.; Fuzeau, B.; Barreau, C.; Fleurat-Lessard, F. Contact and fumigant toxicity of some essential oil constituents against a grain insect pest Sitophilus oryzae and two fungi, Aspergillus westerdijkiae and Fusarium graminearum. J. Pest. Sci. 2011, 85, 351–358. [Google Scholar] [CrossRef]
- Santos, P.E.M.; Silva, A.B.; Magalhães Lira, C.R.I.; Matos, C.H.C.; Oliveira, C.R.F. Toxicidade por contato do óleo essencial de Croton pulegiodorus Baill sobre Sitophilus zeamais Motschulsky. Rev. Caatinga 2019, 32, 329–335. [Google Scholar] [CrossRef]
- Koschier, E.H.; Hoffmann, D.; Riefler, J. Influence of salicylaldehyde and methyl salicylate on post-landing behaviour of Frankliniella occidentalis Pergande. J. Appl. Entomol. 2007, 131, 362–367. [Google Scholar] [CrossRef]
- Bett, P.K.; Deng, A.L.; Ogendo, J.O.; Kariuki, S.T.; Kamatenesi-Mugisha, M.; Mihale, J.; Torto, B. Residual contact toxicity and repellence of Cupressus lusitanica Miller and Eucalyptus saligna Smith essential oils against major stored product insect pests. Ind. Crop. Prod. 2017, 110, 65–74. [Google Scholar] [CrossRef]
- Praveena, A.; Sanjayan, K.P. Inhibition of acetylcholinesterase in three insects of economic importance by linalool, a monoterpene phytochemical. In Insect Pest Management. A Current Scenario; Entomology Research Unit, St. Xavier’s College: Palayamkottai, India, 2011. [Google Scholar]
- López, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crop. Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Souza, S.P.D.; Valverde, S.S.; Silva, R.L.; Lima, K.D.; Lima, A.L. Óleos essenciais como inibidores da acetilcolinesterase. Rev. Fitos 2012, 7, 259–266. [Google Scholar] [CrossRef]
- Saad, M.M.; Abou-Taleb, H.K.; Abdelgaleil, S.A.M. Insecticidal activities of monoterpenes and phenylpropenes against Sitophilus oryzae and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Appl. Entomol. Zoo 2018, 53, 173–181. [Google Scholar] [CrossRef]
- Rice, P.J.; Coats, J.R. Insecticidal properties of monoterpenoid derivatives to the house fly (diptera: Muscidae) and red flour beetle (coleoptera: Tenebrionidae). Pestic. Sci. 1994, 41, 195–202. [Google Scholar] [CrossRef]
- Rajabpour, A.; Abdali Mashahdi, A.R.; Ghorbani, M.R. Chemical compositions of leaf extracts from Conocarpus erectus L. (Combretaceae) and their bioactivities against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). J. Asia Pac. Entomol. 2019, 22, 333–337. [Google Scholar] [CrossRef]
- Bougherra, H.H.; Bedini, S.; Flamini, G.; Cosci, F.; Belhamel, K.; Conti, B. Pistacia lentiscus essential oil has repellent effect against three major insect pests of pasta. Ind. Crop. Prod. 2015, 63, 249–255. [Google Scholar] [CrossRef]
- Liao, M.; Xiao, J.J.; Zhou, L.J.; Liu, Y.; Wu, X.; Hua, R.M.; Wang, G.R.; Cao, H.Q. Insecticidal Activity of Melaleuca alternifolia Essential Oil and RNA-Seq Analysis of Sitophilus zeamais Transcriptome in Response to Oil Fumigation. PLoS ONE 2016, 11, e0167748. [Google Scholar] [CrossRef] [PubMed]
- Goudoum, A.; Tinkeu, L.S.N.; Ngassoum, M.B.; Mbofung, C.M. Persistence of active compounds of essential oils of Clausena anisata (Rutaceae) and Plectranthus glandulosus (Labiateae) used as insecticides on maize grains and flour. Afr. J. Food Agric. Nutr. Dev. 2013, 13, 7325–7338. [Google Scholar] [CrossRef]
- Coitinho, R.L.B.; Oliveira, J.V.; Gondim Júnior, M.G.C.; Câmara, C.A.G. Persistência de óleos essenciais em milho armazenado, submetido à infestação de gorgulho do milho. Cienc. Rural 2010, 40, 1492–1496. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Philogène, B.J.; Vincent, C. Biopesticides d’Origines Végétales; Editions Tec & Doc: Paris, France, 2002; Volume 337. [Google Scholar]
- Kim, E.H.; Kim, H.K.; Ahn, Y.J. Acaricidal Activity of Clove Bud Oil Compounds Against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Agric. Food Chem. 2003, 51, 885–889. [Google Scholar] [CrossRef]
- Kalaivani, K.; Kalaiselvi, M.M.; Senthil-Nathan, S. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci. Rep. 2016, 6, srep34498. [Google Scholar] [CrossRef]
- Vicente, M.R.; Plasencia, J. Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef]
- Guan, L.; Scandalios, J.G. Developmentally related responses of maize catalase genes to salicylic acid. Proc. Natl. Acad. Sci. USA 1995, 92, 5930–5934. [Google Scholar] [CrossRef]
- Rao, M.V.; Paliyath, G.; Ormrod, D.P.; Murr, D.P.; Watkins, C.B. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes (salicylic acid-mediated oxidative damage requires H2O2). Plant Physiol. 1997, 115, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Rajjou, L.; Belghazi, M.; Huguet, R.; Robin, C.; Moreau, A.; Job, C.; Job, D. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol. 2006, 141, 910–923. [Google Scholar] [CrossRef]
- Alonso-ramirez, T.H.E.; Rodriguez, D.; Kings, D.; Jimene, A.N.D.; Nicholas, G.; López-climent, M.; Gómez-Cadenas, A.; Nicolás, C. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol. 2009, 150, 1335–1344. [Google Scholar] [CrossRef]
- Boukaew, S.; Prasertsan, P.; Sattayasamitsathit, S. Evaluation of antifungal activity of essential oils against aflatoxigenic Aspergillus flavus and their allelopathic activity from fumigation to protect maize seeds during storage. Ind. Crop. Prod. 2017, 97, 558–566. [Google Scholar] [CrossRef]
- Areco, V.A.; Figueroa, S.; Cosa, M.T.; Dambolena, J.S.; Zygadlo, J.A.; Zunino, M.P. Effect of pinene isomers on germination and growth of maize. Biochem. Syst. Ecol. 2014, 55, 27–33. [Google Scholar] [CrossRef]
- Magalhães, C.R.; Brito, S.S.; Magalhães, T.; Ferraz, M.S.; Oliveira, C.R. Óleos essenciais na emergência de grãos de milho (Zea mays L.). Enciclopédia Biosf. 2014, 10, 1–12. [Google Scholar]
Compound a | Juniperus communis | Protium heptaphyllum | Protium pallidum | |||||
---|---|---|---|---|---|---|---|---|
RI b | RI c | (%) | RI c | (%) | RI c | (%) | ||
1 | Tricyclene | 921 | 918 | 0.06 | - | - | - | - |
2 | α-Thujene | 924 | 925 | 0.34 | - | - | 926 | 0.27 |
3 | α-Pinene | 932 | 930 | 67.03 | 931 | 1.45 | 932 | 16.99 |
4 | Camphene | 946 | 945 | 0.63 | - | - | 946 | 0.57 |
5 | Sabinene | 972 | - | - | 969 | 1.67 | - | - |
6 | β-Pinene | 974 | 973 | 12.85 | - | - | 975 | 2.83 |
7 | Menthene<3-p-> | 984 | - | - | - | - | 983 | 0.29 |
8 | Myrcene | 988 | 990 | 3.95 | - | - | 992 | 0.11 |
9 | α-Phellandrene | 1002 | 1002 | 0.18 | 1003 | 2.08 | 1004 | 5.63 |
10 | δ-3-Carene | 1008 | - | - | 1009 | 11.22 | 1010 | 0.43 |
11 | α-Terpinene | 1014 | 1015 | 0.13 | - | - | 1016 | 2.45 |
12 | o-Cymene | 1022 | 1023 | 0.81 | - | - | 1025 | 31.17 |
13 | Limonene | 1024 | 1027 | 4.22 | 1027 | 66.30 | - | - |
14 | β-Phellandrene | 1025 | - | - | - | - | 1029 | 25.90 |
15 | y-Terpinene | 1054 | 1058 | 0.51 | - | - | 1059 | 0.21 |
16 | Terpinolene | 1086 | 1087 | 0.58 | - | - | 1088 | 0.91 |
17 | α-Pinene oxide | 1099 | 1096 | 0.08 | - | - | - | - |
18 | Menth-2-en-1-ol<cis-p> | 1118 | - | - | - | - | 1122 | 0.08 |
19 | E-Pinocarveol | 1135 | 1137 | 0.08 | - | - | - | - |
20 | Terpineol<cis-dihydro-α-> | 1143 | - | - | - | - | 1144 | 1.59 |
21 | Terpinen-4-ol | 1174 | 1176 | 1.01 | - | - | 1178 | 0.29 |
22 | Cryptone | 1183 | - | - | - | - | 1186 | 0.66 |
23 | α-Terpineol | 1186 | 1190 | 0.43 | 1191 | 2.93 | 1191 | 2.25 |
24 | Myrtenol | 1194 | 1196 | 0.11 | - | - | - | - |
25 | Piperitone | 1249 | - | - | - | - | 1255 | 0.46 |
26 | Linalool acetate <dihydro-> | 1272 | - | - | - | - | 1276 | 0.16 |
27 | Isobornyl acetate | 1283 | 1386 | 0.14 | - | - | - | - |
28 | α-Cubebene | 1348 | 1350 | 0.28 | - | - | 1351 | 0.20 |
29 | α-Copaene | 1374 | 1376 | 0.19 | - | - | 1378 | 0.69 |
30 | β-Elemene | 1389 | 1392 | 0.20 | - | - | - | - |
31 | β-Longipinene | 1400 | 1405 | 1.25 | - | - | - | - |
32 | E-Caryophyllene | 1417 | 1420 | 2.72 | - | - | - | - |
33 | α-Humulene | 1452 | 1452 | 0.49 | - | - | 1456 | 0.09 |
34 | y-Muurolene | 1478 | 1477 | 0.16 | - | - | - | - |
35 | Germacrene D | 1480 | 1482 | 0.32 | - | - | - | - |
36 | γ-Himachalene | 1481 | - | - | - | - | 1486 | 0.21 |
37 | β-Selinene | 1489 | 1487 | 0.06 | - | - | - | - |
38 | Valencene | 1496 | 1496 | 0.14 | - | - | - | - |
39 | α-Muurolene | 1500 | 1501 | 0.13 | - | - | 1503 | 0.07 |
40 | y-Cadinene | 1513 | 1515 | 0.16 | - | - | 1517 | 0.09 |
41 | δ-Cadinene | 1522 | 1524 | 0.61 | - | - | 1526 | 0.16 |
42 | Germacrene B | 1559 | 1558 | 0.17 | - | - | - | - |
43 | Caryophyllen oxide | 1582 | 1584 | 0.32 | - | - | - | - |
Monoterpene | 91.32 | 82.72 | 88.76 | |||||
Oxygenated Monoterpene | 1.85 | 2.93 | 5.49 | |||||
Sesquiterpene | 6.72 | - | 1.51 | |||||
Oxygenated Sesquiterpene | 0.32 | - | - | |||||
Total | 100 | 86.65 | 95.76 |
Treatment | N | DF | Slope ± SE | LC15 (CI) * | LC30 (CI) * | LC50 (CI) * | TR50 | LC95 (CI) * | TR95 | χ2 | p 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
Gaultheria procumbens | 780 | 11 | 2.57 ± 0.15 | 10.62 (8.90–12.29) | 16.79 (14.74–18.80) | 26.83 (24.26–29.55) | 2.98 | 116.79 (98.95–142.99) | 1.47 | 5.09 | 0.92 |
Protium heptaphyllum | 240 | 2 | 6.12 ± 0.69 | 31.01 (26.39–34.62) | 37.59 (33.48–40.92) | 45.78 (42.21–49.14) | 1.74 | 84.96 (75.76–100.61) | 2.02 | 0.03 | 0.98 |
Protium pallidum | 540 | 7 | 3.47 ± 0.31 | 29.18 (24.30–33.40) | 40.96 (36.19–45.17) | 57.98 (53.25–62.91) | 1.37 | 172.35 (144.91–219.30) | - | 7.51 | 0.37 |
Juniperus communis | 420 | 5 | 6.36 ± 0.87 | 54.97 (43.94–62.37) | 66.15 (57.09–73.29) | 79.97 (72.08–89.52) | - | 144.99 (120.45–208.53) | 1.18 | 10.33 | 0.06 |
α-pinene | 240 | 2 | 11.33 ± 1.89 | 41.60 (35.57–45.26) | 46.16 (41.16–49.18) | 51.35 (47.91–53.89) | 1.55 | 71.74 (66.66–81.94) | 2.40 | 3.81 | 0.14 |
Treatment | N | DF | Slope ± SE | LC50 (CI) * | TR50 | LC95 (CI) * | TR95 | χ2 | p 1 |
---|---|---|---|---|---|---|---|---|---|
Gaultheria procumbens | 560 | 5 | 4.05 ± 0.28 | 231.65 (219.53–252.45) | 2.63 | 589.05 (525.72–677.40) | 1.95 | 7.95 | 0.15 |
Protium heptaphyllum | 320 | 2 | 6.24 ± 0.98 | 280.29 (188.67–353.23) | 2.18 | 514.27 (393.07–1625) | 2.23 | 5.13 | 0.07 |
Protium pallidum | 560 | 5 | 5.98 ± 0.43 | 611.09 (583.22–640.70) | - | 1150 (1049–1297) | - | 9.00 | 0.10 |
Juniperus communis | 480 | 4 | 4.91 ± 0.44 | 493.38 (464.54–526.03) | 1.23 | 1067 (929.30–1294) | 1.07 | 3.59 | 0.46 |
α-pinene | 320 | 2 | 10.25±1.38 | 407.19 (392.18–422.97) | 1.50 | 589.74 (541.79–679.26) | 1.95 | 1.70 | 0.42 |
Treatment | µL/20 g 1 | Storage Period (Days) | ||||
---|---|---|---|---|---|---|
5 | 38 | 46 | 56 | 71 | ||
Control | 0.0 | 0.0 cA | 0.0 dA | 0.0 dA | 0.0 cA | 0.0 dA |
Gaultheria procumbens | 116.79 | 100.0 aA | 98.3 aA | 100.0 aA | 100.0 aA | 100.0 aA |
Juniperus communis | 144.99 | 100.0 aA | 65.0 bB | 63.3 bB | 46.6 bC | 30.0 bD |
α-pinene | 71.74 | 16.6 bB | 15.0 cB | 41.6 cA | 38.3 bA | 16.6 cB |
Variable | Treatment | Storage Pediod (Days) | |||
---|---|---|---|---|---|
38 | 46 | 56 | 71 | ||
G (%) | Control | 99 aA | 99 aA | 99 aA | 99 aA |
Gaultheria procumbens | 44 bC | 90 bA | 80 bB | 75 bB | |
Juniperus communis | 92 aAB | 85 bB | 91 aAB | 97 aA | |
α-pinene | 99 aA | 99 aA | 96 aA | 99 aA | |
GSI | Control | 16.47 aA | 16.47 abA | 16.47 aA | 16.47 aA |
Gaultheria procumbens | 7.25 bC | 14.97 bcA | 13.28 bB | 12.47 bB | |
Juniperus communis | 15.3 aAB | 14.0 cB | 15.1 aAB | 16.1 aA | |
α-pinene | 16.58 aA | 16.56 aA | 16.0 aA | 16.52 aA | |
FM (g/seedling) | Control | 1.04 aA | 1.04 bA | 1.04 aA | 1.04 aA |
Gaultheria procumbens | 0.87 bB | 1.05 abA | 0.89 bB | 0.90 bB | |
Juniperus communis | 1.09 aAB | 1.10 abA | 1.01 aB | 1.03 aAB | |
α-pinene | 1.10 aA | 1.13 aA | 1.01 aB | 1.09 aAB |
Variable | Treatment | Storage Period (Days) | |||
---|---|---|---|---|---|
38 | 46 | 56 | 71 | ||
AGT (days) | |||||
Control | 3.00 (NS) | 3.005 (NS) | 3.005 (NS) | 3.005 (NS) | |
Gaultheria procumbens | 3.06 | 3.005 | 3.042 | 3.034 | |
Juniperus communis | 3.00 | 3.042 | 3.005 | 3.010 | |
α-pinene | 3.00 | 3.005 | 3.000 | 3.015 | |
CV | 1.44 | 0.88 | 0.90 | 0.79 | |
AGS | |||||
Control | 0.332 (NS) | 0.332 (NS) | 0.332 (NS) | 0.332 (NS) | |
Gaultheria procumbens | 0.326 | 0.332 | 0.328 | 0.329 | |
Juniperus communis | 0.332 | 0.328 | 0.332 | 0.332 | |
α-pinene | 0.333 | 0.332 | 0.333 | 0.331 | |
CV | 1.38 | 0.87 | 0.88 | 0.78 | |
DM (g/seedling) | Control | 0.270 (NS) | 0.270 a | 0.270 a | 0.270 ab |
Gaultheria procumbens | 0.273 | 0.267 ab | 0.254 ab | 0.285 a | |
Juniperus communis | 0.262 | 0.253 b | 0.251 b | 0.274 ab | |
α-pinene | 0.253 | 0.253 b | 0.249 b | 0.268 b | |
CV | 3.98 | 2.93 | 2.95 | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho Brito, R.; de Moura Pádua, L.E.; da Silva, L.R.; Briozo, M.E.O.; Silva, P.R.R.; de Carvalho, L.F.; de Andrade Dutra, K.; Navarro, D.M.d.A.F.; Barbosa, D.R.e.S.; Rojas, M.O.A.I.; et al. Use of Essential Oils and α-Pinene as Insecticides against Sitophilus zeamais and Their Effects on Maize Seed Germination. Agronomy 2024, 14, 2282. https://doi.org/10.3390/agronomy14102282
de Carvalho Brito R, de Moura Pádua LE, da Silva LR, Briozo MEO, Silva PRR, de Carvalho LF, de Andrade Dutra K, Navarro DMdAF, Barbosa DReS, Rojas MOAI, et al. Use of Essential Oils and α-Pinene as Insecticides against Sitophilus zeamais and Their Effects on Maize Seed Germination. Agronomy. 2024; 14(10):2282. https://doi.org/10.3390/agronomy14102282
Chicago/Turabian Stylede Carvalho Brito, Rodrigo, Luiz Evaldo de Moura Pádua, Leticia Rodrigues da Silva, Marcus Eugênio Oliveira Briozo, Paulo Roberto Ramalho Silva, Luzineide Fernandes de Carvalho, Kamilla de Andrade Dutra, Daniela Maria do Amaral Ferraz Navarro, Douglas Rafael e Silva Barbosa, Mariano Oscar Aníbal Ibañez Rojas, and et al. 2024. "Use of Essential Oils and α-Pinene as Insecticides against Sitophilus zeamais and Their Effects on Maize Seed Germination" Agronomy 14, no. 10: 2282. https://doi.org/10.3390/agronomy14102282
APA Stylede Carvalho Brito, R., de Moura Pádua, L. E., da Silva, L. R., Briozo, M. E. O., Silva, P. R. R., de Carvalho, L. F., de Andrade Dutra, K., Navarro, D. M. d. A. F., Barbosa, D. R. e. S., Rojas, M. O. A. I., da Silva, G. L., Breda, M. O., Silva, G. N., Silva, T. B. M., Silva, E. K. C. e., & de França, S. M. (2024). Use of Essential Oils and α-Pinene as Insecticides against Sitophilus zeamais and Their Effects on Maize Seed Germination. Agronomy, 14(10), 2282. https://doi.org/10.3390/agronomy14102282