Intelligent Rapid Asexual Propagation Technology—A Novel Aeroponics Propagation Approach
Abstract
:1. Introduction
1.1. Propagation Organs
1.2. Plant Growth Regulators
2. Micropropagation Technique
Tissue Culture
3. The Fundamental Elements of Propagation Technique
3.1. Primary Elements
All Basal Media Components | MS | W | B5 | NN | BDS | WPM | DKW | BABI | MMS |
---|---|---|---|---|---|---|---|---|---|
Components of primary elements (mg L−1) | |||||||||
KNO3 | 1900.0 | 80.0 | 2500.0 | 950.0 | 2500.0 | - | - | 2500.0 | 950.0 |
K2SO4 | - | - | - | - | - | 990.0 | 1559.0 | - | - |
NH4NO3 | 1650.0 | - | - | 720.0 | 320.0 | 400.0 | 1416.0 | 320.0 | 825.0 |
CA(NO3)2·4H2O | - | 300.0 | - | - | - | 556.0 | 1948.0 | - | - |
NH4H2PO4 | - | - | - | - | 230.0 | - | - | 230.0 | - |
NaH2PO4·H2O | - | 16.5.0 | 150.0 | - | 150.0 | - | - | 150.0 | - |
(NH4)2SO4 | - | - | 134.0 | - | 134.0 | - | - | 134.0 | - |
MgSO4·7H2O | 370.0 | 720.0 | 250.0 | 185.0 | 250.0 | 370.0 | 740.0 | 250.0 | 185.0 |
KH2PO4 | 170.0 | - | - | 68.0 | - | 170.0 | 265.0 | - | 85.0 |
CaCl2·2H2O | 440.0 | - | 150.0 | 166.0 | 150.0 | 96.0 | 149.0 | 440.0 | 220.0 |
Na2SO4 | - | 200.0 | - | - | - | - | - | - | - |
KCI | - | 65.0 | - | - | - | - | - | - | - |
Components of secondary elements (mg L−1) | |||||||||
H3BO3 | 6.2 | 1.5 | 3.0 | 10.0 | 3.0 | 6.2 | 4.8 | 3.0 | 6.2 |
KI | 0.83 | 0.75 | 0.75 | - | 0.75 | - | - | 0.75 | 0.83 |
MnSO4.4H2O | 22.30 | 7.0 | - | 25.0 | - | - | - | - | 22.30 |
MnSO4·H2O | 16.9 | - | 10.0 | - | 10.0 | 22.3 | 33.5 | 10.0 | 16.9 |
ZnSO4·7H2O | 10.6 | 2.6 | 2.0 | 10.0 | 2.0 | 8.6 | - | 2.0 | 10.6 |
Zn (NO3)2·6H2O | - | - | - | - | - | - | 17 | - | - |
CuSO4·5H2O | 0.025 | - | 0.039 | 0.025 | 0.039 | 0.25 | 0.25 | 0.039 | 0.025 |
Na2MoO4·2H2O | 0.25 | - | 0.25 | 0.25 | 0.25 | 0.25 | 0.39 | 0.25 | 0.25 |
CoCl2·6H2O | 0.025 | - | 0.025 | - | 0.025 | - | - | 0.025 | 0.025 |
NiSO4·6H2O | - | - | - | - | - | - | 0.005 | - | - |
FeSO4·7H2O | 27.8 | - | 27.8 | 27.8 | 27.8 | 27.8 | 33.8 | 27.8 | 27.8 |
Na2EDTA | 37.3 | - | 37.3 | 37.3 | 37.3 | 37.3 | 45.4 | 37.3 | 37.3 |
Organic compounds and vitamins (mg L−1) | |||||||||
Myo-inositol | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
Nicotinic acid | 0.5 | 0.5 | 1.0 | 0.5 | 1 | 0.5 | 1.0 | 1.0 | 1.0 |
Pyridoxine HCl | 0.5 | 0.1 | 1.0 | 0.5 | 1 | - | 0.5 | 1.0 | 1.0 |
Thiamine HCl | 0.1 | 0.1 | 10 | 1.0 | 10 | 1.6 | 2.0 | 10.0 | 10.0 |
Cysteine HCl | - | 1.0 | - | - | - | - | - | - | - |
Ca-pantothenate | - | 1.0 | - | - | - | - | - | - | - |
Biotin | - | - | - | 0.05 | - | - | - | - | - |
Folic acid | - | - | - | 0.5 | - | - | - | - | - |
Glycine | 2.0 | 3.0 | - | 2.0 | - | - | 20.0 | - | - |
L-Glutamine | - | - | - | - | - | 250.0 | - | - | |
Sucrose (g/L) | 30.0 | 20.0 | 20.0 | 20.0 | 30.0 | 20.0 | 30.0 | 30.0 | 30.0 |
pH | 5.8 | - | 5.5 | - | 5.8 | 5.6 | 5.5 | 5.8 | 5.8 |
3.2. Secondary Elements
3.3. Source of Carbon
3.4. Vitamins
3.5. Amino Acids
3.6. Unspecified Organic Additives
3.7. Solidifying Gel Agents
4. Asexual Propagation Using Intelligent Technology, Sensor and IoT
4.1. Aeroponic Propagation
4.2. History of Aeroponic Propagation
4.3. Workability of Aeroponic Propagation
4.4. Rapid Propagation Using Aeroponic Technique
4.5. Precision in Rapid Propagation
4.6. Potential Approaches for Monitoring and Smart Control of Rapid Aeroponic Propagation
5. Smart Control and Monitoring System
5.1. Sensors
5.2. Temperature and Humidity Sensors
5.3. pH and EC Probe Sensors
5.4. Carbon Dioxide (CO2) Sensor
5.5. Water Level Sensor
5.6. Synthetic Light and Sensors
5.7. Control and Relay Module
5.8. Intelligent Control and Internet of Things (IoT) Systems in the Asexual Aeroponics Propagation
5.9. Cloud Monitoring and Storage Platform
6. Advantages of Intelligent Rapid Asexual Propagation
Disadvantages of Intelligent Rapid Asexual Propagation
7. What We Know About Asexual Rapid Propagation Techniques and What Remains
Prospects
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ICRAF. World Agroforestry Centre (ICRAF): Annual Report 2011–2012. Available online: https://cgspace.cgiar.org/handle/10947/4607 (accessed on 13 January 2022).
- Weismann, A. The significance of sexual reproduction in the theory of natural selection. Essays Hered. Kindred Biol. Probl. 1889, 1, 255–332. [Google Scholar]
- Weismann, A. Das Keimplasma Eine Theorie der Vererbung. Nature 1893, 47, 265–266. [Google Scholar] [CrossRef]
- Assogbadjo, A.E.; Sinsin, B.; De Caluwé, E.; Van Damme, P. Développement et Domestication du Baobab au Bénin. 2009. Available online: http://hdl.handle.net/1854/LU-868477 (accessed on 13 January 2022).
- Sidibe, M.; Williams, J.T. Baobab (Adasonia digitata L.) Propagation Manual; RPM Reprographics: Chichester, UK, 2002; pp. 1–102. ISBN 0854327649. [Google Scholar]
- Sharma, K.; Thapa, T. The Various Methods used for the Clonal Propagation in Horticultural Crops: A Review. Agric. Rev. 2021, 43, 229–233. [Google Scholar] [CrossRef]
- BD Editors. Asexual Reproduction—The Definitive Guide|Biology Dictionary. 2020. Available online: https://biologydictionary.net/asexual-reproduction/ (accessed on 13 January 2022).
- Chhalgri, M.A.; Khan, M.T.; Nizamani, G.S.; Yasmeen, S.; Khan, I.A.; Aslam, M.M.; Rajpar, A.A.; Tayyaba; Nizamani, F.; Nizamani, M.R.; et al. Effect of plant growth hormones on shoot and root regeneration in rose under in vitro conditions. Adv. Life Sci. 2020, 8, 93–97. [Google Scholar]
- Soni, M.; Kaur, R. Rapid in vitro propagation, conservation and analysis of genetic stability of Viola pilosa. Physiol. Mol. Biol. Plants 2014, 20, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.S.; Lin, M.G.; Liu, F.X. Rapid propagation of cut flower varieties of Oncidium by tissue culture. Biology 2009, 40, 801–806. [Google Scholar]
- Reinhardt, D.H.R.C.; Bartholomew, D.P.; Souza, F.V.D.; de Carvalho, A.C.P.P.; de Pádua, T.R.P.; Junghans, D.T.; de Matos, A.P. Advances in pineapple plant propagation. Rev. Bras. Frutic. 2018, 40, 1–22. [Google Scholar] [CrossRef]
- Tumuhimbise, R.; Talengera, D. Improved propagation techniques to enhance the productivity of Banana (Musa spp.). Open Agric. 2018, 3, 138–145. [Google Scholar] [CrossRef]
- Beshir, W.; Alemayehu, M.; Dessalegn, Y. Effect of grafting time and technique on the success rate of grafted Mango (Mangifera indica L.) in Kalu District of Amhara Region, North Eastern Ethiopia. Cogent Food Agric. 2019, 5, 01–19. [Google Scholar] [CrossRef]
- Shan, F.; Seaton, K. Semi-sterilized tissue culture for rapid propagation of grapevines (Vitis vinifera L.) using immature cuttings. HortScience 2014, 49, 949–954. [Google Scholar] [CrossRef]
- Bowman, K.D.; Albrecht, U. Efficient propagation of citrus rootstocks by stem cuttings. Sci. Hortic. 2017, 225, 681–688. [Google Scholar] [CrossRef]
- Patil, V.M.; Dhande, G.A.; Thigale, D.M.; Rajput, J.C. Micropropagation of pomegranate (Punica granatum L.) “Bhagava” cultivar from nodal explant. Afr. J. Biotechnol. 2011, 10, 18130–18136. [Google Scholar] [CrossRef]
- MeiFang, J.; Zhi, C.; JunJie, C.; MaoZi, L. Tissue culture and rapid propagation technique of red-flowered strawberry. Guangxi Zhiwu/Guihaia 2017, 37, 1395–1405. [Google Scholar]
- Nordine, A.; Bousta, D.; El Khanchoufi, A.; El Meskaoui, A. An Efficient and Rapid in Vitro Propagation System of Thymus Hyemalis Lange, a Wild Medicinal and Aromatic Plant of Mediterranean Region. Int. J. Pharma Biosci. Technol. 2013, 1, 118–129. [Google Scholar]
- Nongdam, P.; Chongtham, N. In vitro rapid propagation of Cymbidium aloifolium (L.) Sw.: A medicinally important orchid via seed culture. J. Biol. Sci. 2011, 11, 254–260. [Google Scholar] [CrossRef]
- Poornima, D.V.; Jayanna, S.G.; Kumar, V.; Gajula, H.; Rajashekar, J.; Sannabommaji, T.; Basappa, G.; Anuradha, C.M. Rapid in vitro propagation of Lucas aspera Spreng. A potential multipurpose Indian medicinal herb. Ind. Crops Prod. 2017, 107, 281–287. [Google Scholar] [CrossRef]
- Chavan, J.J.; Kshirsagar, P.R.; Gaikwad, N.B. Rapid in vitro propagation of Clematis heynei M. A. Rau: An important medicinal plant. Emir. J. Food Agric. 2012, 24, 79–84. [Google Scholar] [CrossRef]
- Doğan, M. In Vitro rapid propagation of an aquatic plant Pogostemon erectus (Dalzell) Kuntze. Anatol. J. Bot. 2019, 3, 1–6. [Google Scholar] [CrossRef]
- Kam, M.Y.Y.; Chai, L.C.; Chin, C.F. The biology and in vitro propagation of the ornamental aquatic plant, Aponogeton ulvaceus. Springerplus 2016, 5, 01–11. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.M.; Ghosh, B. A submerged culture system for rapid micropropagation of the commercially important aquarium plant, ‘Amazon sword’ (Echinodorus ‘Indian Red’). Vitr. Cell. Dev. Biol.—Plant 2019, 55, 81–87. [Google Scholar] [CrossRef]
- Ramgareeb, S.; Snyman, S.J.; van Antwerpen, T.; Rutherford, R.S. Elimination of virus and rapid propagation of disease-free sugarcane (Saccharum spp. cultivar NCo376) using apical meristem culture. Plant Cell. Tissue Organ Cult. 2010, 100, 175–181. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, W.; Saha, M.C.; Udvardi, M.K.; Kang, Y. Improved node culture methods for rapid vegetative propagation of switchgrass (Panicum virgatum L.). BMC Plant Biol. 2021, 21, 128. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Shetty, N.P.; Giridhar, P.; Ravishankar, G.A. Rapid in vitro regeneration method for Moringa oleifera and performance evaluation of field grown nutritionally enriched tissue cultured plants. 3 Biotech 2012, 2, 187–192. [Google Scholar] [CrossRef]
- Balaraju, K.; Agastian, P.; Ignacimuthu, S.; Park, K. A rapid in vitro propagation of red sanders (Pterocarpus santalinus L.) using shoot tip explants. Acta Physiol. Plant 2011, 33, 2501–2510. [Google Scholar] [CrossRef]
- Trueman, S.J.; Hung, C.D.; Wendling, I. Tissue culture of Corymbia and Eucalyptus. Forests 2018, 9, 84. [Google Scholar] [CrossRef]
- Fan, B.; He, R.; Shang, Y.; Xu, L.; Wang, N.; Gao, H.; Liu, X.; Wang, Z. System construction of virus-free and rapid-propagation technology of Baodi garlic (Allium sativum L.). Sci. Hortic. 2017, 225, 498–504. [Google Scholar] [CrossRef]
- Armas, I.; Pogrebnyak, N.; Raskin, I. A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.). Plant Methods 2017, 13, 58. [Google Scholar] [CrossRef]
- Sariçam, Ş.; Kantoğlu, K.Y.; Ellialtioğlu, Ş.Ş. Tissue Culture Applications in Lettuce (Lactuca sativa L.). Eurasian J. Agric. Res. 2014, 1, 88–95. [Google Scholar]
- Pandino, G.; Lombardo, S.; Monaco, A.L.; Ruta, C.; Mauromicale, G. Mycorrhizal Inoculation Improves Plant Growth and Yield of Micropropagated Early Globe Artichoke under Field Conditions. Agriculture 2022, 12, 114. [Google Scholar] [CrossRef]
- Hickey, M.; King, C. The Cambridge Illustrated Glossary of Botanical Terms; Cambridge University Press: Cambridge, UK, 2001; Volume 208. [Google Scholar]
- Jang, C.S.; Kamps, T.L.; Skinner, D.N.; Schulze, S.R.; Vencill, W.K.; Paterson, A.H. Functional classification, genomic organization, putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of sorghum genes with rhizome-enriched expression. Plant Physiol. 2006, 142, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- Bell, A. Plant form: An Illustrated Guide to Flowering Plant Morphology; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Mishra, S. Plant Reproduction; Discovery Publishing House: Delhi, India, 2005; pp. 120–125. ISBN 978-81-7141-955-5. [Google Scholar]
- Longman, K.A.; Wilson, R.H.F. Tropical Trees: Propagation and Planting Manuals, Rooting Cuttings of Tropical Trees, 1st ed.; Commonwealth Science Council: London, UK, 2002; p. 138. ISBN 978-0-85092-394-0. [Google Scholar]
- Mauseth, J.D. Botany: An Introduction to Plant Biology, 5th ed.; Sudbury, M.A., Ed.; Jones and Bartlett Learning: Burlington, MA, USA, 2012; p. 672. ISBN 978-1-4496-6580-7. [Google Scholar]
- Skoog, F.; Miller, C.O. Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp. Soc. Exp. Biol. 1957, 11, 118–131. [Google Scholar] [PubMed]
- Hasegawa. In vitro propagation of rose (Tissue culture). HortScience 1979, 14, 610–612. [Google Scholar] [CrossRef]
- VanDerZanden, A.M. How Hormones and Growth Regulators Affect your Plants|OSU Extension Service. 2012. Available online: https://extension.oregonstate.edu/gardening/techniques/how-hormones-growth-regulators-affect-your-plants (accessed on 13 January 2022).
- Curaba, J.; Singh, M.B.; Bhalla, P.L. miRNAs in the crosstalk between phytohormone signalling pathways. J. Exp. Bot. 2014, 65, 1425–1438. [Google Scholar] [CrossRef] [PubMed]
- Phillips, G.C.; Garda, M. Plant tissue culture media and practices: An overview. Vitr. Cell. Dev. Biol.—Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Rost, T.L.; Barbour, M.G.; Thornton, R.M.; Weier, T.E.; Stocking, C.R. Botany: A Brief Introduction to Plant Biology; Wiley: Hoboken, NJ, USA, 1984; ISBN 9780471874546. [Google Scholar]
- Bisht, T.S.; Rawat, L.; Chakraborty, B.; Yadav, V. A Recent Advances in Use of Plant Growth Regulators (PGRs) in Fruit Crops—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1307–1336. [Google Scholar] [CrossRef]
- Batool, Z.; Arash, F.; Zahra, T. Salicylic Acid In Reducing Effect of Salinity on Some Growth Parameters of Black Cumin (Nigella sativa). J. Plant Process Funct. 2019, 8, 287–298. [Google Scholar]
- El-Keltawi, N.; Barham, I.H.; El-Naggar, A.I.; Rekaby, A.F. Investigation on the responses of cumin plants to certain horticultural agro-chemicals. 2.-influences of gibberellic acid, GA3 on foliage growth, fruit yield, essential oil and chemical composition. Egypt. J. Hortic. 2000, 27, 459–478. [Google Scholar]
- Reddy, P.P.; Hore, J.K. Role of Growth Regulators on Fenugreek (Trigonella foenum-graecum L.). Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 25–32. [Google Scholar] [CrossRef]
- Khatoon, R.; Moniruzzaman, M.; Moniruzzaman, M. Effect of foliar spray of GA3 and NAA on sex expression and yield of bitter gourd. Bangladesh J. Agric. Res. 2019, 44, 281–290. [Google Scholar] [CrossRef]
- Reja, M.S.; Sikder, S.; Hasan, M.A.; Pramanik, S.K. Effect of Gibberellic Acid (GA3) on Morpho-physiological Traits and Yield Performance of Chickpea (Cicer arietinum L.). IOSR J. Agric. Vet. Sci. 2020, 13, 20–28. Available online: https://www.researchgate.net/publication/344042940_Effect_of_Gibberellic_Acid_GA3_on_Morpho-physiological_Traits_and_Yield_Performance_of_Chickpea_Cicer_arietinum_L#fullTextFileContent (accessed on 28 September 2024).
- Ashwini, A.; Pm, M.; Kulkarni, B.S.; Kumar, R.; Taj, A.; Kumar, M.S. Effect of plant growth regulators on vegetative and flowering parameters of gladiolus (Gladiolus hybridus L.) cv. adigo yellow. Int. J. Chem. Stud. 2019, 7, 1553–1556. [Google Scholar]
- Geetha, K.; Sadewarte, K.T.; Mahorkar, V.K.; Joshi, P.S.; Deo, D.D. A note on the effect of foliar application of plant growth regulators on seed yield in China aster. Orissa J. Hortic. 2000, 28, 113–114. [Google Scholar]
- Dalai, S.; Singh, M.K.; Singh, K.; Kumar, M.; Malik, S.; Kumar, V. Effect of Foliar Application of GA 3 and NAA on Growth, Flower-Ing Yield and Yield Attributes of Cucumber [Cucumis Sativus L.]). Ann. Hortic. 2015, 8, 181. [Google Scholar] [CrossRef]
- Aryal, S. Micropropagation of plants. In Plant Biology and Biotechnology: Volume II: Plant Genomics and Biotechnology; Springer: Heidelberg, Germany, 2019; pp. 329–346. [Google Scholar]
- Yeole, M.P.; Ghosle, Y.N.; Gurunani, S.G.; Dhole, S.M. Plant Tissue Culture Techniques: A Review for Future View. Crit. Rev. Pharm. Sci. 2016, 5, 16–24. [Google Scholar]
- Gaikwad, A.V.; Singh, S.K.; Gilhotra, R. Plant Tissue Culture—A Review. SGVU J. Pharm. Res. Educ. 2017, 2, 217–220. [Google Scholar]
- Horn, W.; Schlegel, G.; John, K. Micropropagation of Roses (ROSA HYBR.). Acta Hortic. 1988, 226, 623–630. [Google Scholar] [CrossRef]
- Bhojwani, S.S. Plant Tissue Culture: Applications and Limitations; Elsevier: Amsterdam, Netherlands, 1990; Volume 461. [Google Scholar]
- Struik, P.C.; Wiersema, S.G. Seed Potato Technology; Wageningen Acdemic Publishers: Wageningen, The Netherlands, 1999. [Google Scholar]
- Naik, P.; Chakrabarti, S.; Sarkar, D.; Birhman, R. Potato Biotechnology: Indian Perspective; Indian Potato Association: Shimla, India, 2000; pp. 194–211. [Google Scholar]
- Thorpe, T.A. History of plant tissue culture. Mol. Biotechnol. 2007, 37, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Street, H.E. Growth in Organised and Unorganised Systems, 5th ed.; Steward, F.C., Ed.; Plant physiology; Press NYA: New York, NY, USA, 1969; pp. 3–224. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- White, P.R. Nutrient deficiency studies and improved inorganic nutrients for cultivation of excised tomato roots. Growth 1963, 7, 53–65. [Google Scholar]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension culture of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Nitsch, J.P.; Nitsch, C. Haploid plants from pollen grains. Science 1969, 163, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, D.I.; Short, K.C. Improved growth of tissue cultures of the onion Allium cepa. Physiol. Plant 1977, 41, 70–77. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Comb. Proc. Int. Plant Prop. Soc. 1980, 30, 421–427. [Google Scholar]
- Driver, J.A.; Kuniyuki, A.H. In vitro propagation of Paradox walnut rootstocks. HortScience 1984, 18, 506–509. [Google Scholar] [CrossRef]
- Greenway, M.B.; Phillips, I.C.; Lloyd, M.N.; Hubstenberger, J.F.; Phillips, G.C. A nutrient medium for diverse applications and tissue growth of plant species in vitro. In Vitro Cell Dev. Biol.–Plant 2012, 48, 403–410. [Google Scholar] [CrossRef]
- Herman, E.B. Recent advances in plant tissue culture XXI. In Media and Techniques for Growth, Regeneration and Storage; Agritech Consultants Inc.: Shrub Oak, NY, USA, 2015; p. 148. [Google Scholar]
- Singh, P.R.; Singh, L.J. In vitro propagation for improvement of medicinal plants: A review. J. Pharmacogn. Phytochem. 2021, 10, 1484–1489. [Google Scholar]
- Torres, K.C. Tissue Culture Techniques for Horticultural Crops; Springer: Boston, MA, USA, 1988; p. 224. ISBN 978-1-4615-9758-2. [Google Scholar]
- Abobkar, I.M.S.; Elshahed, A.M. Plant Tissue Culture Media. Recent Adv. Plant Vitr. Cult. 2012, 2, 29–40. [Google Scholar] [CrossRef]
- Debergh, P.C.; Read, P.E. Micropropagation; Springer: Dordrecht, The Netherlands, 1991; pp. 1–13. [Google Scholar]
- George, E.F. Plant Propagation by Tissue Culture: The Technology, 2nd ed.; Exegetics: Worcester, UK, 1993. [Google Scholar]
- Nguyen, S.K.; Sophonputtanaphoca, S.; Kim, E.; Penner, M.H. Hydrolytic Methods for the Quantification of Fructose Equivalents in Herbaceous Biomass. Appl. Biochem. Biotechnol. 2009, 158, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Ohira, K.; Makoto, I.; Ojima, K. Thiamine requirements of various plant cells in suspension culture. Plant Cell Physiol. 1976, 17, 583–590. [Google Scholar]
- Vasil, I.K.; Thorpe, T.A. Plant Cell and Tissue Culture, 1st ed.; Kluwer Academic: Norwell, MA, USA, 1994. [Google Scholar]
- Alm, J.J.; Qian, H.; Le Blanc, K. Clinical Grade Production of Mesenchymal Stromal Cells. In Tissue Engineering, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 427–469. [Google Scholar] [CrossRef]
- Bhatia, N. 7 Organic Supplements Used in Plant Tissue Culture Media. Lab Assocciates. 2021. Available online: https://labassociates.com/8-organic-supplements-used-in-plant-tissue-culture-media (accessed on 8 March 2022).
- Thejaswini, R.; Narasimhan, S. Undefined Organic Additives Stimulates in Vitro Seed Germination of Dendrobium Ovatum (Willd.) Kraenzl, a Medicinal Orchid. Int. J. Pharma Med. Biol. Sci. 2017, 6, 29–31. [Google Scholar] [CrossRef]
- Fridborg, G.; Eriksson, T. Effects of activated charcoal on growth and morphogenesis in cell cultures. Physiol. Plant 1975, 34, 306–308. [Google Scholar] [CrossRef]
- Fridborg, G.; Pederson, M.; Landstrom, L.; Eriksson, T. The effect of activated charcoal on tissue cultures: Adsorption of metabolites inhibiting morphogenesis. Physiol. Plant 1978, 43, 104–106. [Google Scholar] [CrossRef]
- Wang, W.C.; Yung, Y.L.; Lacis, T.M.; Hansen, J.E. Greenhouse effects due to man-made perturbation of trace gases. Science 1976, 194, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakis, S.L. Haploid plants from anthers of tobacco enhancement with charcoal. Planta 1974, 115, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Daud, N.; Taha, R.M.; Noor, N.N.M.; Alimon, H. Potential of alternative gelling agents in media for the in vitro micro-propagation of Celosia sp. Int. J. Bot. 2011, 7, 183–188. [Google Scholar] [CrossRef]
- Cohen, D. The culture medium. Acta Hort. 1995, 393, 15–24. [Google Scholar] [CrossRef]
- Kumar, A.; Palni, L.M.S.; Nandi, S.K. The effect of light source and gelling agent on micropropagation of Rosa damascenes Mill. and Rhynchostylis retusa L.) Bl. J. Hort. Sci. Biotech 2003, 78, 786–792. [Google Scholar] [CrossRef]
- MacRae, S.; Van Staden, J. In vitro culture of Eucalyptus grandis: Effect of gelling agents on propagation. J. Plant Physiol. 1990, 137, 249–251. [Google Scholar] [CrossRef]
- Savvas, D. Hydroponics: A modern technology supporting the application of integrated crop management in greenhouse. J. Food Agric. Environ. 2003, 1, 80–86. [Google Scholar]
- Gruda, N. Do Soilless Culture Systems Have an Influence on Product Quality of Vegetables. J. Appl. Bot. Food Qual. 2009, 82, 141–147. Available online: https://www.researchgate.net/publication/237821108_Does_soilless_culture_have_an_influence_on_product_quality_of_vegetables (accessed on 28 September 2024).
- Olubanjo, O.O.; Alade, A.E. Growth and Yield Response of Tomato Plants Grown under Different Substrates Culture. J. Sustain. Technol. 2018, 9, 110–123. [Google Scholar]
- Syed, A.-U.-A.; Khan, Z.A.; Chattha, S.H.; Shaikh, I.A.; Ali, M.N.H.A.; Bughio, Z.-U.-R.; Dahri, S.H.; Buriro, G.B. Comparative Assessment of Hydroponic and Geoponic Cultivation Systems for Sustainable Spinach Cultivation. Pak. J. Agric. Res. 2021, 34, 678–688. [Google Scholar] [CrossRef]
- Naville, E.H. The Temple of Deir El-Bahari (Parts I–III); Memoirs of the Egypt Exploration Fund: London, UK, 1913; Volume 16, pp. 12–17. [Google Scholar]
- Tagle, S.; Benoza, H.; Pena, R.; Oblea, A. Development of an Indoor Hydroponic Tower for Urban Farming. In Proceedings of the DLSU Innovation and Technology Fair, Manila, Philippines, 22–23 November 2018; pp. 1–13. [Google Scholar]
- Okasha, A.M.; Eldib, E.M.; Elmetwalli, A.H.; Farooque, A.A.; Yaseen, Z.M.; Elsayed, S. Maximization of Water Productivity and Yield of Two Iceberg Lettuce Cultivars in Hydroponic Farming System Using Magnetically Treated Saline Water. Agriculture 2022, 12, 101. [Google Scholar] [CrossRef]
- Benzle, K.; Cornish, K. Improved axenic hydroponic whole plant propagation for rapid production of roots as transformation target tissue. Plant Methods 2017, 13, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Sabir, F.K.; Sabir, A. Effects of Different Storage Conditions on Rooting and Shooting Performance of Grapevine (Vitis vinifera L.) Cuttings in Hydroponic Culture System. Int. J. Sustain. Agric. Res. 2018, 5, 46–53. [Google Scholar] [CrossRef]
- Ritter, E.; Angulo, B.; Riga, P.; Herrán, C.; Relloso, J.; San Jose, M. Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Res. 2001, 44, 127–135. [Google Scholar] [CrossRef]
- Farran, I.; Mingo-Castel, A.M. Potato minituber production using aeroponics: Effect of plant density and harvesting intervals. Am. J. Potato Res. 2006, 83, 47–53. [Google Scholar] [CrossRef]
- Tokunaga, H.; Anh, N.H.; Van Dong, N.; Ham, L.H.; Hanh, N.T.; Hung, N.; Ishitani, M.; Tuan, L.N.; Utsumi, Y.; Vu, N.A.; et al. An efficient method of propagating cassava plants using aeroponic culture. J. Crop Improv. 2020, 34, 64–83. [Google Scholar] [CrossRef]
- Hoang, N.N.; Kitaya, Y.; Shibuya, T.; Endo, R. Development of an in vitro hydroponic culture system for wasabi nursery plant production—Effects of nutrient concentration and supporting material on plantlet growth. Sci. Hortic. 2019, 245, 237–243. [Google Scholar] [CrossRef]
- Angel, R.D.V.-E.; Kantar, M.B.; Branca, J.; Moore, S.; Frederiksen, M.K.; Hagen, L.; Hussain, T.; Baumler, D.J. Aeroponic cloning of Capsicum spp. Horticulturae 2019, 5, 30. [Google Scholar] [CrossRef]
- Srikanth, S.; Choong, T.W.; Yan, A.; He, J.; Chen, Z. An efficient method for adventitious root induction from stem segments of brassica species. Front. Plant Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Oakes, A.D.; Kazcmar, N.A.; Maynard, C.A.; Powell, V.A. Vegetative Propagation of American Elm (Ulmus Americana) Varieties from Softwood Cuttings. J. Environ. Hortic. 2012, 30, 73–76. [Google Scholar] [CrossRef]
- Peterson, B.J.; Burnett, S.E.; Sanchez, O. Submist is effective for propagation of korean lilac and inkberry by stem cuttings. Horttechnology 2018, 28, 378–381. [Google Scholar] [CrossRef]
- Choudhary, P.; Kataria, V. In vitro culture in combination with aeroponics is an efficient means of mass propagation of Sarcostemma acidum: A rare medicinal plant of Indian arid zone. In Vitro Cell. Dev. Biol.—Plant 2022, 58, 372–381. [Google Scholar] [CrossRef]
- Mehandru, P.; Shekhawat, N.S.; Rai, M.K.; Kataria, V.; Gehlot, H.S. Evaluation of aeroponics for clonal propagation of Caralluma edulis, Leptadenia reticulata and Tylophora indica—Three threatened medicinal Asclepiads. Physiol. Mol. Biol. Plants 2014, 20, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Maroya, N.; Balogun, M.; Asiedu, R.; Aighewi, B.; Kumar, P.L.; Augusto, J. Yam Propagation Using ‘Aeroponics’ Technology. Annu. Res. Rev. Biol. 2014, 4, 3894–3903. [Google Scholar] [CrossRef]
- Pala, M.; Mizenko, L.; Mach, M.; Reed, T. Aeroponic Greenhouse as an Autonomous System Using Intelligent Space for Agriculture Robotics. In Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2014; Volume 274, pp. 83–93. ISBN 9783319055817. [Google Scholar] [CrossRef]
- Ferentinos, K.P.; Albright, L.D.; Selman, B. Neural network-based detection of mechanical, sensor and biological faults in deep-trough hydroponics. Comput. Electron. Agric. 2003, 40, 65–85. [Google Scholar] [CrossRef]
- Francis, F.; Vishnu, P.L.; Jha, M.; Rajaram, B. IOT-based automated aeroponics system. Lect. Notes Electr. Eng. 2018, 492, 337–345. [Google Scholar] [CrossRef]
- Gopinath, P.; Vethamoni, P.I.; Gomathi, M. Aeroponics Soilless Cultivation System for Vegetable Crops. Chem. Sci. Rev. Lett. 2017, 6, 838–849. [Google Scholar]
- Barker, B.T.P. Studies on root development. Long Asht. Res. Stn. Ann. Rep. 1921, 9, 9–57. [Google Scholar]
- Eshel, A.; Grünzweig, J.M. Root-shoot allometry of tropical forest trees determined in a large-scale aeroponic system. Ann. Bot. 2012, 112, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Bohme, M.; Pinker, I. Asian leafy vegetables and herbs cultivated in substrate culture and aeroponics in greenhouse. Acta Hortic. 2014, 1034, 155–162. [Google Scholar] [CrossRef]
- Tunio, M.H.; Gao, J.; Lakhiar, I.A.; Solangi, K.A.; Qureshi, W.A.; Shaikh, S.A.; Chen, J. Influence of Atomization Nozzles and Spraying Intervals on Growth, Biomass Yield, and Nutrient Uptake of Butter-Head Lettuce under Aeroponics System. Agronomy 2021, 11, 97. [Google Scholar] [CrossRef]
- Rykaczewska, K. The potato minituber production from microtubers in aeroponic culture. Plant Soil Environ. 2016, 62, 210–214. [Google Scholar] [CrossRef]
- Scoggins, H.L.; Mills, H.A. Poinsettia growth, tissue nutrient concentration, and nutrient uptake as influenced by nitrogen form and stage of growth. J. Plant Nutr. 2008, 21, 191–198. [Google Scholar] [CrossRef]
- Casillas, A. Propagation of Cannabis sativa for commercial production. Acta Hortic. 2017, 1174, 157–158. [Google Scholar] [CrossRef]
- Briggs, B.A. An experiment in air-rooting. Int. Plant Propagator’s Soc. 1966, 16, 139–140. [Google Scholar]
- Nir, I. Growing plants in aeroponics growth system. Acta Hortic. 1982, 126, 435–448. [Google Scholar] [CrossRef]
- Stoner, R.J. Rooting in Air. Greenh. Grow. 1983, 11, 1–7. [Google Scholar]
- Soffer, H.; Burger, D.W. Effects of Dissolved Oxygen Concentrations in Aero-hydroponics on the Format ion and Growth of Adventitious Roots. J. Am. Soc. Hortic. Sci. 1988, 113, 218–221. [Google Scholar] [CrossRef]
- Stoner, R.J. Aeroponics Versus Bed and Hydroponic Propagation. Florists’ Rev. 1983, 173, 4477. [Google Scholar]
- Molitor, H.; Fischer, M. Effect of several parameters on the growth of chrysanthemum stock plants in aeroponics. Acta Hortic. 1999, 481, 179–186. [Google Scholar] [CrossRef]
- Stoner, R.; Clawson, J. A High Performance, Gravity Insensitive, Enclosed Aeroponic System for Food Production in Space; NASA Small Business Innovation Research (SBIR) Program, Report Number NAS10-98030, 1998. Available online: https://legacy.www.sbir.gov/content/high-performance-gravity-insensitive-enclosed-aeroponic-system-food-production-space-0 (accessed on 28 September 2024).
- Hussain Tunio, M.; Gao, J.; Ahmed Qureshi, W.; Ali Sheikh, S.; Chen, J.; Ali Chandio, F.; Ali Lakhiar, I.; Ali Solangi, K. Effects of droplet size and spray interval on root-to-shoot ratio, photosynthesis efficiency, and nutritional quality of aeroponically grown butterhead lettuce. Int. J. Agric. Biol. Eng. 2022, 15, 79–88. [Google Scholar] [CrossRef]
- Sharma, U.; Barupal, M.; Shekhawat, N.; Kataria, V. Aeroponics for propagation of horticultural plants: An approach for vertical farming. Hortic. Int. J. 2018, 2, 443–444. [Google Scholar] [CrossRef]
- Rodriguez Julian, F.M.; de Haan, S.; Piedra, J.L.A.; Maldonado, L.; Hareau, G.; Barker, I. Technical and Economic Analysis of Aeroponics and other Systems for Potato Mini-Tuber Production in Latin America. Am. J. Potato Res. 2013, 90, 357–368. [Google Scholar] [CrossRef]
- Hussey, G.; Stacey, N.J. In Vitro Propagation of Potato (Solanum tuberosum L.). Ann. Bot. 1981, 48, 787–796. [Google Scholar] [CrossRef]
- Nichols, M.A. Aeroponics and Potatoes. Acta Hortic. 2005, 670, 201–206. [Google Scholar] [CrossRef]
- Stoner, R.; Schorr, S. Aeroponics versus bed and hydroponic propagation “The process of propagating and growing plants in air”. Florists’ Rev. 1985, 173, 49–51. [Google Scholar]
- Tsoka, O.; Demo, P.; Nyende, A.B.; Kamau, N. Seed Production of Selected Potato (Solanum tuberosum L.) Clones under Aeroponic Conditions; Jomo Kenyetta University of Agriculture and Technology: Nairobi, Kenya, 2008. [Google Scholar]
- Hayden, A.L.; Brigham, L.A.; Giacomelli, G.A. Aeroponic cultivation of ginger (Zingiber officinale) rhizomes. Acta Hortic. 2004, 659, 397–402. [Google Scholar] [CrossRef]
- Xu, Y.; Marron, M.T.; Seddon, E.; McLaughlin, S.P.; Ray, D.T.; Whitesell, L.; Leslie Gunatilaka, A.A. 2,3-Dihydrowithaferin A-3beta-O-sulfate, a new potential prodrug of withaferin A from aeroponically grown with Ania somnifera. Bioorg. Med. Chem. 2009, 17, 2210–2214. [Google Scholar] [CrossRef]
- Pagliarulo, C.L.; Hayden, A. Potential for Greenhouse Aeroponic Cultivation of Medicinal Root Crops. 2010. Available online: https://www.semanticscholar.org/paper/POTENTIAL-FOR-GREENHOUSE-AEROPONIC-CULTIVATION-OF-Pagliarulo-Hayden/0e07ef58d004cf47765b27e765f9bec5d6e3ad0c (accessed on 2 February 2022).
- Hayden, A.L. Aeroponic and hydroponic systems for medicinal herb, rhizome, and root crops. Hortscience 2006, 41, 536–538. [Google Scholar] [CrossRef]
- Salachas, G.; Savvas, D.; Argyropoulou, K.; Tarantillis, P.A.; Kapotis, G. Yield and nutritional quality of aeroponically cultivated basil as affected by the available root-zone volume. Emirates J. Food Agric. 2015, 27, 911–918. [Google Scholar] [CrossRef]
- Kumari, A.; Baskaran, P.; Chukwujekwu, J.C.; de Kock, C.A.; Smith, P.J.; Van Staden, J. The changes in morphogenesis and bioactivity of Tetradenia riparia, Mondia whitei and Cyanoptis speciosa by an aeroponic system. Ind. Crops Prod. 2016, 84, 199–204. [Google Scholar] [CrossRef]
- Haque, M.I.; Singh, P.K.; Ghuge, S.; Kumar, A.; Chandra Rai, A.; Kumar, A.; Modi, A. A general introduction to and background of plant tissue culture: Past, current, and future aspects. In Advances in Plant Tissue Culture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–30. ISBN 9780323907958. [Google Scholar]
- Rihan, H.; Kareem, F.; El-Mahrouk, M.; Fuller, M. Artificial Seeds (Principle, Aspects and Applications). Agronomy 2017, 7, 71. [Google Scholar] [CrossRef]
- Peterson, B.J.; Sanchez, O.; Burnett, S.E.; Hayes, D.J. Comparison of four systems for propagation of coleus by stem cuttings. Horttechnology 2018, 28, 143–148. [Google Scholar] [CrossRef]
- Roberto, S.R.; Colombo, R.C. Innovation in Propagation of Fruit, Vegetable and Ornamental Plants. Horticulturae 2020, 6, 23. [Google Scholar] [CrossRef]
- Kakuhenzire, R.; Otazu, V.; Tibanyendera, D.; Kashaija, I.N.; Lemaga, B.; Kimoone, G.; Kesiime, V.E.; Ortiz, O.; Barker, I. Improving minituber production from tissue-cultured potato plantlets with aeroponic technology. Int. J. Agric. Environ. Res. 2017, 234–241. [Google Scholar]
- Joe, M. Signs That Your Plants May Be Struggling with Incorrect EC. Blog by Bluelab. 2021. Available online: https://blog.bluelab.com/signs-of-incorrect-ec-plants#:~:text=EC is really important%2C as,will have a nutrient deficiency (accessed on 27 July 2022).
- Sumarni, E.; Farid, N.; Darjanto, D.; Ardiansyah, A.; Soesanto, L. Effect of electrical conductivity (EC) in the nutrition solution on aeroponic potato seed production with root zone cooling application in tropical Lowland, Indonesia. Agric. Eng. Int. CIGR J. 2019, 21, 70–77. [Google Scholar]
- da Silva Filho, J.B.; Fontes, P.C.R.; Cecon, P.R.; McGiffen, M.E. Evaluation of “UFV Aeroponic System” to Produce Basic Potato Seed Minitubers. Am. J. Potato Res. 2018, 95, 443–450. [Google Scholar] [CrossRef]
- Abdullateef, S.; Böhme, M.H.; Pinker, I. Potato minituber production at different plant densities using an aeroponic system. Acta Hortic. 2012, 927, 429–436. [Google Scholar] [CrossRef]
- Regas, T.; Han, J.-H.; Pauli, C.S.; Park, S.-H. Employing Aeroponic Systems for the Clonal Propagation of Cannabis. J. Vis. Exp. 2021, 178, 102–117. [Google Scholar] [CrossRef]
- Rahman, M.H.; Islam, M.J.; Azad, M.O.K.; Rana, M.S.; Ryu, B.R.; Lim, Y.-S. LED Light Pre-Treatment Improves Pre-Basic Seed Potato (Solanum tuberosum L. cv. Golden King) Production in the Aeroponic System. Agronomy 2021, 11, 1627. [Google Scholar] [CrossRef]
- Calori, A.H.; Factor, T.L.; Feltran, J.C.; de Araujo, H.S.; Purquerio, L.F.V. Can nitrogen reduction be used to increase seed potato minituber production in an aeroponic system? J. Plant Nutr. 2022, 45, 1572–1581. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Jianmin, G.; Syed, T.N.; Chandio, F.A.; Buttar, N.A.; Qureshi, W.A. Monitoring and Control Systems in Agriculture Using Intelligent Sensor Techniques: A Review of the Aeroponic System. J. Sens. 2018, 2018, 8672769. [Google Scholar] [CrossRef]
- Torres-Tello, J.; Ko, S.-B. Interpretability of artificial intelligence models that use data fusion to predict yield in aeroponics. J. Ambient Intell. Humaniz. Comput. 2021, 14, 3331–3342. [Google Scholar] [CrossRef]
- Caya, M.V.C.; Cruz, J.C.D.; Estrella, A.M.C.; Mendoza, J.C.A. Fuzzy Controlled LED Lighting Compensation for Aeroponics System. In Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 28–30 November 2021; pp. 1–6. [Google Scholar]
- Salazar, J.D.R.; Becerra, C.J.E.; Velasco, F.E.H. Growing arugula plants using aeroponic culture with an automated irrigation system. Int. J. Agric. Biol. Eng. 2020, 13, 52–56. [Google Scholar] [CrossRef]
- Rahmad, F.I.; Tanti, L.; Puspasari, R.; Ekadiansyah, E.; Agung Fragastia, V. Automatic Monitoring and Control System in Aeroponic Plant Agriculture. In Proceedings of the 2020 8th International Conference on Cyber and IT Service Management (CITSM), Pangkal Pinang, Indonesia, 23–24 October 2020; pp. 1–5. [Google Scholar]
- Kerns, S.C.; Lee, J.-L. Automated Aeroponics System Using IoT for Smart Farming. Eur. Sci. J. 2017, 13, 10–15. [Google Scholar] [CrossRef]
- Jie, H.; Kong, L.S. Growth and photosynthetic responses of three aeroponically grown lettuce cultivars (Lactuca sativa L.) to different rootzone temperatures and growth irradiances under tropical aerial conditions. J. Hortic. Sci. Biotechnol. 1998, 73, 173–180. [Google Scholar] [CrossRef]
- Rahman, F.; Ritun, I.J.; Ahmed Biplob, M.R.; Farhin, N.; Uddin, J. Automated Aeroponics System for Indoor Farming using Arduino. In Proceedings of the 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 25–29 June 2018; pp. 137–141. [Google Scholar]
- Srivastava, D.; Kesarwani, A. Shivani Dubey Measurement of Temperature and Humidity by using Arduino Tool and DHT11. Int. Res. J. Eng. Technol. 2018, 876, 876–878. [Google Scholar]
- Resh, H.M. A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781439878699. [Google Scholar]
- Teixeira, J.; Pereira, S. High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Environ. Exp. Bot. 2007, 60, 121–126. [Google Scholar] [CrossRef]
- Trauger, M.; Hile, A.; Sreenivas, K.; Shouse, E.M.; Bhatt, J.; Lai, T.; Mohandass, R.; Tripathi, L.; Ogden, A.J.; Curtis, W.R. CO2 supplementation eliminates sugar-rich media requirement for plant propagation using a simple inexpensive temporary immersion photobioreactor. Plant Cell Tissue Organ Cult. 2022, 150, 57–71. [Google Scholar] [CrossRef]
- He, J.; Austin, P.T.; Lee, S.K. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants. J. Exp. Bot. 2010, 61, 3959–3969. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; Lee, J.J.; Shin, J.; Kim, J.H.; Hong, S.; Kim, S. Resistive Water Level Sensors Based on AgNWs/PEDOT:PSS-g-PEGME Hybrid Film for Agricultural Monitoring Systems. ACS Omega 2022, 7, 15459–15466. [Google Scholar] [CrossRef]
- Sutulienė, R.; Laužikė, K.; Pukas, T.; Samuolienė, G. Effect of Light Intensity on the Growth and Antioxidant Activity of Sweet Basil and Lettuce. Plants 2022, 11, 1709. [Google Scholar] [CrossRef]
- Keim, R. What Is a Microcontroller? The Defining Characteristics and Architecture of a Common Component—Technical Articles. 2019. Available online: https://www.allaboutcircuits.com/technical-articles/what-is-a-microcontroller-introduction-component-characteristics-component/ (accessed on 9 December 2022).
- Khaing, K.K.; Srujan Raju, K.; Sinha, G.R.; Swe, W.Y. Automatic Temperature Control System Using Arduino; Springer: Singapore, 2020; pp. 219–226. [Google Scholar] [CrossRef]
- Chan, H.C.Y. Internet of Things Business Models. J. Serv. Sci. Manag. 2015, 8, 552–568. [Google Scholar] [CrossRef]
- Park, D.-H.; Kang, B.-J.; Cho, K.-R.; Shin, C.-S.; Cho, S.-E.; Park, J.-W.; Yang, W.-M. A Study on Greenhouse Automatic Control System Based on Wireless Sensor Network. Wirel. Pers. Commun. 2011, 56, 117–130. [Google Scholar] [CrossRef]
- Laksono, P.; Idris, I.; Sani, M.I.; Putra, D.N. Lab Prototype of Wireless Monitoring and Control for Seed Potatoes Growing Chamber. Proc. Asia-Pac. Adv. Netw. 2014, 37, 20. [Google Scholar] [CrossRef]
- Anitha, P.; Periasamy, P.S. Energy Efficient Green House Monitoring in the Aeroponics System using Zigbee Networks. Asian J. Res. Soc. Sci. Humanit. 2016, 6, 2243. [Google Scholar] [CrossRef]
- NASA. NASA Spinoff; Progressive plant growing has business blooming. In Environmental and Agricultural Resources; NASA Spinoff: New York, NY, USA, 2006. [Google Scholar]
S.No | Name of Plant | Plant Type | Method of Propagation | Citation |
---|---|---|---|---|
1 | Rosa Indica L. | Flower | Tissue culture | [8] |
2 | Viola pilosa | In vitro propagation | [9] | |
3 | Oncidium | Tissue culture | [10] | |
4 | Ananas comosus | Fruit | Vegetative propagation | [11] |
5 | Musa spp. | Tissue culture | [12] | |
6 | Mangifera indica L. | Vegetative propagation | [13] | |
7 | Vitis vinifera L. | Tissue Culture | [14] | |
8 | Citrus | Stem cutting propagation | [15] | |
9 | Punica granatum L. | Micropropagation | [16] | |
10 | Fragaria×ananasa | Tissue culture | [17] | |
11 | Thymus hyemalis L. | Medicinal | Micropropagation | [18] |
12 | cymbidium | Seed culture | [19] | |
13 | Leucas aspera | In vitro propagation | [20] | |
14 | Deccan Clematis | Micropropagation | [21] | |
15 | Pogostemon erectus | Aquatic | Tissue culture | [22] |
16 | A. ulvaceus | Micropropagation | [23] | |
17 | E. grisebachii | submerged culture system | [24] | |
18 | Saccharum spp. | Grass | Apical meristem culture | [25] |
19 | Panicum virgatum L. | Node culture methods | [26] | |
20 | Moringa oleifera | Tree | Tissue Culture | [27] |
21 | Pterocarpus santalinus L. | Shoot culture | [28] | |
22 | Corymbia | Tissue Culture | [29] | |
23 | Eucalyptus | Tissue Culture | [29] | |
24 | Allium sativum L. | Vegetable | Tissue culture | [30] |
25 | Lactuca sativa L. | Tissue culture | [31,32] | |
26 | Cynara cardunculus | Micropropagation | [33] |
Plant Developmental Stage | ||||||||
---|---|---|---|---|---|---|---|---|
Embryo | Germination | Stress Response | Root | Leaf | Phase Transition | Flower | Senescence | |
Suitable growth regulator hormones | Auxin, Cytokinin Gibberellins Ethylene | Auxin, Cytokinin Abscisic acid Gibberellins Ethylene | Auxin, Cytokinin Abscisic acid Gibberellins Ethylene Jasmonic acid | Auxin, Cytokinin Abscisic acid Gibberellins Ethylene Jasmonic acid | Auxin, Cytokinin Abscisic acid Ethylene Jasmonic acid | Abscisic acid Gibberellins | Auxin, Cytokinin Gibberellins Ethylene Jasmonic acid | Auxin, Cytokinin Abscisic acid Gibberellins Ethylene Jasmonic acid |
S.No. | Basal Medium | Explanation | Citation |
---|---|---|---|
1. | Murashige and Skoog (MS) | This medium is the most widely used in the scientific community; it was discovered by chance while looking for growth regulators. Although it is marked as MS, any number added to it (e.g., MS5) indicates the presence of sucrose 5 g/L. Although this medium is extensively used, it lacks ammonium nitrogen so it does not produce optimal results with many species. | [64] |
2. | White Medium (W) | This medium was produced for the root growth of tomato plants. It is high in magnesium sulfate and low in other salt concentrations due to its lower nitrate content and is only suited for Apiaceae and Musaceae family plants. | [65] |
3. | Gamborg (B5) | B5 was created with increased quantities of potassium nitrate since it was developed for the Fabaceae or Leguminosae family plants and is best suited for them. | [66] |
4. | Nitsch and Nitsch media (NN) | NN was created for the Solanaceae family plant anther callus culture and has greater folic, biotin, and thiamine concentrations and is suitable for plant anther culture. | [67] |
5. | Modified Gamborg (BDS) | This basal medium was a modified variation of Gamborg with the inclusion of ammonium nitrate and monobasic ammonium phosphate that was used for the proliferation of Allium spp. | [68] |
6. | Woody Plant Medium (WPM) | This medium was developed for the Kalmia latifolia plant and has since been shown to be effective for the majority of woody plants. | [69] |
7. | Driver and Kuniyuki Woody Plant (DKW) | As WPM has lesser values of ammonium and total nitrogen, it was modified and thus was formulated with increased sulfate levels. These levels can help in propagating sulfate-loving plants. | [70] |
8. | Modified BDS (BABI) | The BDS medium has recently been modified for Solanaceae family plants, but it may also be used to benefit other monocots, dicots, and certain woody plants. | [71] |
9. | Modified Murashige and Skoog (MMS) | Another recent accomplishment was created by combining WPM+MS+B5 compositions and it was utilized for woody plants | [72] |
S.No. | Plant Name | Soilless Propagation Technique | Explant | Citation |
---|---|---|---|---|
1 | Taraxacum kok-saghyz | Hydroponics | Root cutting | [99] |
2 | Vitis vinifera | Hydroponics | rootstock and scion canes. | [100] |
3 | Solanum tuberosum | Aeroponics | Stolon | [101,102] |
And Hydroponics | ||||
4 | Manihot esculenta | Aeroponics | lateral bud cutting | [103] |
5 | Wasabia japonica | Hydroponics | Single shoots with 3 leaves | [104] |
6 | Capsicum spp. | Aeroponic | Stem cuttings | [105] |
7 | Brassica alboglabra | Aeroponics | Different stem segment cuttings with one leaf | [106] |
8 | Brassica acephala | |||
9 | Brassica rapa nipposinica | |||
10 | Brassica rapa chinensis | |||
11 | Ulmus americana | Aeroponics | Softwood Cutting | [107] |
12 | Syringa meyeri | Aeroponics | Stem Cuttings | [108] |
13 | Ilex glabra | |||
14 | Sarcostemma acidum | Aeroponics | Stem cuttings | [109] |
15 | Tylophora indica | Aeroponics | Nodal Cutting and Stem Cutting | [110] |
16 | Leptadenia reticulata | |||
17 | Caralluma edulis | |||
18 | Dioscorea rotundata | Aeroponics | Vine Cuttings | [111] |
19 | Dioscorea alata |
Parameter | Selected Plant Species | Experimental Treatments | Outcome | Citation |
---|---|---|---|---|
EC | Potato: Cutting of Solanum tuberosum L. ‘Granola’ used to check the effect of different Ec ranges | EC for the first three weeks remained the same (1 mS cm−1) after that it was changed to; EC1: 2 mS cm−1 EC 2: 4 mS cm−1 EC 3: 6 mS cm−1 | EC1 had the maximum plant height, number of leaves, and maximum number of tubers during the rapid propagation. | [149] |
Types of misting nozzle | Potato: Sprouted tubers of Solanum tuberosum cv. Agata were used for this experiment. | Three types of misting nozzles were used N1: 32 L/h with anti-drip, N2: 32 L/h without anti-drip N3: L/h without anti-drip | The results showed that the aeroponic chamber equipped with an N2 nozzle performed better in the production of basic seed tubers. | [150] |
Plant density | Potato: Plantlets of Solanum tuberosum L. ‘Marfona’ were employed at various densities for rapid tuberization. | Three plant densities were used D1:25 plants per m2 D1:35 plants per m2 D1:50 plants per m2 | In about 4 months of the experiment, 25 plants per m2 generated rapidly more and bigger mini-tubers per plant. | [151] |
Temperature | Cannabis: Two hemp varieties were employed for clonal rapid multiplication. | Controlled temperature | The two varieties of hemp (red robin and cherry wine) showed rapid propagation at a controlled water temperature of 20–22 °C, compared to the traditional propagation method. | [152] |
Artificial photosynthesis | Potato: Under LED lighting, the rapid tuberization of Solanum tuberosum L. cv. ‘Golden King’ was investigated. | Nine distinct types of artificial light spectrums were used. | L4 (R:B:FR) outperformed the other lights in terms of potato growth, establishment, and seed tuber production under aeroponic rapid propagation environments. | [153] |
Survival rate | Casava: Explants of Manihot esculenta ‘Crantz’ experimented on for plant multiplication compared with the old method. | Parameters such as plant growth and survival ratio were taken into consideration while comparing the aeroponic rapid multiplication and traditional soil method. | The average survival rate of casava plants in aeroponic rapid propagation was 90.5%, compared to 51.5% in the conventional approach. This demonstrates that the aeroponic approach is faster and more productive. | [103] |
Fertigation approach | Potato: Two verities, Agata and Asterix, were utilized to test alternative fertigation approaches. | The primary objective was to assess the effect of N reduction on the growth rate of biomass and mini-tubers in an aeroponic system. | The data revealed that reducing nitrogen treatment resulted in a 17% rise in mini-tubers production. | [154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Syed, A.-u.-A.; Otho, A.R.; Junejo, A.R.; Tunio, M.H.; Hao, L.; Asghar Ali, M.N.H.; Brohi, S.A.; Otho, S.A.; Channa, J.A. Intelligent Rapid Asexual Propagation Technology—A Novel Aeroponics Propagation Approach. Agronomy 2024, 14, 2289. https://doi.org/10.3390/agronomy14102289
Tang L, Syed A-u-A, Otho AR, Junejo AR, Tunio MH, Hao L, Asghar Ali MNH, Brohi SA, Otho SA, Channa JA. Intelligent Rapid Asexual Propagation Technology—A Novel Aeroponics Propagation Approach. Agronomy. 2024; 14(10):2289. https://doi.org/10.3390/agronomy14102289
Chicago/Turabian StyleTang, Lingdi, Ain-ul-Abad Syed, Ali Raza Otho, Abdul Rahim Junejo, Mazhar Hussain Tunio, Li Hao, Mian Noor Hussain Asghar Ali, Sheeraz Aleem Brohi, Sohail Ahmed Otho, and Jamshed Ali Channa. 2024. "Intelligent Rapid Asexual Propagation Technology—A Novel Aeroponics Propagation Approach" Agronomy 14, no. 10: 2289. https://doi.org/10.3390/agronomy14102289
APA StyleTang, L., Syed, A. -u. -A., Otho, A. R., Junejo, A. R., Tunio, M. H., Hao, L., Asghar Ali, M. N. H., Brohi, S. A., Otho, S. A., & Channa, J. A. (2024). Intelligent Rapid Asexual Propagation Technology—A Novel Aeroponics Propagation Approach. Agronomy, 14(10), 2289. https://doi.org/10.3390/agronomy14102289