Assessment of the Effects of Biochar on the Physicochemical Properties of Saline–Alkali Soil Based on Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. Meta-Analysis
2.3. Statistical Analysis
3. Results
3.1. Heterogeneity and Publication Bias Test of Effect of Biochar on Saline–Alkali Soil
3.2. Effect of Biochar on the Physicochemical Properties of Saline–Alkali Soils
3.3. Effect of Biochar on the Improvement of Soil Physicochemical Properties
3.4. Influence of Different Types of Biochar on Saline–Alkali Soils
3.5. Key Driving Factors of Soil Physicochemical Property Changes
3.6. The Overall Impact of Biochar on Soil Physicochemical Properties
4. Discussion
4.1. Impact of Biochar Application on the Physicochemical Properties of Saline–Alkali Soil
4.2. Impact of Biochar on SBD, TP, and SMC of Saline–Alkali Soil
4.3. Impact of Biochar on pH and CEC of Saline–Alkali Soil
4.4. Impact of Biochar on SC, ESP, and SAR of Saline–Alkali Soil
5. Research Gaps and Future Needs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, W.B. Effects of Biochar and Humic Acid on the Growth of Quercus Virginiana Mill in Saline-Alkaline Land. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2023. [Google Scholar]
- Yang, S.; Hao, X.; Xu, Y.; Yang, J.; Su, D. Meta-Analysis of the effect of saline-alkali land improvement and utilization on soil organic carbon. Life 2022, 12, 1870. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.B.; Zhao, L.; Zhou, Y.P.; He, J.; Kuang, N.K.; Li, Y.K. Effects of rhizosphere growth-promoting bacteria on soil improvement, crop yield and quality in saline-alkali land—A meta-analysis. Soils 2022, 54, 1257–1264. [Google Scholar]
- Du, Y.; Liu, X.; Zhang, L.; Zhou, W. Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta-analysis. Sci. Total Environ. 2023, 880, 163226. [Google Scholar] [CrossRef]
- Yang, R.; Sun, Z.; Liu, X.; Long, X.; Gao, L.; Shen, Y. Biomass composite with exogenous organic acid addition supports the growth of sweet sorghum (Sorghum bicolor ‘Dochna’) by reducing salinity and increasing nutrient levels in coastal saline-alkaline soil. Front. Plant Sci. 2023, 14, 1163195. [Google Scholar] [CrossRef]
- He, K.; Xu, Y.; He, G.; Zhao, X.; Wang, C.; Li, S.; Zhou, G.; Hu, R. Combined application of acidic biochar and fertilizer synergistically enhances Miscanthus productivity in coastal saline-alkaline soil. Sci. Total Environ. 2023, 893, 164811. [Google Scholar] [CrossRef]
- Landgraf, D.; Klose, S. Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. J. Plant Nutr. Soil Sci. 2002, 165, 9–16. [Google Scholar] [CrossRef]
- Ingram, J.; Bartels, D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Biol. 1996, 47, 377–403. [Google Scholar] [CrossRef]
- Zhu, X.G.; Zhang, Q.D. Advances in the research on the effects of NaCl on photosynthesis. Chin. Bull. Bot. 1999, 416, 332–338. [Google Scholar]
- Farhangi-Abriz, S.; Torabian, S.; Qin, R.; Noulas, C.; Lu, Y.; Gao, S. Biochar effects on yield of cereal and legume crops using meta-analysis. Sci. Total Environ. 2021, 775, 145869. [Google Scholar] [CrossRef]
- Alves, B.S.Q.; Fernandes, L.A.; Southard, R.J. Biochar-cadmium retention and its effects after aging with Hydrogen Peroxide (H2O2). Heliyon 2021, 7, e08476. [Google Scholar] [CrossRef]
- Liang, J.; Li, Y.; Si, B.; Wang, Y.; Chen, X.; Wang, X.; Chen, H.; Wang, H.; Zhang, F.; Bai, Y. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Sci. Total Environ. 2021, 771, 144802. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.B.; Wang, S.; Liu, L.L.; Xiao, J.; Wang, S.F.; Tang, L.; Chen, G.C. Effect of biochar amendment on saline-alkaline soil amelioration and plant growth: A literature review. Chin. J. Soil Sci. 2024, 55, 551–561. [Google Scholar]
- Li, M. Effect of Biochar on Soil Organic Carbon and Microorganism in Saline Alkali Wetland at Western of Jilin Province. Master’s Thesis, Northeast Institute of Geography and Agroecology, University of Chinese Academy of Sciences, Jilin, China, 2020. [Google Scholar]
- Zheng, H.; Wang, X.; Chen, L.; Wang, Z.; Xiao, Y.; Zhang, Y.; Wang, H.; Luo, X.; Xing, B. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ. 2018, 41, 517–532. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D.; Ma, H.; Alaylar, B.; Zoghi, Z.; Kistaubayeva, A.; Wirth, S.; Bellingrath-Kimura, S.D. Biochar amendments improve Licorice (Glycyrrhiza uralensis Fisch.) growth and nutrient uptake under salt stress. Plant 2021, 10, 2135. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Guo, W.N.; Lin, Q.M.; Li, G.T.; Zhao, X.R. Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. J. Soil Water Conserv. 2016, 71, 467. [Google Scholar] [CrossRef]
- Xu, W.; Wang, G.; Deng, F.; Zou, X.; Ruan, H.; Chen, H.Y.H. Responses of soil microbial biomass, diversity and metabolic activity to biochar applications in managed poplar plantations on reclaimed coastal saline soil. Soil Use Manag. 2018, 34, 597–605. [Google Scholar] [CrossRef]
- Wei, Y.; Qiao, L.; Zhang, P.; Liu, F.D.; Xiao, H.; Dong, Y.C.; Sun, H.W. Reaearch and application progress of biochar in amelioration of saline-alkali soil. Environ. Sci. 2024, 45, 940–951. [Google Scholar]
- Wang, X.; Ding, J.L.; Han, L.J.; Tan, J.; Ge, X.Y.; Nan, Q. Biochar addition reduces salinity in salt-affected soils with no impact on soil pH: A meta-analysis. Geoderma 2024, 443, 116845. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; OK, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, K.R.; Yang, J.E.; Ok, Y.S.; Owens, G.; Nehls, T.; Wessolek, G.; Kim, K.H. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 2016, 142, 153–159. [Google Scholar] [CrossRef]
- Liu, G.H.; Mai, W.X.; Tian, C.Y. Effects of organic fertilizer application on the improvement of salinesoils: Meta analysis. J. Agric. Resour. Environ. 2023, 40, 86–96. [Google Scholar]
- Li, S.; Zhao, L.; Wang, C.; Huang, H.; Zhuang, M. Synergistic improvement of carbon sequestration and crop yield by organic material addition in saline soil: A global meta-analysis. Sci. Total Environ. 2023, 891, 164530. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.N.; Xu, C.Y.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef]
- Dai, Y.; Zheng, H.; Jiang, Z.; Xing, B. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 2020, 713, 136635. [Google Scholar] [CrossRef]
- Qadir, M.; Sposito, G.; Smith, C.J.; Oster, J.D. Reassessing irrigation water quality guidelines for sodicity hazard. Agric. Water Manag. 2021, 255, 107054. [Google Scholar] [CrossRef]
- Li, J.M.; Kang, Y.X.; Jiang, F.Z.; Song, M.D.; Qi, K.B.; Lu, S.J.; Li, Z.P. Effect of vegetation restoration on soil organic carbon storage in coal mining areas based on Meta-analysis. Environ. Sci. 2023, 45, 1629–1643. [Google Scholar]
- Tian, X.S.; Wang, D.Y.; Chai, G.Q.; Zhang, J.Z.; Zhao, X.L. Does biochar inhibit the bioavailability and bioaccumulation of As and Cd in co-contaminated soils? A meta-analysis. Sci. Total Envron. 2021, 762, 143117. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 7406476. [Google Scholar] [CrossRef]
- Wittig, V.E.; Ainsworth, E.A.; Naidu, S.L.; Karnosky, D.F.; Long, S.P. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis. Glob. Chang. Biol. 2009, 15, 396–424. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y.; Shi, L.; Li, G.; Pang, Z.; Liu, S.; Chen, Y.; Jia, B. Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant Soil Environ. 2022, 68, 272–289. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, S.; Zhang, X.; Chen, J.; He, X.; Zhang, Q. Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L.-derived biochar in coastal saline-alkali soil. Sci. Total Environ. 2020, 731, 138938. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhao, Y.; Sima, J.; Zhao, L.; Mašek, O.; Cao, X. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresour. Technol. 2017, 241, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Zhao, J.; Luo, Y.; Novak, J.; Herbert, S.; Xing, B. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour. Technol. 2013, 130, 463–471. [Google Scholar] [CrossRef]
- Lei, Y.; Xu, L.H.; Wang, M.G.; Sun, S.; Yang, Y.H.; Xu, C. Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis. Sustainability 2024, 16, 6397. [Google Scholar] [CrossRef]
- Luo, X.; Liu, G.; Xia, Y.; Chen, L.; Jiang, Z.; Zheng, H.; Wang, Z. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J. Soils Sediments 2017, 17, 780–789. [Google Scholar] [CrossRef]
- Schulz, H.; Dunst, G.; Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef]
- Lashari, M.S.; Liu, Y.; Li, L.; Pan, W.; Fu, J.; Pan, G.; Zheng, J.; Zheng, J.; Zhang, X.; Yu, X. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Res. 2013, 144, 113–118. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Z.J.; Sameh, E.S.; Wang, Z.; He, J.; Han, L.; Zou, B.T. Effects of enteromorpha prolifera biochar and wood vinegar co-application on takyric solonetz improvement and yield of oil sunflower. Environ. Sci. 2021, 42, 6078–6090. [Google Scholar]
- Wang, H. Study on the Mechanism of Humic Acid-Magnetic Biochar on the Restoration of Mild Saline Land and Plant Growth Characteristics. Master’s Thesis, East China University, Shanghai, China, 2022. [Google Scholar]
- Li, C.Y.; Wang, Z.C.; Xu, Y.T.; Sun, J.; Ruan, X.; Mao, X.; Hu, X.; Liu, P. Analysis of the effect of modified biochar on saline-alkali soil remediation and crop growth. Sustainability 2023, 15, 5593. [Google Scholar] [CrossRef]
- Amini, S.; Ghadiri, H.; Chen, C.; Marschner, P. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. J. Soils Sediments 2016, 16, 939–953. [Google Scholar] [CrossRef]
- Zhao, W.B.; Tang, L.; Wang, S.; Liu, L.L.; Wang, S.F.; Xiao, J.; Chen, G.C. Improvement effect of two biochars on coastal saline-alkaline soil. Ecol. Environ. Sci. 2023, 32, 678–686. [Google Scholar]
- Yang, L. Effects of Irrigation and Biochar Application Amounts on Potato Growth and Soil Physical and Chemical Properties in Sandy Soil of Northern Shaanxi Province. Master’s Thesis, Northwest A&F University, Xianyang, China, 2022. [Google Scholar]
- Al-Wabel, M.; Hussain, Q.; Usman, A.; Ahmad, M.; Abduljabbar, A.; Abdulazeam, S.; Ok, Y.S. Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degrad. Dev. 2017, 29, 2124–2161. [Google Scholar] [CrossRef]
- Liu, Q.; Yuan, Y.F.; Liu, Y.F.; Shi, M.; Wang, X.; Luo, X.X.; Li, X.Y.; Zheng, H.; Li, F.M. Research progress: The application of biochar in the remediation of salt-affected soils. Adv. Earth Sci. 2022, 37, 1005–1024. [Google Scholar]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Qin, B.; Wang, Y.Q.; Tang, G.M.; Liu, H.F.; Xu, W.L. Effects of applying cotton stalk biochar to Xinjiang saline soil on the physical and chemical properties and crop yield. Xinjiang Agric. Sci. 2016, 53, 2290–2298. [Google Scholar]
- Agbna, G.; Ali, A.; Elbashier, M.M.; Bakir, M.; Osman, A.; Elshaikh-Hayaty, A. Effect of biochar on some soil properties and tomato growth under saline water conditions. Int. J. Sci. Eng. Res. 2017, 8, 24–28. [Google Scholar]
- Ali, S.; Rizwan, M.; Qayyum, M.F.; Ok, S.Y.; Ibrahim, M.; Riaz, M.; Arif, M.S.; Hafeez, F.; Al-Wabel, M.I.; Shahzad, A.N. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environ. Sci. Pollut. Res. 2017, 24, 12700–12712. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y. Application of Biochar Combined with Nitrogen Fertilizer in Water and Salt Regulation and Nitrogen Utilization of Ipomoea Aquatica. Master’s Thesis, Yangzhou University, Yangzhou, China, 2022. [Google Scholar]
- Edeh, I.G.; Mašek, O.; Buss, W. A meta-analysis on biochar’s effects on soil water properties-New insights and future research challenges. Sci. Total Environ. 2020, 714, 136857. [Google Scholar] [CrossRef]
- Zhang, X.; Qu, J.; Li, H.; La, S.; Tian, Y.; Gao, L. Biochar addition combined with daily fertigation improves overall soil quality and enhances water-fertilizer productivity of cucumber in alkaline soils of a semi-arid region. Geoderma 2020, 363, 114170. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Chai, G.Q.; Zhao, Y.A.; Huang, X.C.; Zhang, Y.Q.; Shi, X.J. Effects of different carbonaceous conditioners on water retention capaciry of purple soil. J. Soil Water Conserv. 2017, 31, 296–302. [Google Scholar]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, J.; Ma, Y.R.; Qi, T.; Feng, Y.Z.; Meng, A.J.; Wang, X.Y. Effects induced by inputting biochar into the saliferous gray desert soil on the soil moisture movement. Xinjiang Agric. Sci. 2017, 54, 343–351. [Google Scholar]
- Cui, Y.T. Effects of Straw Biochar on the Phosphorus Fractions and Improvement of Soda Saline-Alkali Soil. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2021. [Google Scholar]
- Manasa, M.R.K.; Katukuri, N.R.; Darveekaran Nair, S.S.; Haojie, Y.; Yang, Z.; Guo, R.B. Role of biochar and organic substrates in enhancing the functional characteristics and microbial community in a saline soil. J. Environ. Manag. 2020, 269, 110737. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Lu, H.; Chu, L.; Shao, H.; Shi, W. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 2017, 575, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xu, M.G.; Li, R.; Cai, Z.J.; Sun, N.; Zhang, Q.; Zheng, L. Effects of biochar application on soil pH: A meta-analysis. J. Agric. Sci. Technol. 2023, 25, 186–196. [Google Scholar]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Jin, F.; Piao, J.L.; Miao, S.H.; Che, W.K.; Li, X.; Li, X.B.; Shiraiwa, T.; Tanaka, T.; Taniyoshi, K.; Hua, S. Long-term effects of biochar one-off application on soil physicochemical properties, salt concentration, nutrient availability, enzyme activity, and rice yield of highly saline-alkali paddy soils: Based on a 6-year field experiment. Biochar 2024, 6, 2524. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Liu, X.L.; Lu, Y.C.; Wang, Y.F. Saline-alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Appl. Soil Ecol. 2020, 156, 103705. [Google Scholar] [CrossRef]
- Song, D.L. Effects of the Straw Biochar on Soil Carbon and Nitrogen Contents and Microbial Properties in a Fluvo-Aquic Soil. Master’s Thesis, Southwest University, Chongqing, China, 2018. [Google Scholar]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Zhang, P.; Bing, X.; Jiao, L.; Xiao, H.; Li, B.; Sun, H. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar. Chem. Eng. J. 2022, 431, 133904. [Google Scholar] [CrossRef]
- Cui, L.; Liu, Y.; Yan, J.; Hina, K.; Hussain, Q.; Qiu, T.; Zhu, J. Revitalizing coastal saline-alkali soil with biochar application for improved crop growth. Ecol. Eng. 2022, 179, 106594. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 2013, 256–257, 1–9. [Google Scholar] [CrossRef]
- Yadav, V.; Jian, S.; Mishra, P.; Khare, P.; Shukla, A.K.; Karak, T.; Singh, A.K. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar. Appl. Soil Ecol. 2019, 138, 144–155. [Google Scholar] [CrossRef]
- Wang, X.; Ding, J.; Wang, J.; Han, L.; Tan, J.; Ge, X. Ameliorating saline-sodic soils: A global meta-analysis of field studies on the influence of exogenous amendments on crop yield. Land Degrad. Dev. 2024, 35, 3330–3343. [Google Scholar] [CrossRef]
- He, Y.X.; Liu, K.S. The impact of biochar on the salinization characteristics and soil nutrients of saline-alkali grassland soil. Rural. Sci. Technol. 2023, 14, 126–130. [Google Scholar]
- Wang, Y.; Lin, Q.; Liu, Z.; Liu, K.; Wang, X.; Shang, J. Salt-affected marginal lands: A solution for biochar production. Biochar 2023, 5, 21. [Google Scholar] [CrossRef]
- Xia, X.Y.; Wang, X.L.; Xia, H.; Li, Y.X.; Wang, J.Y.; Jiang, C.C. Characteristics of modified biochar and its application in improving saline-alkali soil. J. Huazhong Agric. Univ. 2023, 42, 12–19. [Google Scholar]
- Chen, H.P.; Yu, C.X.; Wang, G.M.; Zhang, H.B.; Zhang, Y.; Li, H.X. Effects of biochar and dicyandiamide on nitrogen transformation and soybean nitrogen absorption and utilization in coastal saline-alkali soil. Chin. J. Ecol. 2023, 11. Available online: http://ir.yic.ac.cn/handle/133337/34208 (accessed on 17 October 2024).
- Abbas, G.; Abrar, M.M.; Naeem, M.A.; Siddiqui, M.H.; Ali, H.M.; Li, Y.; Ahmed, K.; Sun, N.; Xu, M. Biochar increases salt tolerance and grain yield of quinoa on saline-sodic soil: Multivariate comparison of physiological and oxidative stress attributes. J. Soils Sediments 2022, 22, 1446–1459. [Google Scholar] [CrossRef]
- Jiang, J.J.; Guo, R.; Chen, L.L. Research progress on the improvement effects of biochar on acidic and saline-alkali soils. Agric. Dev. Equip. 2014, 11, 30–32. [Google Scholar]
- Deng, X.; Wang, C.; Lu, X.R.; Chen, G.S.; Wen, B.L.; Liang, Y.J. Effects of biochar on sodium adsorption ratio in saline-alkali soil plough layer:A meta-analysis. North. Hortic. 2022, 18, 67–75. [Google Scholar]
- Islam, M.U.; Jiang, F.; Guo, Z.; Peng, X. Does biochar application improve soil aggregation? A meta-analysis. Soil Tillage Res. 2021, 209, 104926. [Google Scholar] [CrossRef]
- Zhou, W.Z.; Sun, X.Y.; Li, S.Y.; Zhang, L. Ameliorative effect of bioorganic material on coastal saline soil. Acta Agric. Zhejiangensis 2019, 31, 607–615. [Google Scholar]
Variables | N | Categorial Groups | |
---|---|---|---|
Soil properties | pH | 1258 | <8.5, 8.5~9.5, >9.5 |
Salinity | 1148 | Slightly (0~0.2%), moderately (0.2~0.4%), heavily (>0.4%) | |
Water budget | 1277 | Deficit, surplus | |
Biochar characteristics | Feedstock | 1272 | Agricultural residue, wood category, mixed category (at least 2 raw materials pyrolyzed to prepare biochar, biochar mixed with other amendments), other category |
Pyrolysis temperature | 1179 | ≤400 °C, 401–500 °C, 501–600 °C, >600 °C | |
pH | 1182 | <6, 6–8, >8 | |
Application rate | 1277 | Low (<20 t ha−1), middle (20–40 t ha−1), high (41–80 t ha−1), very high (>80 t ha−1) |
Soil Property | Heterogeneity Test | Publication Bias Test | n | ||||
---|---|---|---|---|---|---|---|
Q | Degrees of Freedom | PQ | I2 | Critical Value | Nfs | ||
SBD | 92.3441 | 123 | 0.9822 | 0 | 630 | 3103.732 | 124 |
TP | 643.4743 | 58 | 0 ** | 90.9864 | 305 | 3291.333 | 59 |
SMC | 218.7404 | 147 | 0.0001 ** | 32.797 | 750 | 3112.522 | 148 |
pH | 715.7791 | 387 | 0 ** | 45.933 | 1950 | 6960.182 | 388 |
EC | 197.484 | 169 | 0.0661 | 14.4234 | 860 | 197.3936 | 170 |
CEC | 581.4124 | 142 | 0 ** | 75.5767 | 725 | 17,960.99 | 143 |
SC | 295.3952 | 187 | 0 ** | 50.6961 | 950 | 2154.478 | 188 |
ESP | 180.0132 | 100 | 0 ** | 44.4485 | 515 | 7564.919 | 101 |
SAR | 253.5297 | 126 | 0 ** | 50.6961 | 640 | 7947.145 | 126 |
Different Soil Types | Feedstock | Pyrolysis Temperature | Biochar pH | Addition Rate | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agricultural Residue | Wood | Mixed | Other | ≤400 | 401~500 | 501~600 | >600 | <6 | 6~8 | >8 | Low | Middle | High | Very High | ||
Water Budget | Deficit | √ | √ | √ | √ | |||||||||||
Surplus | √ | √ | √ | √ | ||||||||||||
Salinity | Slightly | √ | √ | √ | √ | |||||||||||
Moderately | √ | √ | √ | √ | ||||||||||||
Heavily | √ | √ | √ | √ | ||||||||||||
pH | <8.5 | √ | √ | √ | √ | |||||||||||
8.5~9.5 | √ | √ | √ | √ | ||||||||||||
>9.5 | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, T.; Wang, Y.; Ning, S.; Mao, J.; Sheng, J.; Jiang, P. Assessment of the Effects of Biochar on the Physicochemical Properties of Saline–Alkali Soil Based on Meta-Analysis. Agronomy 2024, 14, 2431. https://doi.org/10.3390/agronomy14102431
Mao T, Wang Y, Ning S, Mao J, Sheng J, Jiang P. Assessment of the Effects of Biochar on the Physicochemical Properties of Saline–Alkali Soil Based on Meta-Analysis. Agronomy. 2024; 14(10):2431. https://doi.org/10.3390/agronomy14102431
Chicago/Turabian StyleMao, Tingting, Yaofeng Wang, Songrui Ning, Jiefei Mao, Jiandong Sheng, and Pingan Jiang. 2024. "Assessment of the Effects of Biochar on the Physicochemical Properties of Saline–Alkali Soil Based on Meta-Analysis" Agronomy 14, no. 10: 2431. https://doi.org/10.3390/agronomy14102431
APA StyleMao, T., Wang, Y., Ning, S., Mao, J., Sheng, J., & Jiang, P. (2024). Assessment of the Effects of Biochar on the Physicochemical Properties of Saline–Alkali Soil Based on Meta-Analysis. Agronomy, 14(10), 2431. https://doi.org/10.3390/agronomy14102431