Long-Term Optimization of Agronomic Practices Increases Water Storage Capacity and Available Water in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design and Field Management
2.3. Sampling and Measurements
2.3.1. Yield and Water-Use Efficiency
2.3.2. Soil Hydraulic Parameters and Physical Properties
2.3.3. Soil Organic Matter
2.3.4. Soil Aggregate Stability
2.3.5. Root Length Density (RLD) and Root Weight Density (RWD)
2.4. Statistical Analysis
3. Results
3.1. Winter Wheat Yield and Water-Use Efficiency of Long-Term Different Agronomic Practices
3.2. Soil Infiltration Capacity of Long-Term Different Agronomic Practices
3.3. Soil Water-Holding Capacity of Long-Term Different Agronomic Practices
3.4. Soil Water Effectiveness of Long-Term Different Agronomic Practices
3.5. Soil Organic Matter Content and Soil Bulk Density
3.6. Soil Porosity and Soil Capillary Porosity
3.7. Soil Water-Stable Aggregates’ Stability
3.8. Root Length Density and Root Weight Density
3.9. Relationships between Soil Physicochemical Properties and Soil Hydrological Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Soil Depth (cm) | Treatment | Sand (%) | Silt (%) | Clay (%) |
---|---|---|---|---|
0–20 | FM | 8.75 ± 0.60 b | 63.67 ± 0.36 a | 27.58 ± 0.64 a |
HN | 8.79 ± 0.71 b | 64.98 ± 0.97 a | 26.24 ± 0.26 b | |
MM | 11.10 ± 0.20 a | 63.71 ± 0.08 a | 25.19 ± 0.25 b | |
BM | 8.96 ± 0.56 b | 63.57 ± 0.28 a | 27.47 ± 0.28 a | |
20–40 | FM | 9.67 ± 0.38 ab | 63.54 ± 0.10 a | 26.79 ± 0.28 b |
HN | 8.39 ± 0.19 b | 63.61 ± 0.20 a | 28.00 ± 0.39 b | |
MM | 9.99 ± 0.77 a | 64.16 ± 0.33 a | 25.85 ± 1.10 b | |
BM | 6.44 ± 0.28 c | 62.31 ± 1.37 a | 31.25 ± 1.64 a | |
40–60 | FM | 8.75 ± 0.08 a | 63.19 ± 0.49 a | 28.06 ± 0.57 b |
HN | 6.36 ± 0.20 a | 62.99 ± 0.60 a | 30.66 ± 0.41 b | |
MM | 9.13 ± 0.30 a | 63.66 ± 0.24 a | 27.22 ± 0.54 b | |
BM | 3.64 ± 0.25 b | 56.05 ± 0.51 b | 40.31 ± 0.72 a | |
60–80 | FM | 7.48 ± 0.27 a | 60.69 ± 0.66 b | 31.83 ± 0.40 b |
HN | 5.00 ± 0.24 a | 62.68 ± 0.23 a | 32.33 ± 0.06 b | |
MM | 5.09 ± 0.17 ab | 62.80 ± 0.25 a | 32.10 ± 0.41 b | |
BM | 4.23 ± 0.12 b | 58.52 ± 0.37 c | 37.25 ± 0.49 a | |
80–100 | FM | 5.34 ± 0.07 b | 61.96 ± 0.11 a | 32.70 ± 0.09 a |
HN | 4.07 ± 0.22 b | 62.97 ± 0.46 a | 32.95 ± 0.25 ab | |
MM | 6.17 ± 0.05 a | 61.91 ± 0.21 a | 31.92 ± 0.25 b | |
BM | 4.61 ± 0.39 b | 60.49 ± 0.56 b | 34.90 ± 0.91 a |
References
- Li, Z.; Schneider, R.L.; Morreale, S.J.; Xie, Y.; Li, C.; Li, J. Woody Organic Amendments for Retaining Soil Water, Improving Soil Properties and Enhancing Plant Growth in Desertified Soils of Ningxia, China. Geoderma 2018, 310, 143–152. [Google Scholar] [CrossRef]
- Zhang, S.; Simelton, E.; Lövdahl, L.; Grip, H.; Chen, D. Simulated Long-Term Effects of Different Soil Management Regimes on the Water Balance in the Loess Plateau, China. Field Crops Res. 2007, 100, 311–319. [Google Scholar] [CrossRef]
- Fan, T.; Stewart, B.A.; Yong, W.; Luo, J.; Zhou, G. Long-Term Fertilization Effects on Grain Yield, Water-Use Efficiency and Soil Fertility in the Dryland of Loess Plateau in China. Agric. Ecosyst. Environ. 2005, 106, 313–329. [Google Scholar] [CrossRef]
- Olness, A.; Archer, D. Effect of Organic Carbon on Available Water in Soil. Soil Sci. 2005, 170, 90–101. [Google Scholar] [CrossRef]
- Wardak, D.L.R.; Padia, F.N.; de Heer, M.I.; Sturrock, C.J.; Mooney, S.J. Zero Tillage Has Important Consequences for Soil Pore Architecture and Hydraulic Transport: A Review. Geoderma 2022, 422, 115927. [Google Scholar] [CrossRef]
- Mollinedo, J.; Schumacher, T.E.; Chintala, R. Influence of Feedstocks and Pyrolysis on Biochar’s Capacity to Modify Soil Water Retention Characteristics. J. Anal. Appl. Pyrolysis 2015, 114, 100–108. [Google Scholar] [CrossRef]
- Wang, D.; Li, C.; Parikh, S.J.; Scow, K.M. Impact of Biochar on Water Retention of Two Agricultural Soils—A Multi-Scale Analysis. Geoderma 2019, 340, 185–191. [Google Scholar] [CrossRef]
- Basset, C.; Abou Najm, M.; Ghezzehei, T.; Hao, X.; Daccache, A. How Does Soil Structure Affect Water Infiltration? A Meta-Data Systematic Review. Soil Tillage Res. 2023, 226, 105577. [Google Scholar] [CrossRef]
- Wang, H.; Fu, W.; Hu, J.; Fan, J.; Hao, M. Effects of agricultural measures on soil profile physical properties of winter wheat field in Weibei highland, China. J. Plant Nutr. Fertil. 2019, 25, 1097–1106. [Google Scholar]
- Liang, J.; Li, Y.; Si, B.; Wang, Y.; Chen, X.; Wang, X.; Chen, H.; Wang, H.; Zhang, F.; Bai, Y.; et al. Optimizing Biochar Application to Improve Soil Physical and Hydraulic Properties in Saline-Alkali Soils. Sci. Total Environ. 2021, 771, 144802. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, M. Effect of Different Long-Term Fertilization Treatments on Soil Hydraulic Properties and Their Changes With Depth. Bull. Soil Water Conserv. 2022, 42, 56–62. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, L.; Jiang, J.; Liu, R.; Xu, Y.; Jia, G. Increased Uptake of Deep Soil Water Promotes Drought Resistance in Mixed Forests. Plant Cell Environ. 2023, 46, 3218–3228. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, W.; Li, Y.; Wang, S.; Yin, L.; Deng, X. Increasing Rainfed Wheat Yield by Optimizing Agronomic Practices to Consume More Subsoil Water in the Loess Plateau. Crop J. 2021, 9, 1418–1427. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Liu, W.; Wang, S.; Yin, L.; Deng, X. Sustainable High Yields Can Be Achieved in Drylands on the Loess Plateau by Changing Water Use Patterns through Integrated Agronomic Management. Agric. For. Meteorol. 2021, 296, 108210. [Google Scholar] [CrossRef]
- Amirahmadi, E.; Ghorbani, M.; Moudrý, J.; Bernas, J.; Mukosha, C.E.; Hoang, T.N. Environmental Assessment of Dryland and Irrigated Winter Wheat Cultivation under Compost Fertilization Strategies. Plants 2024, 13, 509. [Google Scholar] [CrossRef] [PubMed]
- Haynes, R.J.; Naidu, R. Influence of Lime, Fertilizer and Manure Applications on Soil Organic Matter Content and Soil Physical Conditions: A Review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Ozlu, E.; Kumar, S.; Arriaga, F.J. Responses of Long-Term Cattle Manure on Soil Physical and Hydraulic Properties under a Corn-Soybean Rotation at Two Locations in Eastern South Dakota. Soil Sci. Soc. Am. J. 2019, 83, 1459–1467. [Google Scholar] [CrossRef]
- Altdorff, D.; Galagedara, L.; Abedin, J.; Unc, A. Effect of Biochar Application Rates on the Hydraulic Properties of an Agricultural-Use Boreal Podzol. Soil Syst. 2019, 3, 53. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, H.; Lv, Q.; Tang, Q. Impact of Biochar on Red Paddy Soil Physical and Hydraulic Properties and Rice Yield over 3 Years. J. Soils Sediments 2022, 22, 607–616. [Google Scholar] [CrossRef]
- Głąb, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of Biochar Application on Soil Hydrological Properties and Physical Quality of Sandy Soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Liu, W.; Wang, S.; Yin, L.; Deng, X. Agronomic Management Practices in Dryland Wheat Result in Variations in Precipitation Use Efficiency Due to Their Differential Impacts on the Steps in the Precipitation Use Process. J. Integr. Agric. 2023, 22, 92–107. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyż, E.A.; Gaţe, O.P. Soil Structure and the Saturated Hydraulic Conductivity of Subsoils. Soil Tillage Res. 2004, 79, 185–189. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Yan, W.; Shangguan, Z. Effect of Biochar Application Method on Nitrogen Leaching and Hydraulic Conductivity in a Silty Clay Soil. Soil Tillage Res. 2018, 183, 100–108. [Google Scholar] [CrossRef]
- Tang, K.; Li, F.Y.; Jaesong, S.; Liu, Y.; Sun, T.; Liu, J.; Gao, X.; Wang, Y. Soil Water Retention Capacity Surpasses Climate Humidity in Determining Soil Organic Carbon Content but Not Plant Production in the Steppe Zone of Northern China. Ecol. Indic. 2022, 141, 109129. [Google Scholar] [CrossRef]
- Wiecheteck, L.H.; Giarola, N.F.B.; de Lima, R.P.; Tormena, C.A.; Torres, L.C.; de Paula, A.L. Comparing the Classical Permanent Wilting Point Concept of Soil (−15,000 hPa) to Biological Wilting of Wheat and Barley Plants under Contrasting Soil Textures. Agric. Water Manag. 2020, 230, 105965. [Google Scholar] [CrossRef]
- Hendrickson, A.H.; Veihmeyer, F.J. Permanent wilting percentages of soils obtained from field and laboratory trials. Plant Physiol. 1945, 20, 517–539. [Google Scholar] [CrossRef]
- Qian, Z.; Tang, L.; Zhuang, S.; Zou, Y.; Fu, D.; Chen, X. Effects of Biochar Amendments on Soil Water Retention Characteristics of Red Soil at South China. Biochar 2020, 2, 479–488. [Google Scholar] [CrossRef]
- Xiu, L.; Zhang, W.; Sun, Y.; Wu, D.; Meng, J.; Chen, W. Effects of Biochar and Straw Returning on the Key Cultivation Limitations of Albic Soil and Soybean Growth over 2 Years. CATENA 2019, 173, 481–493. [Google Scholar] [CrossRef]
- Yin, D.; Gou, X.; Liu, J.; Zhang, D.; Wang, K.; Yang, H. Increasing Deep Soil Water Uptake during Drought Does Not Indicate Higher Drought Resistance. J. Hydrol. 2024, 630, 130694. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, Z.; Huang, Z.; López-Vicente, M.; Wu, G.-L. Influence of Soil Moisture and Plant Roots on the Soil Infiltration Capacity at Different Stages in Arid Grasslands of China. CATENA 2019, 182, 104147. [Google Scholar] [CrossRef]
- Song, T.; An, Y.; Wen, B.; Tong, S.; Jiang, L. Very Fine Roots Contribute to Improved Soil Water Storage Capacity in Semi-Arid Wetlands in Northeast China. CATENA 2022, 211, 105966. [Google Scholar] [CrossRef]
- Ju, X.; Gao, L.; She, D.; Jia, Y.; Pang, Z.; Wang, Y. Impacts of the Soil Pore Structure on Infiltration Characteristics at the Profile Scale in the Red Soil Region. Soil Tillage Res. 2024, 236, 105922. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Perez, M.; Almagro, M.; Garcia-Franco, N.; Díaz-Pereira, E. Long-Term Effects of Sustainable Management Practices on Soil Properties and Crop Yields in Rainfed Mediterranean Almond Agroecosystems. Eur. J. Agron. 2021, 123, 126207. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Q.; Gao, W.; Luo, Y.; Wu, L.; Rui, Y.; Huang, Y.; Xiao, Q.; Li, X.; Zhang, W. Organic Amendments Facilitate Soil Carbon Sequestration via Organic Carbon Accumulation and Mitigation of Inorganic Carbon Loss. Land Degrad. Dev. 2022, 33, 1423–1433. [Google Scholar] [CrossRef]
- Li, X.; Qu, C.; Li, Y.; Liang, Z.; Tian, X.; Shi, J.; Ning, P.; Wei, G. Long-Term Effects of Straw Mulching Coupled with N Application on Soil Organic Carbon Sequestration and Soil Aggregation in a Winter Wheat Monoculture System. Agron. J. 2021, 113, 2118–2131. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In Situ Effects of Biochar on Aggregation, Water Retention and Porosity in Light-Textured Tropical Soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.K.; Misra, A.K.; Ghosh, P.K.; Hati, K.M. Effect of Integrated Use of Farmyard Manure and Chemical Fertilizers on Soil Physical Properties and Productivity of Soybean. Soil Tillage Res. 2010, 110, 115–125. [Google Scholar] [CrossRef]
- Chen, C. Impact of Bio-Organic Fertilizer and Reduced Chemical Fertilizer Application on Physical and Hydraulic Properties of Cucumber Continuous Cropping Soil. Biomass Convers. Biorefinery 2024, 14, 921–930. [Google Scholar] [CrossRef]
- Zhu, L.; Xiao, Q.; Shen, Y.; Li, S. Effects of Biochar and Maize Straw on the Short-Term Carbon and Nitrogen Dynamics in a Cultivated Silty Loam in China. Environ. Sci. Pollut. Res. 2017, 24, 1019–1029. [Google Scholar] [CrossRef]
- Wang, D.; Lin, J.Y.; Sayre, J.M.; Schmidt, R.; Fonte, S.J.; Rodrigues, J.L.M.; Scow, K.M. Compost Amendment Maintains Soil Structure and Carbon Storage by Increasing Available Carbon and Microbial Biomass in Agricultural Soil—A Six-Year Field Study. Geoderma 2022, 427, 116117. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E. Insights into Soil and Biochar Variations and Their Contribution to Soil Aggregate Status—A Meta-Analysis. Soil Tillage Res. 2024, 244, 106282. [Google Scholar] [CrossRef]
Soil Depth (cm) | pH | Bulk Density (g cm−3) | Soil Organic Carbon (g kg−1) | Total Nitrogen (g kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) |
---|---|---|---|---|---|---|
0–20 | 7.9 ± 0.2 | 1.30 ± 0.03 | 7.45 ± 0.78 | 0.86 ± 0.31 | 6.45 ± 0.38 | 127 ± 21 |
20–40 | 8.0 ± 0.1 | 1.43 ± 0.04 | 5.23 ± 0.84 | 0.6 ± 0.12 | 2.11 ± 0.21 | 101 ± 14 |
40–60 | 8.0 ± 0.1 | 1.44 ± 0.02 | 4.57 ± 0.48 | 0.51 ± 0.08 | 1.51 ± 0.19 | 94 ± 14 |
60–80 | 7.9 ± 0.3 | 1.41 ± 0.01 | 5.91 ± 0.24 | 0.61 ± 0.11 | 1.09 ± 0.09 | 78 ± 10 |
80–100 | 8.1 ± 0.2 | 1.37 ± 0.01 | 5.42 ± 0.35 | 0.67 ± 0.12 | 0.62 ± 0.04 | 60 ± 9 |
pH | Total Nitrogen Content (g·kg−1) | Total Carbon Content (g·kg−1) | Total Phosphorus Content (g·kg−1) | Nitrate Nitrogen (mg kg−1) | Ammonium Nitrogen (mg kg−1) | |
---|---|---|---|---|---|---|
Biochar | 9.9 | 5.78 | 312 | 0.9 | 1.58 | 1.09 |
Manure | 7.8 | 21.6 | 228 | 19.8 | 2.31 | 1.23 |
Soil Characteristics | Abbreviation | Unit |
---|---|---|
Soil water content | SWC | w/w, % |
Saturated hydraulic conductivity | Ks | mm·h−1 |
Soil saturated water content | θs | w/w, % |
Soil field capacity | FC | w/w, % |
Permanent wilting point | PWP | w/w, % |
Soil available water | PAW | w/w, % |
Soil available water storage | PAWS | mm |
Soil bulk density | BD | g·cm3 |
Soil porosity | TP | % |
Soil capillary porosity | CP | % |
Mean weight diameter | MWD | mm |
Geometric mean diameter | GMD | mm |
Soil organic matter | SOC | g·kg−1 |
Soil Depth(cm) | Treatment | MWD (mm) | GMD (mm) | R0.25 (%) |
---|---|---|---|---|
0–20 | FM | 0.38 ± 0.014 c | 0.72 ± 0.002 c | 43.79 ± 0.74 c |
HN | 0.55 ± 0.007 a | 0.76 ± 0.004 a | 51.84 ± 0.75 a | |
MM | 0.46 ± 0.007 b | 0.74 ± 0.001 b | 47.72 ± 0.56 b | |
BM | 0.35 ± 0.010 c | 0.71 ± 0.002 d | 41.25 ± 0.68 d | |
20–40 | FM | 0.32 ± 0.020 b | 0.69 ± 0.006 b | 35.32 ± 1.71 b |
HN | 0.33 ± 0.003 b | 0.70 ± 0.003 b | 39.16 ± 1.43 b | |
MM | 0.50 ± 0.017 a | 0.76 ± 0.005 a | 55.12 ± 1.40 a | |
BM | 0.34 ± 0.012 b | 0.70 ± 0.003 b | 38.29 ± 0.63 b | |
40–60 | FM | 0.39 ± 0.011 a | 0.72 ± 0.004 ab | 46.13 ± 0.70 ab |
HN | 0.40 ± 0.023 a | 0.73 ± 0.007 a | 50.78 ± 1.68 a | |
MM | 0.38 ± 0.030 a | 0.72 ± 0.008 ab | 46.68 ± 2.58 ab | |
BM | 0.38 ± 0.005 a | 0.71 ± 0.002 b | 44.24 ± 0.94 b | |
60–80 | FM | 0.45 ± 0.005 b | 0.73 ± 0.001 a | 48.24 ± 1.02 b |
HN | 0.46 ± 0.039 ab | 0.76 ± 0.027 a | 50.15 ± 2.68 b | |
MM | 0.53 ± 0.008 a | 0.76 ± 0.005 a | 58.58 ± 2.10 a | |
BM | 0.43 ± 0.016 b | 0.74 ± 0.004 a | 50.66 ± 0.56 b | |
80–100 | FM | 0.49 ± 0.022 a | 0.75 ± 0.004 a | 55.75 ± 1.27 a |
HN | 0.43 ± 0.012 a | 0.74 ± 0.003 a | 53.63 ± 0.48 a | |
MM | 0.47 ± 0.020 a | 0.75 ± 0.002 a | 55.65 ± 0.92 a | |
BM | 0.36 ± 0.014 b | 0.70 ± 0.003 a | 42.28 ± 0.83 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, F.; Yang, W.; Wang, S.; Yin, L.; Deng, X. Long-Term Optimization of Agronomic Practices Increases Water Storage Capacity and Available Water in Soil. Agronomy 2024, 14, 2286. https://doi.org/10.3390/agronomy14102286
Chang F, Yang W, Wang S, Yin L, Deng X. Long-Term Optimization of Agronomic Practices Increases Water Storage Capacity and Available Water in Soil. Agronomy. 2024; 14(10):2286. https://doi.org/10.3390/agronomy14102286
Chicago/Turabian StyleChang, Feng, Wenjia Yang, Shiwen Wang, Lina Yin, and Xiping Deng. 2024. "Long-Term Optimization of Agronomic Practices Increases Water Storage Capacity and Available Water in Soil" Agronomy 14, no. 10: 2286. https://doi.org/10.3390/agronomy14102286
APA StyleChang, F., Yang, W., Wang, S., Yin, L., & Deng, X. (2024). Long-Term Optimization of Agronomic Practices Increases Water Storage Capacity and Available Water in Soil. Agronomy, 14(10), 2286. https://doi.org/10.3390/agronomy14102286