Effects of the Radicle Sheath on the Rhizosphere Microbial Community Structure of Seedlings in Early Spring Desert Species Leontice incerta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. Determination Method
2.4. Data Quality Control and Analysis
3. Results
3.1. Analysis of Rhizosphere Microbial Community Taxonomic Composition
3.2. α and β Biodiversity
3.3. Differences in the Rhizosphere Microbial Communities of Leontice incerta Seedlings
3.4. Predicted Functions of Rhizospheric Microbial Communities in Leontice incerta Seedlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Zhang, J.; Dong, X.; Xin, Z.; Duan, R.; Luo, F.; Li, Y. Effects of simulated rainfall enhancement on the growth and root morphology of desert plant seedlings. Acta Ecol. Sin. 2020, 40, 3452–3461. [Google Scholar]
- Chen, C.; Jing, C.; Xing, W.; Deng, X.; Fu, H.; Guo, W. Dynamic changes of desert grasslands in Xinjiang and their responses to climate change in the past 20 years. Acta Pratacult. Sin. 2021, 30, 1–14. [Google Scholar]
- Li, T.; Zhang, W.; Liu, G.; Chen, T. Research progress on the structural characteristics of desert soil microbial communities. Chin. J. Deserts 2018, 38, 329. [Google Scholar]
- Caruso, T.; Chan, Y.; Lacap, D.C.; Lau, M.C.; McKay, C.P.; Pointing, S.B. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J. 2011, 5, 1406–1413. [Google Scholar] [CrossRef]
- Lee, C.K.; Barbier, B.A.; Bottos, E.M.; McDonald, I.R.; Cary, S.C. The inter-valley soil comparative survey: The ecology of dry valley edaphic microbial communities. ISME J. 2012, 6, 1046–1057. [Google Scholar] [CrossRef]
- Solans, M.; Pelliza, Y.I.; Tadey, M. Inoculation with native actinobacteria may improve desert plant growth and survival with potential use for restoration practices. Microb. Ecol. 2022, 83, 380–392. [Google Scholar] [CrossRef]
- Puente, M.E.; Li, C.Y.; Bashan, Y. Endophytic bacteria in cacti seeds can improve the development of Cactus seedlings. Environ. Exp. Bot. 2009, 66, 402–408. [Google Scholar] [CrossRef]
- Yang, X.; Baskin, C.C.; Baskin, J.M.; Zhang, W.; Huang, Z. Degradation of seed mucilage by soil microflora promotes early seedling growth of a desert sand dune plant: Mucilage biodegradation promotes seedling growth. Plant Cell Environ. 2012, 35, 872–883. [Google Scholar] [CrossRef]
- Bay, S.; Ferrari, B.; Greening, C. Life without water: How do bacteria generate biomass in desert ecosystems? Microbiol. Aust. 2018, 39, 28–32. [Google Scholar] [CrossRef]
- Ismail; Hamayun, M.; Hussain, A.; Afzal Khan, S.; Iqbal, A.; Lee, I.-J. Aspergillus flavus promoted the growth of Soybean and Sunflower seedlings at elevated temperature. BioMed Res. Int. 2019, 2019, 1295457. [Google Scholar] [CrossRef]
- Óskarsson, Ú.; Heyser, W. Inoculation with arbuscular mycorrhizal fungi, fertilization and seed rates influence growth and development of Lyme Grass seedlings in two desert areas in Iceland. Icel. Agric. Sci. 2015, 28, 59–80. [Google Scholar] [CrossRef]
- Trivedi, P.; Batista, B.D.; Bazany, K.E.; Singh, B.K. Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytol. 2022, 234, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zhang, C.; Lin, F. Advances in the study of physiological and molecular mechanisms of interactions between plants and endophytic fungi. Acta Ecol. Sin. 2008, 28, 4430–4439. [Google Scholar]
- Li, W.; Li, Y.; Lv, J.; He, X.; Wang, J.; Teng, D.; Jiang, L.; Wang, H.; Lv, G. Rhizosphere effect alters the soil microbiome composition and C, N transformation in an arid ecosystem. Appl. Soil Ecol. 2022, 170, 104296. [Google Scholar] [CrossRef]
- Sperber, K. Fruit fracture biomechanics and the release of Lepidium Didymum pericarp-imposed mechanical dormancy by fungi. Nat. Commun. 2017, 8, 1868. [Google Scholar] [CrossRef]
- Liu, T. Effects of arbuscular mycorrhizal fungi on growth, stomata and xylem microstructure of poplar. Chin. J. Plant Ecol. 2014, 38, 1001–1007. [Google Scholar]
- Galaviz, C.; Lopez, B.R.; de-Bashan, L.E.; Hirsch, A.M.; Maymon, M.; Bashan, Y. Root growth improvement of mesquite seedlings and bacterial rhizosphere and soil community changes are induced by inoculation with plant growth-promoting bacteria and promote restoration of eroded desert soil. Land Degrad. Dev. 2018, 29, 1453–1466. [Google Scholar] [CrossRef]
- Zhang, L. Arbuscular mycorrhizal fungi conducting the Hyphosphere bacterial orchestra. Trends Plant Sci. 2022, 27, 402–411. [Google Scholar] [CrossRef]
- Wang, S. Soil and water conservation planning of shawan county. Chin. J. Soil Water Conserv. 2008, 44–45. [Google Scholar]
- Kirschner, G.K.; Xiao, T.T.; Blilou, I. Rooting in the desert: A developmental overview on desert plants. Genes 2021, 12, 709. [Google Scholar] [CrossRef]
- Liu, J.; Yang, P.; Kan, J.; Gao, Y. Groundwater dynamic trends and driving factors in the irrigation area of Shawan County, Xinjiang under changing environment. Water Sav. Irrig. 2019, 3, 53–58. [Google Scholar]
- Li, Y.; Liu, Y.; Wang, X.; Luo, S.; Su, D.; Jiang, H.; Zhou, H.; Pan, J.; Feng, L. Biomethanation of syngas at high CO concentration in a continuous mode. Bioresour. Technol. 2022, 346, 126407. [Google Scholar] [CrossRef] [PubMed]
- Pichler, M.; Coskun, Ö.K.; Ortega-Arbulú, A.; Conci, N.; Wörheide, G.; Vargas, S.; Orsi, W.D. A 16S RRNA gene sequencing and analysis protocol for the Illumina MiniSeq platform. MicrobiologyOpen 2018, 7, e00611. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, H.; Lin, C.-M.; Wunderlich, R.F.; Cheng, L.-C.; Ko, M.-C.; Lin, Y.-P. Climate and land cover shape the fungal community structure in topsoil. Sci. Total Environ. 2021, 751, 141721. [Google Scholar] [CrossRef]
- Zhang, X.; Song, X.; Wang, T.; Huang, L.; Ma, H.; Wang, M.; Tan, D. The responses to long-term nitrogen addition of soil bacterial, fungal, and archaeal communities in a desert ecosystem. Front. Microbiol. 2022, 13, 1015588. [Google Scholar] [CrossRef]
- Usyk, M.; Zolnik, C.P.; Patel, H.; Levi, M.H.; Burk, R.D. Novel ITS1 fungal primers for characterization of the mycobiome. mSphere 2017, 2, e00488-17. [Google Scholar] [CrossRef]
- Zhu, A.-M.; Wu, Q.; Liu, H.-L.; Sun, H.-L.; Han, G.-D. Isolation of rhizosheath and analysis of microbial community structure around roots of Stipa grandis. Sci. Rep. 2022, 12, 2707. [Google Scholar] [CrossRef]
- Islam, M.N.; Oviedo-Ludena, M.A.; Kutcher, H.R.; Molina, O.; Wang, X. Cropping sequence affects the structure and diversity of pathogenic and non-pathogenic soil microbial communities. Plant Soil 2024, 495, 517–534. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Shen, Z.; Wang, J.; Chen, Y.; Wang, D.; Liu, G.; Han, M. Comparison and interpretation of characteristics of rhizosphere microbiomes of three Blueberry varieties. BMC Microbiol. 2021, 21, 30. [Google Scholar] [CrossRef]
- Yang, H. Responses of Soil Carbon, Nitrogen and Phosphorus Components to Nitrogen Addition and Their Microbial Mechanisms in Bayinbuluke Alpine Wetland. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2022. [Google Scholar]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef]
- Gu, F.; Wen, Q.; Pan, B.; Yang, Y. A preliminary study on soil microorganisms under artificial vegetation in the heart of the Taklimakan Desert. Biodivers. Sci. 2000, 8, 297–303. [Google Scholar]
- Zahra, T.; Hamedi, J.; Mahdigholi, K. Endophytic actinobacteria of a halophytic desert plant Pteropyrum Olivieri: Promising growth enhancers of sunflower. 3 Biotech 2020, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Dawson, W.; Hör, J.; Egert, M.; van Kleunen, M.; Pester, M. A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization. Front. Microbiol. 2017, 8, 975. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Bowatte, S.; Hou, F. Diversity of endophytic bacteria and fungi in seeds of Elymus Nutans growing in four locations of Qinghai Tibet Plateau, China. Plant Soil 2021, 459, 49–63. [Google Scholar] [CrossRef]
- Faria, D.C.; Dias, A.C.F.; Melo, I.S.; de Carvalho Costa, F.E. Endophytic bacteria isolated from orchid and their potential to promote plant growth. World J. Microbiol. Biotechnol. 2013, 29, 217–221. [Google Scholar] [CrossRef]
- Li, L.; Song, B.; Chen, J.; Sun, B.; Zhang, G.; Deng, H.; Ding, G. Research progress on secondary metabolites of endophytic fungi in grassland and desert plants. Microbiol. Bull. 2018, 45, 1146–1160. [Google Scholar]
- Zhao, X.; Zhao, L.; Wang, P.; Chen, C. Research progress on endophytic fungi and arbuscular mycorrhizal fungi improving plant adaptability to stress. J. Yunnan Univ. Nat. Sci. Ed. 2020, 42, 577–591. [Google Scholar]
- Fan, Z.; Wu, Y.; Wang, X.; Li, T.; Gao, J. Effects of symbiotic fungi on seed germination of interspecific hybrids of orchids. Chin. J. Plant Ecol. 2019, 43, 374–382. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, C.; Dong, T.; Xu, X. Effects of arbuscular mycorrhizal fungi on root growth of male and female Populus cathayana plants under different sex combination patterns. Chin. J. Plant Ecol. 2019, 43, 37–45. [Google Scholar]
- Ke, H.; Song, X.; Tan, Z.; Liu, H.; Luo, Y. Diversity of endophytic fungi in the roots of wild Cymbidium orchid. Biodivers. Sci. 2007, 456–462. [Google Scholar]
- Li, C.; Yao, X.; Nan, Z. Research progress on endophytic fungal symbiosis of Drunken Horse Grass. Acta Plant Ecol. Sin. 2018, 42, 793–805. [Google Scholar]
- Harris, J. Soil microbial communities and restoration ecology: Facilitators or followers? Science 2009, 325, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Shi, L.; Burslem, D.F.; Johnson, D.; Fang, M.; Zhang, X.; Yu, S. Soil fungal networks moderate density-dependent survival and growth of seedlings. New Phytol. 2021, 230, 2061–2071. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, X.; Mamut, J. Effects of the Radicle Sheath on the Rhizosphere Microbial Community Structure of Seedlings in Early Spring Desert Species Leontice incerta. Agronomy 2024, 14, 2444. https://doi.org/10.3390/agronomy14102444
Xue X, Mamut J. Effects of the Radicle Sheath on the Rhizosphere Microbial Community Structure of Seedlings in Early Spring Desert Species Leontice incerta. Agronomy. 2024; 14(10):2444. https://doi.org/10.3390/agronomy14102444
Chicago/Turabian StyleXue, Xiaolan, and Jannathan Mamut. 2024. "Effects of the Radicle Sheath on the Rhizosphere Microbial Community Structure of Seedlings in Early Spring Desert Species Leontice incerta" Agronomy 14, no. 10: 2444. https://doi.org/10.3390/agronomy14102444
APA StyleXue, X., & Mamut, J. (2024). Effects of the Radicle Sheath on the Rhizosphere Microbial Community Structure of Seedlings in Early Spring Desert Species Leontice incerta. Agronomy, 14(10), 2444. https://doi.org/10.3390/agronomy14102444