Histological and Molecular Characterization of the Musa spp. x Pseudocercospora musae Pathosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Experimental Assay, and Experimental Conditions
2.2. Light Microscopy, Histological Analysis, Leaf Clarification and Stomatal Index and Density
2.3. Detection of Phenolic Compounds
2.4. Scanning Electron Microscopy (SEM)
2.5. Reverse Transcription, cDNA, and Real-Time PCR (qPCR)
2.6. Primer Design
2.7. RT-qPCR, Differential Gene Expression, and Data Analysis
3. Results
3.1. Anatomical Characterization, Stomatal Density, and Stomatal Index
3.2. Pre-Penetration Process of P. musae in Resistant and Susceptible Banana Cultivars
3.3. Colonization of P. musae in Resistant and Susceptible Banana Cultivars
3.4. Gene Expression Analysis
3.4.1. Validation of Genes by RT-qPCR
3.4.2. Gene Expression of Protein Kinase (MUSA_3) and Protein Kinase 2 (MUSA_5)
4. Discussion
4.1. Histological Studies
4.2. Scanning Electron Microscopy (SEM) and Phenolic Compounds
4.3. Analysis of Gene Expression
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2024. Available online: http://www.fao.org/faostat/en/#home (accessed on 20 May 2024).
- IBGE. Instituto Brasileiro de Geografia e Estatística. 2024. Available online: https://www.ibge.gov.br/ (accessed on 26 May 2024).
- Arzanlou, M.; Abeln, E.C.A.; Kema, G.H.J.; Waalwijk, C.; Carlier, J.; Vries, I.; Guzmán, M.; Crous, P.W. Molecular diagnostics for the Sigatoka disease complex of banana. Phytopathology 2007, 97, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, Z.J.M.; Rocha, H.S.; Araújo, A.G. Metodologias Para Manuseio de P. musae em Laboratório; Embrapa Mandioca e Fruticultura: Cruz das Almas, Brazil, 2011; p. 32. [Google Scholar]
- Nascimento, F.S.; Sousa, Y.M.; Rocha, A.J.; Ferreira, C.F.; Haddad, F.; Amorim, E.P. Sources of black Sigatoka resistance in wild banana diploids. Rev. Bras. Frutic. 2020, 42, e-038. [Google Scholar] [CrossRef]
- Rocha, A.D.J.; Ferreira, M.D.S.; Rocha, L.D.S.; Oliveira, S.A.; Amorim, E.P.; Mizubuti, E.S.; Haddad, F. Interaction between Fusarium oxysporum f. sp. cubense and Radopholus similis can lead to changes in the resistance of banana cultivars to Fusarium wilt. Eur. J. Plant Pathol. 2020, 158, 403–417. [Google Scholar] [CrossRef]
- Cordeiro, Z.J.M.; Matos, A.P.; Meissner Filho, P.E. Doenças e métodos de controle. In O Cultivo da Bananeira; Madail, A.L., Souza, L.S., Eds.; Nova Civilização: Cruz das Almas, Brazil, 2004; pp. 146–182. [Google Scholar]
- Rocha, H.S.; Pozza, E.A.; Uchôa, C.D.N.; Cordeiro, Z.J.M.; Souza, P.E.; Sussel, Â.A.B.; Rezende, C.A. Temporal progress of yellow Sigatoka and aerobiology of Mycosphaerella musicola spores. J. Phytopathol. 2012, 160, 277–285. [Google Scholar] [CrossRef]
- Aman, M.; Rai, V.R. Potent toxigenic effect of Mycosphaerella musicola on locally growing banana varieties. Phytoparasitica 2015, 43, 295–301. [Google Scholar] [CrossRef]
- Madail, R.H.; Pio, L.A.S.; Rezende, R.A.L.S.; Pasqual, M.; Silva, S.D.O.E. Banana leaf anatomy characteristics related to ploidy levels. Acta Sci. Agron. 2022, 44, e55709. [Google Scholar] [CrossRef]
- Agrios, G.N. Control of plant diseases. In Plant Pathology; Agrios, G.N., Ed.; Academic Press: San Diego, CA, USA, 2005; pp. 293–353. [Google Scholar]
- Araujo, A.G.; Val, A.D.B.; Soares, J.D.R.; Rodrigues, F.A.; Pasqual, M.; Rocha, H.S.; Asmar, S.A.; Cordeiro, Z.J.M.; Silva, S.O. Host–pathogen interactions of Musa spp. and P. musae with epidemiological variables and leaf anatomy within the pathosystem of Yellow Sigatoka disease. AJCS 2014, 8, 1200–1209. [Google Scholar]
- Soares, J.M.S.; Rocha, A.J.; Nascimento, F.S.; Amorim, V.B.O.; Ramos, A.P.S.; Ferreira, C.F.; Haddad, F.; Amorim, E.P. Gene Expression, Histology and Histochemistry in the Interaction between Musa sp. And Pseudocercospora fijiensis. Plants 2022, 11, 1953. [Google Scholar] [CrossRef]
- Bernards, M.A. Demystifying suberin. Can. J. Bot. 2002, 80, 227–240. [Google Scholar] [CrossRef]
- Schreiber, L. Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci. 2010, 15, 546–553. [Google Scholar] [CrossRef]
- Alves, E.; Dias, M.; Lopes, D.; Almeida, A.; Domingues, M.D.R.; Rey, F. Antimicrobial lipids from plants and marine organisms: An overview of the current state-of-the-art and future prospects. Antibiotics 2020, 9, 441. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.K.; Akinsanmi, O.A.; Sutherland, P.W.; Aitken, E.A.B.; Drenth, A. Infection, colonisation and sporulation by Pseudocercospora macadamiae on macadamia fruit. Australas. Plant Pathol. 2009, 38, 36–49. [Google Scholar] [CrossRef]
- Braun, U.; Nakashima, C.; Bakhsh, M.; Zare, R.; Shin, H.D.; Alves, R.F.; Spósito, M.B. Taxonomy and phylogeny of cercosporoid ascomycetes on Diospyros spp. with special emphasis on Pseudocercospora spp. Fungal Syst. Evol. 2020, 6, 95–127. [Google Scholar] [CrossRef] [PubMed]
- Boyd, L.A.; Ridout, C.; O’Sullivan, D.M.; Leach, J.E.; Leung, H. Plant–pathogen interactions: Disease resistance in modern agriculture. TiG 2013, 29, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Portal, O.; Izquierdo, Y.; Vleesschauwer, D.; Sánchez-Rodríguez, A.; Mendoza-Rodríguez, M.; Acosta-Suárez, M.; Ocaña, B.; Jiménez, E.; Höfte, M. Analysis of expressed sequence tags derived from a compatible Mycosphaerella fijiensis–banana interaction. Plant Cell Rep. 2011, 30, 913–928. [Google Scholar] [CrossRef] [PubMed]
- Passos, M.A.N.; Cruz, V.O.; Emediato, F.L.; Teixeira, C.C.; Azevedo, V.C.R.; Brasileiro, A.C.M.; Miller, R.N.G. Analysis of the leaf transcriptome of Musa acuminata during interaction with P. musae: Gene assembly, annotation and marker development. BMC Genom. 2013, 14, 78. [Google Scholar] [CrossRef]
- Moreira, R.F.C.; Cordeiro, Z.J.M.; Vilarinhos, A.D. Caracterização genética de isolados de P. musae por marcadores RAPD. Summa Phytopathol. 2003, 29, 275–277. [Google Scholar]
- Oliveira, J.R.; Nietscheii, S.; Costa, M.R.; Miobutsi, E.H.; Oliveira, D.A. Diversidade genética de isolados de P. musae obtidos de bananais do norte de Minas Gerais, Brasil por meio de marcadores RAPD. Ciênc. Rural 2013, 43, 45–48. [Google Scholar] [CrossRef]
- Pimentel, R.M.A.; Guimarães, F.N.; Santos, V.M.; Resende, J.C.F. Qualidade pós-colheita dos genótipos de banana PA 42-44 e Prata-Anã cultivados no Norte de Minas Gerais. Rev. Bras. Frutic. 2010, 32, 407–413. [Google Scholar] [CrossRef]
- Castellani, A. Viability of some pathogenic fungi in distilled water. J. Trop. Med. Hyg. 1939, 42, 225–226. [Google Scholar]
- Johansen, D.A. Plant Microtechnique; McGraw-Hill: New York, NY, USA, 1940. [Google Scholar]
- Gerlarch, D. Botanische Mikrotechnik: Eine Einführung; Georg Thieme: Stuttgart, Germany, 1969; p. 311. [Google Scholar]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Ciênc. Agrotec. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Aguiar, T.V.; Sant’anna-Santos, B.F.; Azevedo, A.A.; Ferreira, R.S. ANATI QUANTI: Software de análises quantitativas para estudos em anatomia vegetal. Planta Daninha 2007, 25, 649–659. [Google Scholar] [CrossRef]
- Demarco, D. Histochemical analysis of plant secretory structures. In Histochemistry of Single Molecules; Pellicciari, C., Biggiogera, M., Eds.; Methods in molecular biology, 1560; Springer: New York, NY, USA, 2017; pp. 313–330. [Google Scholar]
- Gambino, G.; Perrone, I.; Gribaudo, I. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem. Anal. 2008, 19, 520–525. [Google Scholar] [CrossRef]
- Ferreira, C.F.; Costa, M.M.C.; Silva-Junior, O.B.; Togawa, R.C.; Santos, R.M.F.; Brangança, C.A.D.; Martings, N.F.; Gesteira, A.S.; Filho, I.J.S.; Araujo, A.G.; et al. Agroecological approaches to promote innovative banana production systems. In Proceedings of the Annals of the ISHS Promusa Symposium, Montpellier, France, 10–14 October 2016. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Podevin, N.; Krauss, A.; Henry, I.; Swennen, R.; Remy, S. Selection and validation of reference genes for quantitative RT-PCR expression studies of the non-model crop Musa. Mol. Breed. 2012, 30, 1237–1252. [Google Scholar] [CrossRef] [PubMed]
- Skutch, A.F. Anatomy of leaf of banana, Musa sapientum L. var. hort. Gros Michel. Bot. Gaz. 1927, 84, 337–391. [Google Scholar] [CrossRef]
- Hernández, Y.; Portillo, F.; Portillo, M.; Navarro, C.; Rodríguez, M.; Velasco, J. Densidad estomática en materiales de plátano (Musa AAB, AAAB y ABB) susceptibles y resistentes a Sigatoka Negra (Mycosphaerella fijiensis, Morelet). Rev. Fac. Agron. LUZ 2006, 23, 294–300. [Google Scholar]
- Rodríguez, G.; Negrín, M.; García, M. Evaluación de algunas variables de la epidermis foliar en três clones de Musa y su relación con resistencia a sigatoka (Mycosphaerella sp.). Rev. Fac. Agron. LUZ 2009, 35, 100–105. [Google Scholar]
- Pinheiro, T.D.M.; Rego, E.C.S.; Alves, G.S.C.; Fonseca, F.C.D.A.; Cotta, M.G.; Antonino, J.D.; Gomes, T.G.; Amorim, E.P.; Ferreira, C.F.; Costa, M.M.C.; et al. Transcriptome Profiling of the Resistance Response of Musa acuminata subsp. burmannicoides, var. Calcutta 4 to Pseudocercospora musae. Int. J. Mol. Sci. 2022, 23, 13589. [Google Scholar] [CrossRef]
- Liu, N.; Tu, J.; Dong, G.; Wang, Y.; Sheng, C. Emerging new targets for the treatment of resistant fungal infections. J. Med. Chem. 2018, 61, 5484–5511. [Google Scholar] [CrossRef]
- Craenen, K.; Coosemans, J.; Ortiz, R. The role of stomatal traits and epicuticular wax in resistance to Mycosphaerella fijiensis in Banana and Plantain (Musa spp.). Tropicultura 1997, 15, 136–140. [Google Scholar]
- Salisbury, E.J. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philos. Trans. R. Soc. Lond. 1927, 216, 1–65. [Google Scholar] [CrossRef]
- Guandalini, B.B.V.; Rodrigues, N.P.; Marczak, L.D.F. Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Res. Int. 2019, 119, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, M.A.C.D.; Levit, R.; Beres, C.; Bedani, R.; Moreno, M.A.; Isay Saad, S.; Leblanc, J.G.J. Tropical fruit by-products water extracts of tropical fruit by-products as sources of soluble fibres and phenolic compounds with potential 81 antioxidant, anti-inflammatory, and functional properties. J. Funct. Foods 2019, 52, 724–733. [Google Scholar] [CrossRef]
- Li, M.Y.; Xu, B.Y.; Liu, J.H.; Yang, X.L.; Zhang, J.B.; Jia, C.H.; Ren, L.C.; Jin, Z.Q. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian). Plant Cell Rep. 2012, 31, 369–378. [Google Scholar] [CrossRef]
- He, Z.H.; Fujiki, M.; Kohorn, B.D. A cell wall-associated, receptor-like protein kinase. JBC 1996, 271, 19789–19793. [Google Scholar] [CrossRef]
- Wagner, T.A.; Kohorn, B.D. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 2001, 13, 303–318. [Google Scholar] [CrossRef]
- Kohorn, B.D.; Kohorn, S.L. The cell wall-associated kinases, WAKs, as pectin receptors. Front. Plant Sci. 2012, 3, 25457. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Ding, P.; Johnson, K.; Li, X.; Zhang, Y. The ankyrin-repeat transmembrane protein BDA1 functions downstream of the receptor-like protein SNC2 to regulate plant immunity. Plant Physiol. 2012, 159, 1857–1865. [Google Scholar] [CrossRef]
- Monaghan, J.; Matschi, S.; Shorinola, O.; Rovenich, H.; Matei, A.; Segonzac, C.; Malinovsky, F.G.; Rathjen, J.P.; MacLean, D.; Romeis, T.; et al. The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover. Cell Host Microbe 2014, 16, 605–615. [Google Scholar] [CrossRef]
- Gust, A.; Pruitt, R.; Nürnberger, T. Sensing Danger: Key to Activating Plant Immunity. Trends Plant Sci. 2017, 22, 779–791. [Google Scholar] [CrossRef] [PubMed]
ID | Primer | Description | Sequence (5′-3′) | Amplicon (pb) |
---|---|---|---|---|
GSMUA_AchrUn_randomT23380_001 | MUSA_3 | protein kinase domain containing protein, expressed | F: CAGTGGTGGATTTGTTGTGC | 250 |
R: TACGGGAATTCCATTGGGTA | ||||
GSMUA_Achr1T09200_001 | MUSA_5 | Putative Wall-associated receptor kinase 2 | F: ACGTCATTGGCATCGTCATA | 230 |
(WAK2) | R: GTCGGCAACGAAGGTAAAAG | |||
TUB * | MUSA_17 | Beta Tubulin | F: TGTTGCATCCTGGTACTGCT R: GGCTTTCTTGCACTGGTACAC | 112 |
25S * | MUSA_18 | 25S rRNA | F: ACATTGTCAGGTGGGGAGTT R: CCTTTTGTTCCACACGAGATT | 106 |
Time | Caipira | Grande Naine | Caipira | Grande Naine |
---|---|---|---|---|
I.D. (%) | I.D. (%) | D.E. est.mm−2 | D.E. est.mm−2 | |
24 h.a.i. | 19.70 bA | 61.37 aA | 31.35 bB | 105.31 aA |
48 h.a.i. | 20.78 bA | 45.38 aB | 36.73 bA | 96.36 aA |
72 h.a.i. | 27.43 aA | 19.36 bD | 35.29 bA | 57.12 aB |
120 h.a.i. | 16.76 bA | 31.34 aC | 27.91 bB | 64.17 aB |
ID | Gene | Description | Sequence (5′-3′) | Amplicon (pb) | Efficiency | Ta * |
---|---|---|---|---|---|---|
GSMUA_AchrUn_randomT23380_001 | Musa_3 | protein kinase domain containing protein, expressed | F: CAGTGGTGGATTTGTTGTGC R: TACGGGAATTCCATTGGGTA | 250 | 0.98 | 60 |
GSMUA_Achr1T09200_001 | Musa_5 | Putative wall-associated receptor kinase 2 (WAK2) | F: ACGTCATTGGCATCGTCATA R: GTCGGCAACGAAGGTAAAAG | 230 | 1.10 | 60 |
25S | 25S | 25S rRNA | F: ACATTGTCAGGTGGGGAGTT R: CCTTTTGTTCCACACGAGATT | 106 | 0.99 | 60 |
TUB | Tubulin | Beta Tubulin | F: TGTTGCATCCTGGTACTGCT R: GGCTTTCTTGCACTGGTACAC | 112 | 0.97 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, P.H.d.; Neto, I.L.d.C.; Santos, R.M.F.; Martins, F.M.; Soares, J.M.d.S.; Nascimento, F.d.S.; Ramos, A.P.d.S.; Amorim, E.P.; Ferreira, C.F.; Ledo, C.A.d.S. Histological and Molecular Characterization of the Musa spp. x Pseudocercospora musae Pathosystem. Agronomy 2024, 14, 2328. https://doi.org/10.3390/agronomy14102328
Silva PHd, Neto ILdC, Santos RMF, Martins FM, Soares JMdS, Nascimento FdS, Ramos APdS, Amorim EP, Ferreira CF, Ledo CAdS. Histological and Molecular Characterization of the Musa spp. x Pseudocercospora musae Pathosystem. Agronomy. 2024; 14(10):2328. https://doi.org/10.3390/agronomy14102328
Chicago/Turabian StyleSilva, Paulo Henrique da, Israel Lopes da Cunha Neto, Rogério Mercês Ferreira Santos, Fabiano Machado Martins, Julianna Matos da Silva Soares, Fernanda dos Santos Nascimento, Andresa Priscila de Souza Ramos, Edson Perito Amorim, Cláudia Fortes Ferreira, and Carlos Alberto da Silva Ledo. 2024. "Histological and Molecular Characterization of the Musa spp. x Pseudocercospora musae Pathosystem" Agronomy 14, no. 10: 2328. https://doi.org/10.3390/agronomy14102328
APA StyleSilva, P. H. d., Neto, I. L. d. C., Santos, R. M. F., Martins, F. M., Soares, J. M. d. S., Nascimento, F. d. S., Ramos, A. P. d. S., Amorim, E. P., Ferreira, C. F., & Ledo, C. A. d. S. (2024). Histological and Molecular Characterization of the Musa spp. x Pseudocercospora musae Pathosystem. Agronomy, 14(10), 2328. https://doi.org/10.3390/agronomy14102328