Warming Increases Ecological Niche of Leymus chinensis but Is Detrimental to Species Diversity in Inner Mongolia Temperate Grasslands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Measurement Methods
2.4. Data Computation and Analysis
3. Results
3.1. Effects of Increased Temperature and Rainfall on the Ecological Niches of Dominant Species
3.2. Effects of Increased Temperature and Rainfall on the Importance of Dominant Species in Community Structure and Functioning
3.3. Relationships Between Ecological Niches and Ecosystems Under Warming and Water-Augmentation Conditions
4. Discussion
4.1. Effects of Warming and Increased Precipitation on the Ecological Niche of Dominant Species
4.2. Regulation of Community Structure and Function by Dominant Species Under Increased Temperature and Water Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Core Writing Team, Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Fischer, E.M.; Beyerle, U.; Knutti, R. Robust Spatially Aggregated Projections of Climate Extremes. Nat. Clim. Chang. 2013, 3, 1033–1038. [Google Scholar] [CrossRef]
- Ombadi, M.; Risser, M.D.; Rhoades, A.M.; Varadharajan, C. A Warming-Induced Reduction in Snow Fraction Amplifies Rainfall Extremes. Nature 2023, 619, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Ojima, D.S.; Parton, W.J.; Schimel, D.S.; Scurlock, J.M.O.; Kittel, T.G.F. Modeling the Effects of Climatic and CO2 Changes on Grassland Storage of Soil C. In Terrestrial Biospheric Carbon Fluxes; Wisniewski, J., Sampson, R.N., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 643–657. ISBN 978-0-7923-2502-4. [Google Scholar]
- Zhang, W.; Furtado, K.; Wu, P.; Zhou, T.; Chadwick, R.; Marzin, C.; Rostron, J.; Sexton, D. Increasing Precipitation Variability on Daily-to-Multiyear Time Scales in a Warmer World. Sci. Adv. 2021, 7, eabf8021. [Google Scholar] [CrossRef] [PubMed]
- Knapp, A.K.; Smith, M.D. Variation Among Biomes in Temporal Dynamics of Aboveground Primary Production. Science 2001, 291, 481–484. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, Z.; Huang, H. Climate Variability and Change on the Mongolian Plateau: Historical Variation and Future Predictions. Clim. Res. 2016, 67, 1–14. [Google Scholar] [CrossRef]
- Li, Q.; Pan, X.; Zhang, L.; Li, C.; Yang, N.; Han, S.; Ye, C. Responses of Aboveground Biomass and Soil Organic Carbon to Projected Future Climate Change in Inner Mongolian Grasslands. Rangel. J. 2018, 40, 101–112. [Google Scholar] [CrossRef]
- Hoeppner, S.S.; Dukes, J.S. Interactive Responses of Old-field Plant Growth and Composition to Warming and Precipitation. Glob. Change Biol. 2012, 18, 1754–1768. [Google Scholar] [CrossRef]
- Cui, E.; Weng, E.; Yan, E.; Xia, J. Robust Leaf Trait Relationships across Species under Global Environmental Changes. Nat. Commun. 2020, 11, 2999. [Google Scholar] [CrossRef]
- Wu, S.; Wen, L.; Dong, S.; Gao, X.; Xu, Y.; Li, S.; Dong, Q.; Wessell, K. The Plant Interspecific Association in the Revegetated Alpine Grasslands Determines the Productivity Stability of Plant Community across Restoration Time on Qinghai–Tibetan Plateau. Front. Plant Sci. 2022, 13, 850854. [Google Scholar] [CrossRef]
- Zhong, M.; Song, J.; Zhou, Z.; Ru, J.; Zheng, M.; Li, Y.; Hui, D.; Wan, S. Asymmetric Responses of Plant Community Structure and Composition to Precipitation Variabilities in a Semi-Arid Steppe. Oecologia 2019, 191, 697–708. [Google Scholar] [CrossRef]
- Xu, Z.; Ren, H.; Li, M.; Van Ruijven, J.; Han, X.; Wan, S.; Li, H.; Yu, Q.; Jiang, Y.; Jiang, L. Environmental Changes Drive the Temporal Stability of Semi-arid Natural Grasslands through Altering Species Asynchrony. J. Ecol. 2015, 103, 1308–1316. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Q.; Su, F.; Zhang, C.; Pu, Z.; Xia, J.; Wan, S.; Jiang, L. Daytime Warming Lowers Community Temporal Stability by Reducing the Abundance of Dominant, Stable Species. Glob. Change Biol. 2017, 23, 154–163. [Google Scholar] [CrossRef]
- Wu, Q.; Ren, H.; Wang, Z.; Li, Z.; Liu, Y.; Wang, Z.; Li, Y.; Zhang, R.; Zhao, M.; Chang, S.X.; et al. Additive Negative Effects of Decadal Warming and Nitrogen Addition on Grassland Community Stability. J. Ecol. 2020, 108, 1442–1452. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Lock, T.R.; Kallenbach, R.L.; Yuan, Z. Aridity Determines the Effects of Warming on Community Stability in Inner Mongolian Grassland. Agric. For. Meteorol. 2023, 329, 109274. [Google Scholar] [CrossRef]
- McCain, K.N.S.; Baer, S.G.; Blair, J.M.; Wilson, G.W.T. Dominant Grasses Suppress Local Diversity in Restored Tallgrass Prairie. Restor. Ecol. 2010, 18, 40–49. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, X.; Zhao, L.; Liang, C.; Miao, B.; Zhang, Q.; Zhang, J.; Schmid, B.; Ma, W. Biotic Stability Mechanisms in Inner Mongolian Grassland. Proc. R. Soc. B. 2020, 287, 20200675. [Google Scholar] [CrossRef]
- Yang, Z.; Van Ruijven, J.; Du, G. The Effects of Long-Term Fertilization on the Temporal Stability of Alpine Meadow Communities. Plant Soil 2011, 345, 315–324. [Google Scholar] [CrossRef]
- Mowll, W.; Blumenthal, D.M.; Cherwin, K.; Smith, A.; Symstad, A.J.; Vermeire, L.T.; Collins, S.L.; Smith, M.D.; Knapp, A.K. Climatic Controls of Aboveground Net Primary Production in Semi-Arid Grasslands along a Latitudinal Gradient Portend Low Sensitivity to Warming. Oecologia 2015, 177, 959–969. [Google Scholar] [CrossRef]
- Xiao, J.; Eziz, A.; Zhang, H.; Wang, Z.; Tang, Z.; Fang, J. Responses of Four Dominant Dryland Plant Species to Climate Change in the Junggar Basin, Northwest China. Ecol. Evol. 2019, 9, 13596–13607. [Google Scholar] [CrossRef]
- Zhao, N.-X.; Zhang, L.-H.; Zhao, T.-T.; Mo, L.-D.; Zhang, J.-L.; Gao, Y.-B.; Wang, J.-L. Trait Differentiation among Stipa Krylovii Populations in the InnerMongolia Steppe Region. Flora 2016, 223, 90–98. [Google Scholar] [CrossRef]
- Yang, X.; Li, J.; Zhao, T.; Mo, L.; Zhang, J.; Ren, H.; Zhao, N.; Gao, Y. Variation and Heritability of Morphological and Physiological Traits among Leymus chinensis Genotypes under Different Environmental Conditions. J. Arid Land 2019, 11, 66–74. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z. Effects of Water Addition on Reproductive Allocation of Dominant Plant Species in Inner Mongolia Steppe. Front. Plant Sci. 2020, 11, 555743. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, M.; Li, G.; Wang, M.; Li, Z.; De Boeck, H.J. Changes of Aboveground and Belowground Biomass Allocation in Four Dominant Grassland Species across a Precipitation Gradient. Front. Plant Sci. 2021, 12, 650802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shen, X.; Mu, B.; Shi, Y.; Yang, Y.; Wu, X.; Mu, C.; Wang, J. Moderately Prolonged Dry Intervals between Precipitation Events Promote Production in Leymus chinensis in a Semi-Arid Grassland of Northeast China. BMC Plant Biol. 2021, 21, 147. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-P.; Zhao, N.-X.; Zhang, L.-H.; Gao, Y.-B. Responses of Two Dominant Plant Species to Drought Stress and Defoliation in the Inner Mongolia Steppe of China. Plant Ecol. 2013, 214, 221–229. [Google Scholar] [CrossRef]
- Smith, A.B.; Alsdurf, J.; Knapp, M.; Baer, S.G.; Johnson, L.C. Phenotypic Distribution Models Corroborate Species Distribution Models: A Shift in the Role and Prevalence of a Dominant Prairie Grass in Response to Climate Change. Glob. Change Biol. 2017, 23, 4365–4375. [Google Scholar] [CrossRef]
- Partzsch, M. Warming Differently Affects the Inter- and Intraspecific Interactions among Semi-Dry Grassland Species. Perspect. Plant Ecol. Evol. Syst. 2019, 40, 125481. [Google Scholar] [CrossRef]
- Bao, T.; Zheng, Y.; Zhang, Z.; Sun, H.; Chao, R.; Zhao, L.; Qing, H.; Yang, J.; Li, F.Y. Divergent Water Sources of Three Dominant Plant Species Following Precipitation Events in Enclosed and Mowing Grassland Steppes. PeerJ 2019, 7, e7737. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Z.; Hautier, Y.; Qing, H.; Yang, J.; Bao, T.; Hajek, O.L.; Knapp, A.K. Effects of Intra-Annual Precipitation Patterns on Grassland Productivity Moderated by the Dominant Species Phenology. Front. Plant Sci. 2023, 14, 1142786. [Google Scholar] [CrossRef]
- Polley, H.W.; Derner, J.D.; Jackson, R.B.; Wilsey, B.J.; Fay, P.A. Impacts of Climate Change Drivers on C4 Grassland Productivity: Scaling Driver Effects through the Plant Community. J. Exp. Bot. 2014, 65, 3415–3424. [Google Scholar] [CrossRef]
- Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.C.; Normand, S.; Rüger, N.; Beck, P.S.A.; Blach-Overgaard, A.; Blok, D.; Cornelissen, J.H.C.; Forbes, B.C.; et al. Plant Functional Trait Change across a Warming Tundra Biome. Nature 2018, 562, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D. Causes, Consequences and Ethics of Biodiversity. Nature 2000, 405, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Anacker, B.L.; Strauss, S.Y. The Geography and Ecology of Plant Speciation: Range Overlap and Niche Divergence in Sister Species. Proc. R. Soc. B. 2014, 281, 20132980. [Google Scholar] [CrossRef]
- Granot, I.; Belmaker, J. Niche Breadth and Species Richness: Correlation Strength, Scale and Mechanisms. Glob. Ecol. Biogeogr. 2020, 29, 159–170. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, G.; Liang, Y.; Wang, H. Impacts of Locust Feeding on Interspecific Relationships and Niche of the Major Plants in Inner Mongolia Grasslands. Glob. Ecol. Conserv. 2024, 51, e02913. [Google Scholar] [CrossRef]
- Roeling, I.S.; Ozinga, W.A.; Van Dijk, J.; Eppinga, M.B.; Wassen, M.J. Plant Species Occurrence Patterns in Eurasian Grasslands Reflect Adaptation to Nutrient Ratios. Oecologia 2018, 186, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Qi, D.; Dong, X.; Liu, H.; Liu, S. Basic Knowledge of Sheepgrass (Leymus chinensis). In Sheepgrass (Leymus chinensis): An Environmentally Friendly Native Grass for Animals; Liu, G., Li, X., Zhang, Q., Eds.; Springer: Singapore, 2019; pp. 1–51. ISBN 9789811386329. [Google Scholar]
- Von Felten, S.; Hector, A.; Buchmann, N.; Niklaus, P.A.; Schmid, B.; Scherer-Lorenzen, M. Belowground Nitrogen Partitioning in Experimental Grassland Plant Communities of Varying Species Richness. Ecology 2009, 90, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Martorell, C.; Almanza-Celis, C.A.I.; Pérez-García, E.A.; Sánchez-Ken, J.G. Co-existence in a Species-rich Grassland: Competition, Facilitation and Niche Structure over a Soil Depth Gradient. J. Veg. Sci. 2015, 26, 674–685. [Google Scholar] [CrossRef]
- Dong, S.; Li, S.; Xu, Y.; Shen, H.; Song, H.; Wu, Z.; Wu, S.; Zhou, B.; Li, F. Different Responses of Alpine Plants to Natural Climate Change Reduced Coexistence through Phenological Niche Overlap. Sci. Total Environ. 2023, 892, 164522. [Google Scholar] [CrossRef]
- Gu, L.; Gong, Z.; Li, W. Niches and Interspecific Associations of Dominant Populations in Three Changed Stages of Natural Secondary Forests on Loess Plateau, P.R. China. Sci. Rep. 2017, 7, 6604. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, H.; Mi, Z.; Zhang, Z.; Wang, Y.; Xu, W.; Jiang, L.; He, J.-S. Climate Warming Reduces the Temporal Stability of Plant Community Biomass Production. Nat. Commun. 2017, 8, 15378. [Google Scholar] [CrossRef]
- Bonnet, P.; Goëau, H.; Hang, S.T.; Lasseck, M.; Šulc, M.; Malécot, V.; Jauzein, P.; Melet, J.-C.; You, C.; Joly, A. Plant Identification: Experts vs. Machines in the Era of Deep Learning. In Multimedia Tools and Applications for Environmental & Biodiversity Informatics; Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., Bonnet, P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 131–149. ISBN 978-3-319-76444-3. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Springer: Dordrecht, The Netherlands, 1988; ISBN 978-94-015-7360-3. [Google Scholar]
- Schoener, T.W. Field Experiments on Interspecific Competition. Am. Nat. 1983, 122, 240–285. [Google Scholar] [CrossRef]
- Valone, T.J.; Balaban-Feld, J. Impact of exotic invasion on the temporal stability of natural annual plant communities. Oikos 2018, 127, 56–62. [Google Scholar] [CrossRef]
- Marull, J.; Herrando, S.; Brotons, L.; Melero, Y.; Pino, J.; Cattaneo, C.; Pons, M.; Llobet, J.; Tello, E. Building on Margalef: Testing the Links between Landscape Structure, Energy and Information Flows Driven by Farming and Biodiversity. Sci. Total Environ. 2019, 674, 603–614. [Google Scholar] [CrossRef]
- Arbuckle, J.L.; Wothke, W. IBM AMOS 4.0 User’s Guide; Marketing Department, SPSS Inc.: Chicago, IL, USA, 1999. [Google Scholar]
- Löffler, J.; Pape, R. Thermal Niche Predictors of Alpine Plant Species. Ecology 2020, 101, e02891. [Google Scholar] [CrossRef]
- Boulangeat, I.; Lavergne, S.; Van Es, J.; Garraud, L.; Thuiller, W. Niche Breadth, Rarity and Ecological Characteristics within a Regional Flora Spanning Large Environmental Gradients. J. Biogeogr. 2012, 39, 204–214. [Google Scholar] [CrossRef]
- Hamid, M.; Khuroo, A.A.; Charles, B.; Ahmad, R.; Singh, C.P.; Aravind, N.A. Impact of Climate Change on the Distribution Range and Niche Dynamics of Himalayan Birch, a Typical Treeline Species in Himalayas. Biodivers. Conserv. 2019, 28, 2345–2370. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, X.; Lha, D. Analysis on the Niche and Interspecific Association of Dominant Plant Species in Alpine Meadow under Simulated Warming and Grazing. Acta Agrestia Sin. 2023, 31, 1302. [Google Scholar] [CrossRef]
- Olivera Viciedo, D.; De Mello Prado, R.; Martínez, C.A.; Habermann, E.; De Cássia Piccolo, M. Short-Term Warming and Water Stress Affect Panicum Maximum Jacq. Stoichiometric Homeostasis and Biomass Production. Sci. Total Environ. 2019, 681, 267–274. [Google Scholar] [CrossRef]
- Gao, W.; Li, L.; Munson, S.M.; Cui, X.; Wang, Y.; Hao, Y. Grasslands Maintain Stability in Productivity Through Compensatory Effects and Dominant Species Stability Under Extreme Precipitation Patterns. Ecosystems 2022, 25, 1150–1165. [Google Scholar] [CrossRef]
- Hutchinson, G.E. Homage to Santa Rosalia or Why Are There So Many Kinds of Animals? Am. Nat. 1959, 93, 145–159. [Google Scholar] [CrossRef]
- Godoy, O.; Bartomeus, I.; Rohr, R.P.; Saavedra, S. Towards the Integration of Niche and Network Theories. Trends Ecol. Evol. 2018, 33, 287–300. [Google Scholar] [CrossRef]
- Silvertown, J.; McConway, K.; Gowing, D.; Dodd, M.; Fay, M.F.; Joseph, J.A.; Dolphin, K. Absence of Phylogenetic Signal in the Niche Structure of Meadow Plant Communities. Proc. R. Soc. B. 2006, 273, 39–44. [Google Scholar] [CrossRef]
- Wang, R.; Huang, W.; Chen, L.; Ma, L.; Guo, C.; Liu, X. Anatomical and Physiological Plasticity in Leymus chinensis (Poaceae) along Large-Scale Longitudinal Gradient in Northeast China. PLoS ONE 2011, 6, e26209. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Hao, X.; Zhao, M.; Han, G. Responses of Plant Community Coverage to Simulated Warming and Nitrogen Addition in a Desert Steppe in Northern China. Ecol. Res. 2015, 30, 605–614. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, J.; Luo, T. The Effect of Pika Grazing on Stipa Purpurea Is Amplified by Warming but Alleviated by Increased Precipitation in an Alpine Grassland. Plant Ecol. 2019, 220, 371–381. [Google Scholar] [CrossRef]
- Lv, X.; He, Q.; Zhou, G. Contrasting Responses of Steppe Stipa Ssp. to Warming and Precipitation Variability. Ecol. Evol. 2019, 9, 9061–9075. [Google Scholar] [CrossRef]
- Wang, J.-F.; Gao, S.; Lin, J.-X.; Mu, Y.-G.; Mu, C.-S. Summer Warming Effects on Biomass Production and Clonal Growth of Leymus chinensis. Crop Pasture Sci. 2010, 61, 670. [Google Scholar] [CrossRef]
- Li, G.; Lu, S.; Wu, H.; Chen, G.; Liu, S.; Kong, X.; Kong, W.; You, J. Determination of Multiple Phytohormones in Fruits by High-performance Liquid Chromatography with Fluorescence Detection Using Dispersive Liquid–Liquid Microextraction Followed by Precolumn Fluorescent Labeling. J. Sep. Sci. 2015, 38, 187–196. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Lv, X. Responses of Plant Biomass, Photosynthesis and Lipid Peroxidation to Warming and Precipitation Change in Two Dominant Species (Stipa grandis and Leymus chinensis) from North China Grasslands. Ecol. Evol. 2016, 6, 1871–1882. [Google Scholar] [CrossRef]
- Ba, L.; Wang, D.; Hodgkinson, K.C.; Xiao, N. Competitive Relationships between Two Contrasting but Coexisting Grasses. Plant Ecol. 2006, 183, 19–26. [Google Scholar] [CrossRef]
- Zhang, Y.; Loreau, M.; He, N.; Wang, J.; Pan, Q.; Bai, Y.; Han, X. Climate Variability Decreases Species Richness and Community Stability in a Temperate Grassland. Oecologia 2018, 188, 183–192. [Google Scholar] [CrossRef]
- Kwaku, E.A.; Dong, S.; Shen, H.; Li, W.; Sha, W.; Su, X.; Zhang, Y.; Li, S.; Gao, X.; Liu, S.; et al. Biomass and Species Diversity of Different Alpine Plant Communities Respond Differently to Nitrogen Deposition and Experimental Warming. Plants 2021, 10, 2719. [Google Scholar] [CrossRef]
- Shao, J.; Zhou, X.; Van Groenigen, K.J.; Zhou, G.; Zhou, H.; Zhou, L.; Lu, M.; Xia, J.; Jiang, L.; Hungate, B.A.; et al. Warming Effects on Grassland Productivity Depend on Plant Diversity. Glob. Ecol. Biogeogr. 2022, 31, 588–598. [Google Scholar] [CrossRef]
- Olsen, S.L.; Töpper, J.P.; Skarpaas, O.; Vandvik, V.; Klanderud, K. From Facilitation to Competition: Temperature-driven Shift in Dominant Plant Interactions Affects Population Dynamics in Seminatural Grasslands. Glob. Change Biol. 2016, 22, 1915–1926. [Google Scholar] [CrossRef]
- Venail, P.; Gross, K.; Oakley, T.H.; Narwani, A.; Allan, E.; Flombaum, P.; Isbell, F.; Joshi, J.; Reich, P.B.; Tilman, D.; et al. Species Richness, but Not Phylogenetic Diversity, Influences Community Biomass Production and Temporal Stability in a Re-examination of 16 Grassland Biodiversity Studies. Funct. Ecol. 2015, 29, 615–626. [Google Scholar] [CrossRef]
- Wan, Z.; Ganjurjav, H.; Gu, R.; Hu, G.; Gornish, E.S.; Chun, X.; Zhou, H.; Gao, Q. Changes in Plant Species Dominance Maintain Community Biomass Production under Warming and Precipitation Addition in Temperate Steppe in Inner Mongolia, China. Agric. For. Meteorol. 2023, 341, 109671. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, T.; Wei, H.; Deng, Z.; Li, X.; Li, R.; Tang, Y. Increased Precipitation Offsets the Negative Effect of Warming on Plant Biomass and Ecosystem Respiration in a Tibetan Alpine Steppe. Agric. For. Meteorol. 2019, 279, 107761. [Google Scholar] [CrossRef]
- Hu, X.; Wang, D.; Ren, S.; Feng, S.; Zhang, H.; Zhang, J.; Qiao, K.; Zhou, A. Inhibition of Root Growth by Alkaline Salts Due to Disturbed Ion Transport and Accumulation in Leymus chinensis. Environ. Exp. Bot. 2022, 200, 104907. [Google Scholar] [CrossRef]
- Schellenberger Costa, D.; Gerschlauer, F.; Kiese, R.; Fischer, M.; Kleyer, M.; Hemp, A. Plant Niche Breadths along Environmental Gradients and Their Relationship to Plant Functional Traits. Divers. Distrib. 2018, 24, 1869–1882. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wan, Z.; Gu, R.; Dong, L.; Chen, X.; Chun, X.; Zhou, H.; Zhang, W. Warming Increases Ecological Niche of Leymus chinensis but Is Detrimental to Species Diversity in Inner Mongolia Temperate Grasslands. Agronomy 2024, 14, 2425. https://doi.org/10.3390/agronomy14102425
Zhang X, Wan Z, Gu R, Dong L, Chen X, Chun X, Zhou H, Zhang W. Warming Increases Ecological Niche of Leymus chinensis but Is Detrimental to Species Diversity in Inner Mongolia Temperate Grasslands. Agronomy. 2024; 14(10):2425. https://doi.org/10.3390/agronomy14102425
Chicago/Turabian StyleZhang, Xingbo, Zhiqiang Wan, Rui Gu, Lingman Dong, Xuemeng Chen, Xi Chun, Haijun Zhou, and Weiqing Zhang. 2024. "Warming Increases Ecological Niche of Leymus chinensis but Is Detrimental to Species Diversity in Inner Mongolia Temperate Grasslands" Agronomy 14, no. 10: 2425. https://doi.org/10.3390/agronomy14102425
APA StyleZhang, X., Wan, Z., Gu, R., Dong, L., Chen, X., Chun, X., Zhou, H., & Zhang, W. (2024). Warming Increases Ecological Niche of Leymus chinensis but Is Detrimental to Species Diversity in Inner Mongolia Temperate Grasslands. Agronomy, 14(10), 2425. https://doi.org/10.3390/agronomy14102425