Slightly Saline Water Improved Physiology, Growth, and Yield of Tomato Plants in Yellow Sand Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. Measurement Items and Methods
2.3.1. Substrate Salinity Determination
2.3.2. Plant Growth Parameters Measurement
2.3.3. Plant Physiological Indicators Determination
2.3.4. Yield and Path Analysis
2.4. Data Processing
3. Results and Analysis
3.1. Effects of Different Irrigation Water Salinity Levels on Salt Dynamics in Yellow Sand Substrate
3.2. Effects of Different Irrigation Water Salinity Levels on Physiological Characteristics of Sand-Cultured Tomatoes
3.2.1. Dynamic Changes in Tomato Chlorophyll Content during the Growing Stage
3.2.2. Changes in Photosynthetic Characteristics during the Growth Stage
3.3. Effects of Different Irrigation Water Salinity on the Growth and Yield of Sand-Cultured Tomatoes
3.3.1. Dynamic Changes in Tomato Plant Height and Model Development
3.3.2. Dynamic Changes and Model Development of Tomato Stem Diameter
3.3.3. Effects of Different Irrigation Water Salinity Levels on Yield of Sand-Cultured Tomatoes
3.4. Correlation Analysis of Tomato Physiological Indicators, Yield, and Yield Components
3.5. Path Analysis of Tomato Physiological Indicators, Yield, and Yield Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, L.; Hu, Q.; Pan, X.; Ma, X.; Xu, L.; Wang, X.; Zhang, H. Effects of global warming and plastic mulching on cotton-planting zoning with different matures in Xinjiang. Trans. Chin. Soc. Agric. Eng. 2019, 35, 90–99. [Google Scholar]
- Wang, D.; Zhang, L.; Zhang, J.; Li, W.; Li, H.; Liang, Y.; Han, Y.; Luo, P.; Wang, Z. Effect of magnetized brackish water drip irrigation on water and salt transport characteristics of sandy soil in Southern Xinjiang, China. Water 2023, 15, 577. [Google Scholar] [CrossRef]
- El-Mogy, M.M.; Garchery, C.; Stevens, R. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2018, 68, 727–737. [Google Scholar] [CrossRef]
- Li, D.; Wan, S.; Li, X.; Kang, Y.; Han, X. Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region. Agric. Water Manag. 2022, 261, 107347. [Google Scholar] [CrossRef]
- Ouyang, Z.; Tian, J.; Yan, X. Effects of mineralization degree of irrigation water on yield, fruit quality, and soil microbial and enzyme activities of cucumbers in greenhouse drip irrigation. Horticulturae 2024, 10, 113. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Feng, D.; Cao, C.; Zheng, C.; Dang, H.; Sun, C. Evaluating the impacts of long-term saline water irrigation on soil salinity and cotton yield under plastic film mulching: A 15-year field study. Agric. Water Manag. 2024, 293, 108703. [Google Scholar] [CrossRef]
- Ahmed, C.; Magdich, S.; Rouina, B.; Boukhris, M.; Abdullah, F. Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive. J. Environ. Manag. 2012, 113, 538–544. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Z.; Zhai, Y.; Lu, P.; Zhu, C. Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy 2019, 9, 457. [Google Scholar] [CrossRef]
- Gentile, A.; Nota, P.; Urbinati, G.; Frattarelli, A.; Forni, C.; Caboni, E.; Lucioli, S. Morpho-physiological effects of irrigation with saline water in ex vitro plants of Juglans regia ‘Sorrento’. Plant Biosyst. 2023, 157, 984–991. [Google Scholar] [CrossRef]
- Li, J.; He, P.; Chen, J.; Hamad, A.; Dai, X.; Jin, Q.; Ding, S. Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water. Agric. Water Manag. 2023, 285, 108363. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Liu, F. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric. Water Manag. 2015, 158, 61–68. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.; Wang, X.; Yao, C.; Wang, Y.; Wang, Z.; Zhou, W.; Chen, E.; Chen, W. Effect of straw mulching and deep burial mode on water and salt transport regularity in saline soils. Water 2023, 15, 3227. [Google Scholar] [CrossRef]
- Zonayet, M.; Paul, A.; Faisal-E-Alam, M.; Syfullah, K.; Castanho, R.; Meyer, D. Impact of biochar as a soil conditioner to improve the soil properties of saline soil and productivity of tomato. Sustainability 2023, 15, 4832. [Google Scholar] [CrossRef]
- Qu, Z.; Sun, H.; Yang, B.; Gao, X.; Wang, L.; Wang, L. Effects of different amendments on soil microorganisms and yield of processing tomato in saline alkali soil. Trans. Chin. Soc. Agric. Mach. 2021, 52, 311–318. [Google Scholar]
- Ding, B.; Cao, H.; Bai, Y.; Guo, S.; Zhang, J.; He, Z.; Wang, B.; Jia, Z.; Liu, H. Effect of biofertilizer addition on soil physicochemical properties, biological properties, and cotton yield under water irrigation with different salinity levels in Xinjiang, China. Field Crop. Res. 2024, 308, 109300. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Chen, H.; Chen, Y.; Wang, L.; Wang, R. Organic amendments promote saline-alkali soil desalinization and enhance maize growth. Front. Plant Sci. 2023, 14, 1177209. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhao, S.; He, Y.; Wang, F.; Li, J.; Zhang, L.; Xu, Z.; Wang, P. Research progress on salt tolerance of cucurbits and vegetables. China Cucurbits Veg. 2023, 36, 1–8. [Google Scholar]
- Fu, G. High Crop Productivity Mechanisms of Soil-Ridged Substrate-Embedded Cultivation Method in Chinese Solar Greenhouse; Chinese Academy of Agricultural Sciences: Beijing, China, 2017. [Google Scholar]
- Manasa, M.; Katukuri, N.; Nair, S.; Haojie, Y.; Yang, Z.; Guo, R. Role of biochar and organic substrates in enhancing the functional characteristics and microbial community in a saline soil. J. Environ. Manag. 2020, 269, 110737. [Google Scholar] [CrossRef]
- Olubanjo, O.; Alade, A. Growth and yield response of tomato plants grown under different substrates culture. J. Sustain. Technol. 2018, 9, 110–123. [Google Scholar]
- Cheng, L.; Fu, Q.; Jin, Y.; Wu, Y. Influences of different substrates on tomato rhizospheric microbial communities, enzyme activities and seedling growth. Acta Agric. Zhejiangensis 2016, 28, 973–978. [Google Scholar]
- Raja, W.H.; Kumawat, K.L.; Sharma, O.C.; Sharma, A.; Mir, J.I.; Nabi, S.U.; Qureshi, I. Effect of different substrates on growth and quality of Strawberry cv. chandler in soilless culture. Pharma Innov. J. 2018, 7, 449–453. [Google Scholar]
- Wang, J.; Yang, C.; Zhang, H.; Li, J. Improving soil properties by sand application in the saline-alkali area of the middle and lower reaches of the Yellow River, China. Sustainability 2023, 15, 9437. [Google Scholar] [CrossRef]
- Yuan, N.; Zhao, A.; Hu, Z.; Tan, K.; Zhang, J. Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review. Chemosphere 2022, 287, 132227. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Tan, Z.; Cheng, Y.; Wang, T.; Cao, M.; Xuan, Z.; Du, H. Water-nutrient coupling strategies that improve the carbon, nitrogen metabolism, and yield of cucumber under sandy cultivated land. Land 2024, 13, 958. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Z.; Ren, Z.; Jiang, Y.; Jia, Z.; Chen, X. Effects of drip irrigation under brackish water mulch on soil water and salt distribution and processing tomato yield. Agric. Res. Arid. Areas 2019, 37, 117–123+131. [Google Scholar]
- Sun, M.; Xu, Y. Effect of different nutrient solutions on growth of tomato seedlings. Guangdong Agric. Sci. 2011, 38, 55–57. [Google Scholar]
- Wen, M.; Li, M.; Jiang, J.; Ma, X.; Li, R.; Zhao, W.; Cui, J.; Liu, Y.; Ma, F. Effects of nitrogen, phosphorus and potassium on drip-irrigated cotton growth and yield in northern Xinjian. Sci. Agric. Sin. 2021, 54, 3473–3487. [Google Scholar]
- Baath, G.; Shukla, M.; Bosland, P.; Steiner, R.; Walker, S. Irrigation water salinity influences at various growth stages of Capsicum annuum. Agric. Water Manag. 2017, 179, 246–253. [Google Scholar] [CrossRef]
- Kumar, V.; Khare, T. Differential growth and yield responses of salt-tolerant and susceptible rice cultivars to individual (Na+ and Cl−) and additive stress effects of NaCl. Acta Physiol. Plant 2016, 38, 170. [Google Scholar] [CrossRef]
- Yuan, C.; Feng, S.; Huo, Z.; Ji, Q. Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agric. Water Manag. 2019, 212, 424–432. [Google Scholar] [CrossRef]
- Higo, M.; Azuma, M.; Kamiyoshihara, Y.; Kanda, A.; Tatewaki, Y.; Isobe, K. Impact of phosphorus fertilization on tomato growth and arbuscular mycorrhizal fungal communities. Microorganisms 2020, 8, 178. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Jia, Z.; Zhao, Z.; You, Q. Dynamics and distribution of soil salinity under long-term mulched drip irrigation in an arid area of northwestern China. Water 2019, 11, 1225. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.; Cao, X.; Wang, J.; Zhang, M.; Duan, X.; Zhang, Z. Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels. BMC Plant Biol. 2019, 19, 331. [Google Scholar] [CrossRef]
- Taïbi, K.; Taïbi, F.; Abderrahim, L.; Ennajah, A.; Belkhodja, M.; Mulet, J. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S. Afr. J. Bot. 2016, 105, 306–312. [Google Scholar] [CrossRef]
- Bezdicek, D.F.; Beaver, T.; Granatstein, D. Subsoil ridge tillage and lime effects on soil microbial activity, soil pH, erosion, and wheat and pea yield in the Pacific Northwest, USA. Soil Tillage Res. 2003, 74, 55–63. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Zhang, J.; Cao, W. Effects of different salt stress on physiological growth and yield of drip irrigation cotton (Gossypium hirsutum L). Intell. Autom. Soft Comput. 2020, 26, 949–959. [Google Scholar] [CrossRef]
- Salmon, Y.; Lintunen, A.; Dayet, A.; Chan, T.; Dewar, R.; Vesala, T.; Hölttä, T. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. New Phytol. 2020, 226, 690–703. [Google Scholar] [CrossRef]
- Sousa, H.; Sousa, G.; Cambissa, P.; Lessa, C.; Goes, G.; da Silva, F.; Viana, T. Gas exchange and growth of zucchini crop subjected to salt and water stress. Rev. Bras. Eng. Agric. Amb. 2022, 26, 815–822. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Wang, X.; Sun, X.; Yang, L.; Zhang, S.; Xiang, Y.; Zhang, F. Crop yield and water productivity under salty water irrigation: A global meta-analysis. Agric. Water Manag. 2021, 256, 107105. [Google Scholar] [CrossRef]
- Wang, Q.; Huo, Z.; Zhang, L.; Wang, J.; Zhao, Y. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agric. Water Manag. 2016, 163, 125–138. [Google Scholar] [CrossRef]
- Perin, L.; Peil, R.; Höhn, D.; Rosa, D.; Wieth, A.; Grolli, P. Trough and pot crop systems with leaching recirculation and defoliation levels for mini tomatoes. Acta Scientiarum. Agron. 2018, 40, e34992. [Google Scholar] [CrossRef]
Growth Stage | Spring Start and End Times | Autumn Start and End Times |
---|---|---|
Seedling stage | 24 March 2023–3 May (40 d) | 27 August 2023–6 October (40 d) |
Blooming stage | 4 May 2023–11 May (7 d) | 7 October 2023–14 October (7 d) |
Fruiting stage | 12 May 2023–13 June (32 d) | 15 October 2023–20 November (36 d) |
Fruit flourishing stage | 14 June 2023–10 July (26 d) | 21 November 2023–23 December (32 d) |
Late stage | 10 July 2023–18 July (8 d) | 24 December 2023–5 January 2024 (12 d) |
Fertile Stage | Treatment | Spring | Autumn | ||||
---|---|---|---|---|---|---|---|
Chlorophyll A | Chlorophyll B | Carotenoid | Chlorophyll A | Chlorophyll B | Carotenoid | ||
The blooming stage | CK | 2.26 ± 0.13 a | 0.71 ± 0.01 a | 0.46 ± 0.04 bc | 1.99 ± 0.02 ab | 0.53 ± 0.01 ab | 0.44 ± 0.01 c |
T1 | 2.23 ± 0.14 a | 0.64 ± 0.05 b | 0.44 ± 0.04 bc | 2.02 ± 0.16 ab | 0.52 ± 0.04 ab | 0.47 ± 0.04 bc | |
T2 | 2.36 ± 0.18 a | 0.74 ± 0.04 a | 0.49 ± 0.03 ab | 2.08 ± 0.02 a | 0.54 ± 0.01 ab | 0.51 ± 0.04 ab | |
T3 | 2.43 ± 0.11 a | 0.75 ± 0.05 a | 0.52 ± 0.02 a | 2.12 ± 0.04 a | 0.55 ± 0.05 a | 0.54 ± 0.03 a | |
T4 | 1.99 ± 0.04 b | 0.53 ± 0.01 c | 0.40 ± 0.01 cd | 1.97 ± 0.16 ab | 0.52 ± 0.05 ab | 0.43 ± 0.02 c | |
T5 | 1.89 ± 0.12 b | 0.54 ± 0.01 c | 0.38 ± 0.03 d | 1.86 ± 0.09 b | 0.47 ± 0.02 b | 0.42 ± 0.04 c | |
The fruiting stage | CK | 2.87 ± 0.02 bcd | 0.65 ± 0.00 bcd | 0.73 ± 0.02 bc | 2.42 ± 0.03 b | 0.81 ± 0.08 abc | 0.51 ± 0.03 bc |
T1 | 3.03 ± 0.17 abc | 0.67 ± 0.02 abc | 0.79 ± 0.06 ab | 2.59 ± 0.08 a | 0.81 ± 0.04 ab | 0.54 ± 0.02 ab | |
T2 | 3.06 ± 0.20 ab | 0.70 ± 0.01 ab | 0.81 ± 0.05 a | 2.61 ± 0.16 a | 0.88 ± 0.06 a | 0.51 ± 0.04 bc | |
T3 | 3.17 ± 0.07 a | 0.72 ± 0.03 a | 0.82 ± 0.00 a | 2.72 ± 0.01 a | 0.90 ± 0.01 a | 0.57 ± 0.02 a | |
T4 | 2.75 ± 0.15 cd | 0.60 ± 0.06 cd | 0.69 ± 0.04 cd | 2.33 ± 0.14 b | 0.78 ± 0.06 bc | 0.47 ± 0.04 cd | |
T5 | 2.65 ± 0.21 d | 0.63 ± 0.02 d | 0.65 ± 0.05 d | 2.16 ± 0.01 c | 0.71 ± 0.05 c | 0.43 ± 0.01 d | |
The fruit flourishing stage | CK | 2.24 ± 0.06 bc | 0.58 ± 0.01 c | 0.56 ± 0.02 ab | 1.53 ± 0.03 bc | 0.42 ± 0.02 bc | 0.33 ± 0.01 bc |
T1 | 2.36 ± 0.14 ab | 0.66 ± 0.05 b | 0.56 ± 0.02 abc | 1.63 ± 0.11 ab | 0.44 ± 0.02 b | 0.34 ± 0.02 ab | |
T2 | 2.52 ± 0.12 a | 0.72 ± 0.01 a | 0.59 ± 0.02 a | 1.69 ± 0.05 a | 0.53 ± 0.01 a | 0.36 ± 0.02 a | |
T3 | 2.15 ± 0.10 cd | 0.50 ± 0.00 d | 0.52 ± 0.03 cd | 1.43 ± 0.01 cd | 0.41 ± 0.00 bc | 0.31 ± 0.00 c | |
T4 | 2.02 ± 0.05 d | 0.49 ± 0.01 d | 0.53 ± 0.02 bc | 1.40 ± 0.09 d | 0.39 ± 0.03 cd | 0.30 ± 0.02 c | |
T5 | 2.00 ± 0.08 d | 0.47 ± 0.02 d | 0.48 ± 0.01 d | 1.25 ± 0.07 e | 0.35 ± 0.03 d | 0.27 ± 0.02 d |
Treatment | Mathematical Equation | Ym/cm | R2 | Characteristic Parameter | ||||
---|---|---|---|---|---|---|---|---|
t1/d | t2/d | Vm/(cm·d−1) | tm/d | t/d | ||||
T1 | y = 149.6/ (1 + 13.0 e−0.04 t) | 149.6 | 0.97 | 28 | 87 | 1.67 | 57 | 59 |
T2 | y = 152.9/ (1 + 13.2 e−0.04 t) | 152.9 | 0.97 | 28 | 87 | 1.71 | 58 | 59 |
T3 | y = 128.1/ (1 + 9.29 e−0.04 t) | 128.1 | 0.97 | 21 | 83 | 1.37 | 52 | 62 |
T4 | y = 105.5/ (1 + 6.39 e−0.04 t) | 105.5 | 0.99 | 13 | 76 | 1.10 | 44 | 63 |
T5 | y = 98.4/ (1 + 5.93 e−0.04 t) | 98.4 | 0.99 | 11 | 72 | 1.05 | 42 | 61 |
CK | y = 141.3/ (1 + 11.5 e−0.04 t) | 141.3 | 0.97 | 26 | 85 | 1.56 | 55 | 60 |
Treatment | Mathematical Equation | Ym/mm | R2 | Characteristic Parameter | |||||
---|---|---|---|---|---|---|---|---|---|
t1/d | t2/d | Vm/ (mm·d−1) | tm/d | t/d | |||||
T1 | y = 16.0/ (1 + 5.05 e−0.03 t) | 16.0 | 0.94 | 10 | 99 | 0.12 | 55 | 89 | |
T2 | y = 16.5/ (1 + 5.48 e−0.03 t) | 16.5 | 0.94 | 13 | 99 | 0.13 | 56 | 86 | |
T3 | y = 15.4/ (1 + 4.50 e−0.03 t) | 15.4 | 0.94 | 7 | 103 | 0.11 | 55 | 96 | |
T4 | y = 14.9/ (1 + 4.05 e−0.03 t) | 14.9 | 0.94 | 3 | 104 | 0.10 | 54 | 101 | |
T5 | y = 14.6/ (1 + 3.87 e−0.03 t) | 14.6 | 0.94 | 1 | 105 | 0.09 | 53 | 104 | |
CK | y = 15.8/ (1 + 4.86 e−0.03 t) | 15.8 | 0.94 | 9 | 101 | 0.11 | 55 | 92 |
Stage | Treatment | Single Plant Fruits (Number) | Single Fruit Weight (g) | Yield Per Plant (g) | Total Production (t·hm−2) |
---|---|---|---|---|---|
Spring | T1 | 10.6 ± 0.49 b | 92.7 ± 4.52 a | 981.1 ± 5.96 b | 43.9 ± 0.27 b |
T2 | 11.8 ± 0.40 a | 89.4 ± 3.57 ab | 1053.6 ± 7.93 a | 47.2 ± 0.35 a | |
T3 | 9.40 ± 0.49 c | 86.0 ± 4.39 b | 807.0 ± 3.73 d | 36.1 ± 0.17 d | |
T4 | 7.83 ± 0.41 d | 75.6 ± 3.62 c | 590.9 ± 5.36 e | 26.5 ± 0.24 e | |
T5 | 7.50 ± 0.55 d | 69.9 ± 4.58 d | 522.3 ± 6.57 f | 23.4 ± 0.29 f | |
CK | 9.80 ± 0.40 c | 90.9 ± 3.2 ab | 889.9 ± 9.65 c | 39.8 ± 0.43 c | |
Autumn | T1 | 14.8 ± 1.17 b | 99.6 ± 8.03 a | 1473.0 ± 144.7 b | 65.9 ± 6.48 b |
T2 | 16.2 ± 0.75 a | 104.0 ± 8.26 a | 1680.0 ± 92.6 a | 75.2 ± 4.14 a | |
T3 | 13.8 ± 0.75 c | 75.7 ± 5.19 c | 1042.0 ± 63.5 c | 46.7 ± 2.84 c | |
T4 | 13.6 ± 0.49 c | 68.3 ± 6.48 cd | 928.4 ± 77.3 d | 41.6 ± 3.46 d | |
T5 | 12.8 ± 0.78 d | 65.1 ± 5.37 d | 811.4 ± 60.2 e | 36.3 ± 2.70 e | |
CK | 12.3 ± 1.03 d | 91.8 ± 5.36 b | 1132.0 ± 110.0 c | 50.7 ± 4.93 c |
Independent Variable | Coefficient of Determination R2 | Direct Passage Coefficient | Indirect Passage Coefficient | ||||
---|---|---|---|---|---|---|---|
X2→Y | X6→Y | X8→Y | X9→Y | Total Indirect Flux Coefficient | |||
X2 | 0.999 | 0.067 | — | 0.081 | −0.434 | 0.041 | −0.312 |
X6 | 0.846 | 0.216 | 0.025 | — | −0.454 | −0.275 | −0.704 |
X8 | 0.933 | 0.626 | −0.046 | −0.157 | — | 0.134 | −0.069 |
X9 | 0.997 | 0.370 | 0.008 | −0.160 | 0.227 | — | 0.075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Liu, J.; Gong, Z.; Gao, Y.; Li, Z.; Tan, Z. Slightly Saline Water Improved Physiology, Growth, and Yield of Tomato Plants in Yellow Sand Substrate. Agronomy 2024, 14, 2315. https://doi.org/10.3390/agronomy14102315
Jiang W, Liu J, Gong Z, Gao Y, Li Z, Tan Z. Slightly Saline Water Improved Physiology, Growth, and Yield of Tomato Plants in Yellow Sand Substrate. Agronomy. 2024; 14(10):2315. https://doi.org/10.3390/agronomy14102315
Chicago/Turabian StyleJiang, Wenge, Jiangfan Liu, Zhi Gong, Yang Gao, Zhaoyang Li, and Zhanming Tan. 2024. "Slightly Saline Water Improved Physiology, Growth, and Yield of Tomato Plants in Yellow Sand Substrate" Agronomy 14, no. 10: 2315. https://doi.org/10.3390/agronomy14102315
APA StyleJiang, W., Liu, J., Gong, Z., Gao, Y., Li, Z., & Tan, Z. (2024). Slightly Saline Water Improved Physiology, Growth, and Yield of Tomato Plants in Yellow Sand Substrate. Agronomy, 14(10), 2315. https://doi.org/10.3390/agronomy14102315