Potato–Soybean Intercropping Increased Equivalent Tuber Yield by Improving Rhizosphere Soil Quality, Root Growth, and Plant Physiology of Potato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Materials
2.2. Experimental Design
2.3. Rhizosphere Soil Analysis
2.3.1. Soil Physical Properties
2.3.2. Soil Chemical Properties and Enzyme Activities
2.4. Root Analysis
2.4.1. Root Growth Parameters
2.4.2. Root Distribution
2.5. Plant Analysis
2.5.1. Photosynthetically Active Radiation (PAR) and Light Transmittance Rate (LTR)
2.5.2. Leaf Area Index (LAI)
2.5.3. Net Photosynthetic Rate (Pn), Chlorophyll Content, and Photosynthetic Enzyme Activities
2.5.4. Dry Matter Accumulation
2.6. Yield, Productivity, and Benefit Analysis
2.7. Statistical Analysis
3. Results
3.1. Rhizosphere Soil Physicochemical Properties and Enzyme Activities
3.2. Root Growth and Distribution
3.3. Plant Light Environment
3.4. Leaf Photosynthetic Capacity
3.5. Organ Dry Matter Accumulation
3.6. Yield, LER, and TEB
3.7. Stepwise Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.J.; Liu, H.; Zeng, F.K.; Yang, Y.C.; Xu, D.; Zhao, Y.C.; Liu, X.F.; Kaur, L.; Liu, G.; Singh, J. Potato processing industry in China: Current scenario, future trends and global impact. Potato Res. 2023, 66, 543–562. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT—Food and Agriculture Data. Available online: https://www.fao.org/faostat/en/#data (accessed on 26 February 2022).
- Li, Y.; Tang, J.Z.; Wang, J.; Zhao, G.; Yu, Q.; Wang, Y.X.; Hu, Q.; Zhang, J.; Pan, Z.H.; Pan, X.B.; et al. Diverging water-saving potential across China’s potato planting regions. Eur. J. Agron. 2022, 134, 126450. [Google Scholar] [CrossRef]
- Zheng, S.L.; Wang, L.J.; Wan, N.X.; Zhong, L.; Zhou, S.M.; He, W.; Yuan, J.C. Response of potato tuber number and spatial distribution to plant density in different growing seasons in Southwest China. Front. Plant Sci. 2016, 7, 365. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.S.; Xiong, X.Y.; Tan, L.; Deng, Y.; Du, X.F.; Yang, X.X.; Hu, Q.L. Soil microbial community assembly and stability are associated with potato (Solanum tuberosum L.) fitness under continuous cropping regime. Front. Plant Sci. 2022, 13, 1000045. [Google Scholar] [CrossRef] [PubMed]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A low input agricultural strategy for food and environmental security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Abbas, R.N.; Arshad, M.A.; Iqbal, A.; Iqbal, M.A.; Imran, M.; Raza, A.; Chen, J.T.; Alyemeni, M.N.; Hefft, D.I. Weeds spectrum, productivity and land-use efficiency in maize-gram intercropping systems under semi-arid environment. Agronomy 2021, 11, 1615. [Google Scholar] [CrossRef]
- Dahmardeh, M.; Ghanbari, A.; Syahsar, B.A.; Ramrodi, M. The role of intercropping maize (Zea mays L.) and cowpea (Vigna unguiculata L.) on yield and soil chemical properties. Afr. J. Agric. Res. 2010, 5, 631–636. [Google Scholar]
- Ramirez-Garcia, J.; Martens, H.J.; Quemada, M.; Thorup-Kristensen, K. Intercropping effect on root growth and nitrogen uptake at different nitrogen levels. J. Plant Ecol. 2015, 8, 380–389. [Google Scholar] [CrossRef]
- Raza, M.A.; Khalid, M.H.B.; Zhang, X.; Feng, L.Y.; Khan, I.; Hassan, M.J.; Ahmed, M.; Ansar, M.; Chen, Y.K.; Fan, Y.F.; et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Sci. Rep. 2019, 9, 4947. [Google Scholar] [CrossRef]
- Nyawade, S.O.; Karanja, N.N.; Gachene, C.K.K.; Gitari, H.I.; Schulte-Geldermann, E.; Parker, M.L. Intercropping optimizes soil temperature and increases crop water productivity and radiation use efficiency of rainfed potato. Am. J. Potato Res. 2019, 96, 457–471. [Google Scholar] [CrossRef]
- Messiha, N.A.S.; Elhalag, K.M.A.; Balabel, N.M.; Farag, S.M.A.; Matar, H.A.; Hagag, M.H.; Khairy, A.M.; El-Aliem, M.M.A.; Eleiwa, E.; Saleh, O.M.E.; et al. Microbial biodiversity as related to crop succession and potato intercropping for management of brown rot disease. Egypt. J. Biol. Pest Control 2019, 29, 84. [Google Scholar] [CrossRef]
- Law, E.P.; Wayman, S.; Pelzer, C.J.; DiTommaso, A.; Ryan, M.R. Intercropping red clover with intermediate wheatgrass suppresses weeds without reducing grain yield. Agron. J. 2022, 114, 700–716. [Google Scholar] [CrossRef]
- Kinyua, M.W.; Kihara, J.; Bekunda, M.; Bolo, P.; Mairura, F.S.; Fischer, G.; Mucheru-Muna, M.W. Agronomic and economic performance of legume-legume and cereal-legume intercropping systems in Northern Tanzania. Agric. Syst. 2023, 205, 103589. [Google Scholar] [CrossRef]
- Landschoot, S.; Zustovi, R.; Dewitte, K.; Randall, N.P.; Maenhout, S.; Haesaert, G. Cereal-legume intercropping: A smart review using topic modelling. Front. Plant Sci. 2024, 14, 1228850. [Google Scholar] [CrossRef] [PubMed]
- Gitari, H.I.; Karanja, N.N.; Gachene, C.K.K.; Kamau, S.; Sharma, K.; Schulte-Geldermann, E. Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems. Field Crops Res. 2018, 222, 78–84. [Google Scholar] [CrossRef]
- Gitari, H.I.; Gachene, C.K.K.; Karanja, N.N.; Kamau, S.; Nyawade, S.; Schulte-Geldermann, E. Potato-legume intercropping on a sloping terrain and its effects on soil physico-chemical properties. Plant Soil 2019, 438, 447–460. [Google Scholar] [CrossRef]
- Nyawade, S.; Gitari, H.I.; Karanja, N.N.; Gachene, C.K.K.; Schulte-Geldermann, E.; Sharma, K.; Parker, M.L. Enhancing climate resilience of rain-fed potato through legume intercropping and silicon application. Front. Sustain. Food Syst. 2020, 4, 566345. [Google Scholar] [CrossRef]
- Schad, P. World Reference Base for Soil Resources—Its fourth edition and its history. J. Plant Nutr. Soil Sci. 2023, 186, 151–163. [Google Scholar] [CrossRef]
- Lv, Y.Z.; Li, B.G. Soil Science Experiment; China Agriculture Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Sanada, A.; Agehara, S. Characterizing toot morphological responses to exogenous tryptophan in soybean (Glycine max) seedlings using a scanner-based rhizotron system. Plants 2023, 12, 186. [Google Scholar] [CrossRef]
- de Moraes, M.T.; Debiasi, H.; Franchini, J.C.; Mastroberti, A.A.; Levien, R.; Leitner, D.; Schnepf, A. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil Tillage Res. 2020, 200, 104611. [Google Scholar] [CrossRef]
- Kara, F. Effects of light transmittance on growth and biomass of understory seedlings in mixed pine-beech forests. Eur. J. Forest Res. 2022, 141, 1189–1200. [Google Scholar] [CrossRef]
- Huang, C.J.; Zhao, S.Y.; Wang, L.C.; Wang, J.C.; Zhao, Y.; Cai, Y.M.; Teng, Y.; Yang, G.C. Effect of potato/maize intercropping on photosynthetic characteristics and yield in two potato varieties. Acta Agron. Sin. 2013, 39, 330–342. (In Chinese) [Google Scholar] [CrossRef]
- Okamoto, A.; Koyama, K.; Bhusal, N. Diurnal change of the photosynthetic light-response curve of buckbean (Menyanthes trifoliata), an emergent aquatic plant. Plants 2022, 11, 174. [Google Scholar] [CrossRef] [PubMed]
- Tiwar, J.K.; Buckseth, T.; Singh, R.K.; Zinta, R.; Thakur, K.; Bhardwaj, V.; Dua, V.K.; Kumar, M. Aeroponic evaluation identifies variation in Indian potato varieties for root morphology, nitrogen use efficiency parameters and yield traits. J. Plant Nutr. 2022, 45, 2696–2709. [Google Scholar] [CrossRef]
- Bengough, A.G.; Bransby, M.F.; Hans, J.; McKenna, S.J.; Roberts, T.J.; Valentine, T.A. Root responses to soil physical conditions; growth dynamics from field to cell. J. Exp. Bot. 2006, 57, 437–447. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Brevik, E.C. Spatial distribution of soil chemical properties in an organic farm in Croatia. Sci. Total Environ. 2017, 584–585, 535–545. [Google Scholar] [CrossRef]
- Shahane, A.A.; Shivay, Y.S. Soil health and its improvement through novel agronomic and innovative approaches. Front. Agron. 2021, 3, 680456. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, Y.; Ma, K.; He, W.T. Effects of potato intercropped with broad bean and buckwheat on the soil. Jiangsu Agric. Sci. 2018, 46, 79–83. (In Chinese) [Google Scholar]
- Liu, H.; Lu, Y.; Feng, Y.L.; Ye, X.M.; Zhang, Y.; Li, F.; Deng, R.J.; Zhang, T.G.; Wang, T.S.; Song, L. Effects of intercropping of potato and tartary buckwheat on soil nutrients, enzyme activities and microbes. Jiangsu Agric. Sci. 2023, 51, 219–226. (In Chinese) [Google Scholar]
- Daughtridge, R.C.; Nakayama, Y.; Margenot, A.J. Sources of abiotic hydrolysis of chromogenic substrates in soil enzyme assays: Storage, termination, and incubation. Soil Biol. Biochem. 2021, 158, 108245. [Google Scholar] [CrossRef]
- Keller, N.; Bol, R.; Herre, M.; Marschner, B.; Heinze, S. Catchment scale spatial distribution of soil enzyme activities in a mountainous German coniferous forest. Soil Biol. Biochem. 2023, 177, 108885. [Google Scholar] [CrossRef]
- Ilakiya, T.; Swarnapriya, R.; Pugalendhi, L.; Geethalakshmi, V.; Lakshmanan, A.; Kumar, M.; Lorenzo, J.M. Carbon accumulation, soil microbial and enzyme activities in elephant foot yam-based intercropping system. Agriculture 2023, 13, 187. [Google Scholar] [CrossRef]
- Curtright, A.J.; Tiemann, L.K. Intercropping increases soil extracellular enzyme activity: A meta-analysis. Agr. Ecosyst. Environ. 2021, 319, 107489. [Google Scholar] [CrossRef]
- Khan, M.A.; Chen, Z.H.; Khan, A.R.; Rana, S.J.; Ghazanfar, B. Pepper-garlic intercropping system improves soil biology and nutrient status in plastic tunnel. Int. J. Agric. Biol. 2015, 17, 869–880. [Google Scholar] [CrossRef]
- Akunda, E.M.W. Improving food production by understanding the effects of intercropping and plant population on soybean nitrogen fixing attributes. J. Food Technol. Afr. 2001, 6, 110–115. [Google Scholar] [CrossRef]
- Shanmugam, S.; Hefner, M.; Pelck, J.S.; Labouriau, R.; Kristensen, H.L. Complementary resource use in intercropped faba bean and cabbage by increased root growth and nitrogen use in organic production. Soil Use Manag. 2022, 38, 729–740. [Google Scholar] [CrossRef]
- Homulle, Z.; George, T.S.; Karley, A.J. Root traits with team benefits: Understanding belowground interactions in intercropping systems. Plant Soil 2022, 471, 1–26. [Google Scholar] [CrossRef]
- Liu, X.D.; Jiao, Y.; Zhao, X.Y.; Yu, X.X.; Zhang, Q.P.; Li, S.; Ma, L.C.; Tang, W.; Yang, C.; Yang, G.F.; et al. Root architecture of forage species varies with intercropping combinations. Agronomy 2023, 13, 2223. [Google Scholar] [CrossRef]
- Bargaz, A.; Noyce, G.L.; Fulthorpe, R.; Carlsson, G.; Furze, J.R.; Jensen, E.S.; Dhiba, D.; Isaac, M.E. Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Appl. Soil Ecol. 2017, 120, 179–188. [Google Scholar] [CrossRef]
- Luo, H.H.; Zhang, Y.L.; Zhang, W.F. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica 2016, 54, 65–73. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J.F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, G.; Bian, X.; Zhao, Q. Effects of root interaction and nitrogen fertilization on the chlorophyll content, root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. Plant Soil Environ. 2013, 59, 80–88. [Google Scholar] [CrossRef]
- Dube, E.D.N.; Madanzi, T.; Kapenzi, A.; Masvaya, E. Root length density in maize/cowpea intercropping under a basin tillage system in a semi-arid area of Zimbabwe. Am. J. Plant Sci. 2014, 5, 1499–1507. [Google Scholar] [CrossRef]
- Cavalieri-Polizeli, K.M.V.; Marcolino, F.C.; Tormena, C.A.; Keller, T.; de Moraes, A. Soil structural quality and relationships with root properties in single and integrated farming systems. Front. Environ. Sci. 2022, 10, 901302. [Google Scholar] [CrossRef]
- Czaban, W.; Han, E.; Lund, O.S.; Stokholm, M.S.; Jensen, S.M.; Thorup-Kristensen, K. The enhancing effect of intercropping sugar beet with chicory on the deep root growth and nutrient uptake. Agric. Ecosyst. Environ. 2023, 347, 108360. [Google Scholar] [CrossRef]
- Chen, Y.B.; Yang, Q.; Wang, J.J.; Miao, Z.Y.; Zhao, W.L.; Jia, X.C.; Dong, P.F.; Wang, Q. Effects of intercropping on root distribution, nutrient accumulation and yield of maize with different root architecture. J. Nucl. Agric. Sci. 2023, 37, 594–605. (In Chinese) [Google Scholar]
- Umesh, M.R.; Chittapur, B.M.; Jagadeesha, N. Solar radiation utilization efficiency in cereal-legume intercropping systems: A review. Agric. Rev. 2017, 38, 72–75. [Google Scholar]
- Tsubo, M.; Walker, S.; Mukhala, E. Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crops Res. 2001, 71, 17–29. [Google Scholar] [CrossRef]
- Li, Y.H.; Shi, D.Y.; Li, G.H.; Zhao, B.; Zhang, J.W.; Liu, P.; Ren, B.Z.; Dong, S.T. Maize/peanut intercropping increases photosynthetic characteristics, 13C-photosynthate distribution, and grain yield of summer maize. J. Integr. Agric. 2019, 18, 2219–2229. [Google Scholar] [CrossRef]
- Raza, M.A.; Gul, H.; Khalid, M.H.B.; Hussain, S.; Abbas, G.; Ahmed, W.; Babar, M.J.; Ahmed, Z.; Saeed, A.; Riaz, M.U.; et al. Leaf area regulates the growth rates and seed yield of soybean (Glycine max L. Merr.) in intercropping system. Int. J. Plant Prod. 2022, 16, 639–652. [Google Scholar] [CrossRef]
- Umesh, M.R.; Angdi, S.; Begna, S.; Gowda, P. Planting density and geometry effect on canopy development, forage yield and nutritive value of sorghum and annual legumes intercropping. Sustainability 2022, 14, 4517. [Google Scholar] [CrossRef]
- Yao, X.D.; Zhou, H.L.; Zhu, Q.; Li, C.H.; Zhang, H.J.; Wu, J.J.; Xie, F.T. Photosynthetic response of soybean leaf to wide light-fluctuation in maize-soybean intercropping system. Front. Plant Sci. 2017, 8, 1695. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.Y.; Wang, J.Y.; Cui, Y.; Guan, Z.Y.; Yang, L.; Tang, Q.Q.; Sun, Y.F.; Yang, H.S.; Wen, X.Q.; Mei, N.; et al. Effects of row spacing and planting pattern on photosynthesis, chlorophyll fluorescence, and related enzyme activities of maize ear leaf in maize-soybean intercropping. Agronomy 2022, 12, 2503. [Google Scholar] [CrossRef]
- Strand, Å.; Zrenner, R.; Trevanion, S.; Stitt, M.; Gustafsson, P.; Gardeström, P. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. Plant J. 2000, 23, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Trevanion, S.J.; Castleden, C.K.; Foyer, C.H.; Furbank, R.T.; Quick, W.P.; Lunn, J.E. Regulation of sucrose-phosphate synthase in wheat (Triticum aestivum) leaves. Funct. Plant Biol. 2004, 31, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Nasar, J.; Wang, G.Y.; Ahmad, S.; Muhammad, I.; Zeeshan, M.; Gitari, H.; Adnan, M.; Fahad, S.; Khalid, M.H.B.; Zhou, X.B.; et al. Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns. Front. Plant Sci. 2022, 13, 988055. [Google Scholar] [CrossRef]
- Luo, Y.L.; Wu, X.L.; Tang, D.B.; Liu, X.; Lei, Y.Y.; Lv, C.W.; Wang, J.C. Effect of maize (Zea mays L.) plant-type on yield and photosynthetic characters of sweet potato (Ipomoea balatas L.) in intercropping system. Not. Bot. Horti. Agrobo. 2017, 45, 245–254. [Google Scholar]
- Xiao, L.L.; Tian, S.J.; Tian, S.Y.; Luo, R.; Li, Y.P.; Cao, G.F. Effects of maize and potato intercropping on dry matter accumulation, nutrient absorption and distribution of potato. Chin. Potato J. 2021, 35, 520–528. (In Chinese) [Google Scholar]
- Jin, J.X.; He, J.Q.; Feng, F.J.; Huang, J.C.; Luo, Y.; Gui, L.G. Effects of potato/maize intercropping patterns on physiological and ecological characteristics of crops. Guizhou Agric. Sci. 2019, 47, 14–19. (In Chinese) [Google Scholar]
- Wang, D.; Zhou, Y.L.; Zhao, P.; Chen, L.K.; Xiang, R.; Jiang, Y.J.; Long, G.Q. Maize-potato residue mixing in agricultural soils enhances residue decomposition and stable carbon content by modifying the potential keystone microbial taxa. Geoderma 2023, 437, 116581. [Google Scholar] [CrossRef]
Stage | Year | Treatment | WC (%) | BD (g cm−3) | OM (g kg−1) | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | UE (U g−1) | PPO (U g−1) | CAT (U g−1) | SC (U g−1) | NR (U g−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TSS | 2022 | SCP | 27.09 a | 0.83 a | 39.43 b | 1.50 b | 0.18 b | 8.21 b | 18.97 b | 248.94 b | 145.03 b | 2.60 a | 0.10 b |
PSI | 22.84 a | 0.75 b | 41.85 a | 1.95 a | 0.38 a | 9.33 a | 39.40 a | 685.38 a | 186.87 a | 3.04 a | 0.41 a | ||
2023 | SCP | 28.44 a | 0.87 a | 38.65 b | 1.61 a | 0.34 b | 9.52 b | 23.29 b | 252.32 b | 119.17 b | 3.78 b | 0.30 b | |
PSI | 21.82 b | 0.71 b | 41.20 a | 1.72 a | 0.61 a | 10.17 a | 46.40 a | 490.08 a | 172.13 a | 5.51 a | 0.44 a | ||
Mean | SCP | 27.76 a | 0.85 a | 39.04 b | 1.56 b | 0.26 b | 8.87 b | 21.13 b | 250.63 b | 132.10 b | 3.19 b | 0.20 b | |
PSI | 22.33 b | 0.73 b | 41.53 a | 1.83 a | 0.49 a | 9.75 a | 42.90 a | 587.73 a | 179.50 a | 4.28 a | 0.43 a | ||
Source of variation | |||||||||||||
Year | ns | ns | ns | ns | *** | *** | * | ** | ** | *** | *** | ||
Treatment | * | *** | *** | * | *** | ** | *** | *** | *** | ** | *** | ||
Year × treatment | ns | ** | ns | ns | ns | ns | ns | ** | ns | * | ** | ||
MS | 2022 | SCP | 33.09 a | 1.19 a | 39.92 a | 1.49 b | 0.17 b | 7.61 b | 19.92 b | 412.47 b | 146.82 b | 3.64 b | 0.20 b |
PSI | 25.53 b | 0.92 b | 42.03 a | 1.85 a | 0.38 a | 8.89 a | 53.77 a | 889.33 a | 195.80 a | 4.91 a | 0.48 a | ||
2023 | SCP | 36.53 a | 1.20 a | 38.33 b | 1.46 a | 0.36 b | 8.61 b | 24.73 b | 298.95 b | 124.35 b | 4.22 b | 0.30 b | |
PSI | 25.92 b | 0.88 b | 42.26 a | 1.65 a | 0.58 a | 9.82 a | 57.27 a | 598.15 a | 178.67 a | 7.02 a | 0.48 a | ||
Mean | SCP | 34.81 a | 1.19 a | 39.13 b | 1.48 b | 0.27 b | 8.11 b | 22.11 b | 355.71 b | 135.59 b | 3.93 b | 0.25 b | |
PSI | 25.72 b | 0.90 b | 42.15 a | 1.75 a | 0.48 a | 9.35 a | 55.52 a | 743.74 a | 187.24 a | 5.97 a | 0.48 a | ||
Source of variation | |||||||||||||
Year | ns | ns | ns | ns | *** | *** | ns | *** | ** | *** | * | ||
Treatment | *** | *** | ** | ** | *** | *** | *** | *** | *** | *** | *** | ||
Year × treatment | ns | ns | ns | ns | ns | ns | ns | *** | ns | ** | * |
Stage | Year | Treatment | RTL (cm) | RMD (mm) | RV (cm3) | RPA (cm2) | RA (μg g−1 h−1) | RLD (dm dm−3) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–5 cm | 5–10 cm | 10–15 cm | 15–20 cm | 20–25 cm | ||||||||
TSS | 2022 | SCP | 391.49 b | 0.73 b | 2.30 b | 32.35 b | 127.41 b | 13.09 b | 11.82 b | 6.99 b | 2.72 b | 1.18 b |
PSI | 540.11 a | 1.17 a | 4.12 a | 52.07 a | 208.02 a | 31.26 a | 29.03 a | 22.72 a | 9.77 a | 5.72 a | ||
2023 | SCP | 399.82 b | 0.84 b | 2.37 b | 29.94 b | 132.36 b | 14.42 b | 12.71 b | 10.07 b | 3.58 b | 2.35 b | |
PSI | 529.43 a | 1.30 a | 4.33 a | 53.35 a | 222.57 a | 28.19 a | 25.52 a | 22.67 a | 15.19 a | 9.58 a | ||
Mean | SCP | 395.65 b | 0.78 b | 2.34 b | 31.15 b | 129.89 b | 13.76 b | 12.27 b | 8.53 b | 3.15 b | 1.77 b | |
PSI | 534.77 a | 1.24 a | 4.22 a | 52.71 a | 215.30 a | 29.73 a | 27.28 a | 22.70 a | 12.48 a | 7.65 a | ||
Source of variation | ||||||||||||
Year | ns | ns | ns | ns | ns | ns | ns | ns | ** | ns | ||
Treatment | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||
Year × treatment | ns | ns | ns | ns | ns | ns | ns | ns | * | ns | ||
MS | 2022 | SCP | 380.27 b | 0.64 | 1.37 b | 26.12 b | 114.00 b | 12.03 b | 9.71 b | 5.22 b | 1.59 b | 0.79 b |
PSI | 530.64 a | 1.10 | 3.63 a | 47.36 a | 202.06 a | 27.16 a | 23.19 a | 15.36 a | 7.58 a | 4.74 a | ||
2023 | SCP | 366.64 b | 0.60 | 1.56 b | 27.46 b | 117.33 b | 12.32 b | 10.71 b | 4.27 b | 2.01 b | 0.94 b | |
PSI | 512.38 a | 1.24 | 4.01 a | 50.40 a | 200.34 a | 24.02 a | 21.62 a | 14.83 a | 6.66 a | 5.03 a | ||
Mean | SCP | 373.45 b | 0.62 | 1.47 b | 26.79 b | 115.66 b | 13.76 b | 10.21 b | 4.74 b | 1.80 b | 0.86 b | |
PSI | 521.51 a | 1.17 | 3.82 a | 48.88 a | 201.20 a | 29.73 a | 22.41 a | 15.09 a | 7.12 a | 4.88 a | ||
Source of variation | ||||||||||||
Year | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ||
Treatment | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||
Year × treatment | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Stage | Year | Treatment | PAR (μmol m−2 s−1) | LTR (%) | LAI | |||||
---|---|---|---|---|---|---|---|---|---|---|
Top | Upper | Middle | Lower | Upper | Middle | Lower | ||||
TSS | 2022 | SCP | 1022.80 a | 495.40 b | 256.40 b | 113.40 b | 48.82 b | 25.22 b | 11.20 b | 5.36 b |
PSI | 1117.80 a | 814.40 a | 592.40 a | 369.80 a | 73.46 a | 54.01 a | 33.80 a | 8.50 a | ||
2023 | SCP | 1079.40 a | 501.80 b | 271.80 b | 145.40 b | 46.69 b | 25.19 b | 13.46 b | 5.60 b | |
PSI | 1138.20 a | 857.40 a | 589.00 a | 380.00 a | 75.50 a | 52.12 a | 33.43 a | 7.73 a | ||
Mean | SCP | 1051.10 b | 498.60 b | 264.10 b | 129.40 b | 47.76 b | 25.21 b | 12.32 b | 5.48 b | |
PSI | 1128.00 a | 835.90 a | 590.70 a | 374.90 a | 74.48 a | 53.06 a | 33.62 a | 8.11 a | ||
Source of variation | ||||||||||
Year | ns | ns | ns | ns | ns | ns | ns | ns | ||
Treatment | * | *** | *** | *** | *** | *** | *** | *** | ||
Year × treatment | ns | ns | ns | ns | ns | ns | ns | ns | ||
MS | 2022 | SCP | 750.00 b | 342.80 b | 96.80 b | 53.20 a | 45.71 b | 12.90 b | 7.10 a | 4.81 a |
PSI | 814.00 a | 468.60 a | 150.20 a | 64.40 a | 57.54 a | 18.45 a | 7.91 a | 5.74 a | ||
2023 | SCP | 835.20 a | 455.60 a | 105.20 b | 65.60 a | 54.47 a | 12.60 b | 7.88 a | 5.09 a | |
PSI | 861.80 a | 490.20 a | 155.00 a | 68.20 a | 57.21 a | 18.04 a | 7.90 a | 5.96 a | ||
Mean | SCP | 792.60 b | 399.20 b | 101.00 b | 59.40 a | 50.09 b | 12.75 b | 7.49 a | 4.95 a | |
PSI | 837.90 a | 479.40 a | 152.60 a | 66.30 a | 57.38 a | 18.24 a | 7.90 a | 5.85 a | ||
Source of variation | ||||||||||
Year | *** | ** | ns | ns | ns | ns | ns | ns | ||
Treatment | * | ** | *** | ns | * | *** | ns | ns | ||
Year × treatment | ns | * | ns | ns | ns | ns | ns | ns |
Year | Treatment | PH (cm) | CD (mm) | TNPP | TWPP (g) | CTN | ATY (t ha−1) | ETY (t ha−1) | LER | TEB (104 CNY ha−1) |
---|---|---|---|---|---|---|---|---|---|---|
2022 | SCP | 88.79 a | 8.76 b | 6.40 a | 618.27 b | 3.60 b | 33.06 a | 33.06 b | 6.61 a | |
PSI | 90.21 a | 9.71 a | 7.00 a | 746.79 a | 5.41 a | 26.08 b | 45.63 a | 1.31 | 6.09 b | |
2023 | SCP | 90.52 a | 8.70 b | 6.40 a | 632.01 b | 4.40 b | 32.68 a | 32.68 b | 6.54 a | |
PSI | 90.04 a | 9.88 a | 7.00 a | 745.56 a | 6.00 a | 25.85 b | 45.24 a | 1.33 | 6.09 a | |
Mean | SCP | 89.66 a | 8.73 b | 6.40 a | 625.14 b | 4.00 b | 32.87 a | 32.87 b | 6.57 a | |
PSI | 90.13 a | 9.79 a | 7.00 a | 746.18 a | 5.70 a | 25.97 b | 45.44 a | 1.32 | 6.09 b | |
Source of variation | ||||||||||
Year | ns | ns | ns | ns | ** | ns | ns | ns | ||
Treatment | ns | *** | ns | *** | *** | *** | *** | * | ||
Year × treatment | ns | ns | ns | ns | ns | ns | ns | ns |
Independent Variable | Multiple Stepwise Regression Equation | R | F | p | Statistic |
---|---|---|---|---|---|
Rhizosphere soil properties | y = −52.47 + 0.38a1 + 4.80a2 − 0.10a3 + 0.26a4 | 0.9997 | 1194.02 | 0.0001 | 1.23 |
Root growth and distribution | y = 15.17 + 9.26b1 + 0.16b2 + 0.85b3 − 0.66b4 | 0.9967 | 113.92 | 0.0013 | 1.55 |
Plant light environment | y = −1.23 − 0.70c1 + 1.16c2 + 7.15c3 − 12.94c4 + 7.49c5 | 0.9993 | 301.94 | 0.0033 | 2.32 |
Leaf photosynthetic capacity | y = 1.00 − 0.61d1 + 41.57d2 + 0.15d3 | 0.9634 | 17.24 | 0.0094 | 1.63 |
Organ dry matter accumulation | y = −3.05 + 143.63e1 − 20.36e2 + 9.69e3 + 3.53e4 | 0.9995 | 690.91 | 0.0001 | 0.63 |
Agronomic traits | y = −39.76 + 0.13f1 − 1.67f2 | 0.9981 | 652.51 | 0.0001 | 2.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Yi, Z.; Chen, S.; Peng, F.; Zhao, Q.; Tang, Z.; Shao, M.; Lv, D. Potato–Soybean Intercropping Increased Equivalent Tuber Yield by Improving Rhizosphere Soil Quality, Root Growth, and Plant Physiology of Potato. Agronomy 2024, 14, 2362. https://doi.org/10.3390/agronomy14102362
Wang C, Yi Z, Chen S, Peng F, Zhao Q, Tang Z, Shao M, Lv D. Potato–Soybean Intercropping Increased Equivalent Tuber Yield by Improving Rhizosphere Soil Quality, Root Growth, and Plant Physiology of Potato. Agronomy. 2024; 14(10):2362. https://doi.org/10.3390/agronomy14102362
Chicago/Turabian StyleWang, Can, Zelin Yi, Siyu Chen, Fangli Peng, Qiang Zhao, Zhurui Tang, Mingbo Shao, and Dianqiu Lv. 2024. "Potato–Soybean Intercropping Increased Equivalent Tuber Yield by Improving Rhizosphere Soil Quality, Root Growth, and Plant Physiology of Potato" Agronomy 14, no. 10: 2362. https://doi.org/10.3390/agronomy14102362
APA StyleWang, C., Yi, Z., Chen, S., Peng, F., Zhao, Q., Tang, Z., Shao, M., & Lv, D. (2024). Potato–Soybean Intercropping Increased Equivalent Tuber Yield by Improving Rhizosphere Soil Quality, Root Growth, and Plant Physiology of Potato. Agronomy, 14(10), 2362. https://doi.org/10.3390/agronomy14102362