Sustainable Approaches to Alleviate Heavy Metal Stress in Tomatoes: Exploring the Role of Chitosan and Nanosilver
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Measurements in Leaves and Fruits
2.3. Elemental Analysis
2.4. Leaf Pigment Estimation
2.5. Proline and MDA
2.6. Statistical Analysis
3. Results and Discussion
3.1. Growth and Yield
3.2. Pigmentation and Stress Markers
3.3. Mineral Content of the Leaves and Fruit
3.4. Fruit Quality and Health-Promoting Properties
4. Conclusions
- The application of chitosan significantly improved root development in tomato plants under copper-induced stress. It also enhanced antioxidant properties by increasing ascorbic acid and lycopene content, contributing to better plant health and fruit quality.
- Treatment with nanosilver resulted in a notable increase in fruit yield and potassium uptake, despite a reduction in shoot growth. This suggests that nanosilver can enhance certain growth parameters and nutrient assimilation under copper stress.
- Combining copper with either chitosan or nanosilver provided synergistic benefits. The Cu+chitosan treatment notably increased dry matter content and delayed fruit ripening, while Cu+nanosilver improved potassium uptake and overall fruit yield, enhancing both plant resilience and fruit quality.
- Both chitosan and nanosilver treatments influenced the levels of stress markers such as proline and malondialdehyde (MDA) in tomato plants. These treatments helped in mitigating oxidative stress caused by excessive copper, leading to improved plant vitality.
- The treatments modulated the uptake and distribution of essential nutrients like nitrogen, potassium, calcium, and magnesium in both leaves and fruits. This adjustment in nutrient balance contributed to the plants’ ability to cope with copper toxicity.
- The use of chitosan and nanosilver presents effective and sustainable strategies to alleviate heavy metal stress in tomato cultivation. Implementing these treatments can enhance crop productivity and fruit nutritional value under adverse environmental conditions caused by heavy metal contamination.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yruela, I. Copper in plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef]
- Mediouni, C.; Benzarti, O.; Tray, B.; Ghorbel, M.H.; Jemal, F. Cadmium and copper toxicity for tomato seedlings. Agron. Sustain. Dev. 2006, 26, 227–232. [Google Scholar] [CrossRef]
- Nazir, F.; Hussain, A.; Fariduddin, Q. Hydrogen peroxide modulates photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere 2019, 230, 544–558. [Google Scholar] [CrossRef]
- Makhadmeh, I.; Albalasmeh, A.A.; Ali, M.; Thabet, S.G.; Darabseh, W.A.; Jaradat, S.; Alqudah, A.M. Molecular characterization of tomato (Solanum lycopersicum L.) accessions under drought stress. Horticulturae 2022, 8, 600. [Google Scholar] [CrossRef]
- Krupa-Małkiewicz, M.; Ochmian, I. Alleviative effects of chitosan and nanosilver on Solanum pimpinellifolium under heavy metal stress in vitro. Prog. Chem. Appl. Chitin Deriv. 2024, XXIX, 166–177. [Google Scholar] [CrossRef]
- Krupa-Małkiewicz, M.; Kulpa, D. In vitro selection of Solanum pimpinellifolium plant tolerant to NaCl. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2018, 46, 19–28. [Google Scholar] [CrossRef]
- Blanca, J.; Montero-Pau, J.; Sauvage, C.; Bauchet, G.; Illa, E.; Díez, M.J.; Causse, M. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genom. 2015, 16, 257. [Google Scholar] [CrossRef]
- Çolak, N.G.; Eken, N.T.; Ülger, M.; Frary, A.; Doğanlar, S. Exploring wild alleles from Solanum pimpinellifolium with the potential to improve tomato flavor compounds. Plant Sci. 2020, 298, 110567. [Google Scholar] [CrossRef]
- Salinas, M.; Capel, C.; Alba, J.M.; Mora, B.; Cuartero, J.; Fernández-Muñoz, R.; Lozano, R.; Capel, J. Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theor. Appl. Genet. 2013, 126, 83–92. [Google Scholar] [CrossRef]
- Mami, L.; Benabdelmouna, A.; Tissant, J. Impact of heavy metals on tomato growth and physiology. J. Environ. Sci. 2011, 23, 481–487. [Google Scholar]
- Rehman, M.; Farooq, M.; Basra, S.M.A. Cadmium toxicity in tomato plants: Effects on growth and yield. Plant Sci. Today 2011, 6, 233–239. [Google Scholar]
- Muschtz, D.; Rademacher, J.; Blümel, R. Effects of zinc exposure on yomato development. Environ. Exp. Bot. 2009, 66, 189–194. [Google Scholar]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ochmian, I.; Malinowski, R. Effect of multi-year protection of grapevines with copper pesticides on the content of heavy metals in soil, leaves, and fruit. Agronomy 2024, 14, 1677. [Google Scholar] [CrossRef]
- Khateeb, W.; Ai-Qwasemeh, H. Impact of copper toxicity on growth and productivity of tomato plants. J. Plant Physiol. 2014, 169, 401–409. [Google Scholar]
- Abasi, F.; Raja, N.I.; Mashwani, Z.U.R.; Amjad, M.S.; Ehsan, M.; Mustafa, N.; Haroon, M.; Proćków, J. Biogenic silver nanoparticles as a stress alleviator in plants: A mechanistic overview. Molecules 2022, 27, 3378. [Google Scholar] [CrossRef]
- Adrees, M.; Khan, Z.S.; Hafeez, M.; Rizwan, M.; Hussain, K.; Asrar, M.; Alyemeni, M.N.; Wijaya, L.; Ali, S. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicol. Environ. Saf. 2021, 208, 111627. [Google Scholar] [CrossRef]
- Krupa-Małkiewicz, M.; Oszmiański, J.; Lachowicz, S.; Szczepanek, M.; Jaśkiewicz, B.; Pachnowska, K.; Ochmian, I. Effect of nanosilver (nAg) on disinfection, growth, and chemical composition of young barley leaves under in vitro conditions. J. Integr. Agric. 2019, 18, 1871–1881. [Google Scholar] [CrossRef]
- Ahmed, F.; Javed, B.; Razzaq, A.; Mashwani, Z.U.R. Applications of copper and silver nanoparticles on wheat plants to induce drought tolerance and increase yield. IET Nanobiotechnol. 2021, 15, 68–78. [Google Scholar] [CrossRef]
- Ghodake, G.; Seo, Y.D.; Park, D.; Lee, Y.S. Phytotoxicity of cobalt and zinc oxide nanoparticles to Cucumis sativus. J. Plant Biotechnol. 2011, 38, 168–172. [Google Scholar]
- Krupa-Małkiewicz, M.; Smolik, B. Alleviative effects of chitosan and ascorbic acid on Petunia × atkinsiana D. Don under salinity. Eur. J. Hortic. Sci. 2019, 84, 359–365. [Google Scholar] [CrossRef]
- Kruczek, A.; Krupa-Małkiewicz, M.; Ochmian, I. Micropropagation, rooting, and acclimatization of two cultivars of goji (Lycium chinense). Not. Bot. Horti. Agrobo. 2021, 49, 12271. [Google Scholar] [CrossRef]
- Mahdavi, B.; Rahimi, A. Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasia J. Biosci. 2013, 7, 69–76. [Google Scholar] [CrossRef]
- Kumaraswamy, R.V.; Kumari, S.; Choudhary, R.C.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Engineered chitosan-based nanomaterials for plant disease management. Agronomy 2020, 10, 707. [Google Scholar]
- Hernández, H.H.; Benavides-Mendoza, A.; Ortega-Ortiz, H.; Hernández-Fuentes, A.D.; Juárez-Maldonado, A. Cu nanoparticles in chitosan-PVA hydrogels as promoters of growth, productivity and fruit quality in tomato. Emir. J. Food Agric. 2017, 29, 573–580. [Google Scholar]
- Lachowicz-Wiśniewska, S.; Kapusta, I.; Stinco, C.M.; Meléndez-Martínez, A.J.; Bieniek, A.; Ochmian, I.; Gil, Z. Distribution of polyphenolic and isoprenoid compounds and biological activity differences between the fruit skin + pulp, seeds, and leaves of new biotypes of Elaeagnus multiflora Thunb. Antioxidants 2021, 10, 849. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Daood, H.G.; Bencze, G.; Palotás, G.; Pék, Z.; Sidikov, A.; Helyes, L. HPLC analysis of carotenoids from tomatoes using cross-linked C18 column and MS detection. J. Chromatogr. Sci. 2014, 52, 985–991. [Google Scholar] [CrossRef]
- Kruczek, A.; Ochmian, I.; Krupa-Małkiewicz, M.; Lachowicz, S. Comparison of morphological, antidiabetic and antioxidant properties of goji fruits. Acta Univ. Cibiniensis Ser. Food Technol. 2020, 24, 1–14. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Mijowska, K.; Ochmian, I.; Oszmiański, J. Impact of cluster zone leaf removal on grapes cv. Regent polyphenol content by the UPLC-PDA/MS method. Molecules 2016, 21, 1688. [Google Scholar] [CrossRef] [PubMed]
- Ochmian, I.; Oszmiański, J.; Jaśkiewicz, B.; Szczepanek, M. Soil and high bush blueberry responses to fertilization with urea phosphate. Folia Hortic. 2018, 30, 295–305. [Google Scholar] [CrossRef]
- Krupa-Małkiewicz, M.; Kosatka, A.; Smolik, B.; Sędzik, M. Induced mutations through EMS treatment and in vitro screening for salt tolerance plant of Petunia × atkinsiana D. Don. Not. Bot. Horti. Agrobo. 2017, 45, 190–196. [Google Scholar] [CrossRef]
- Piwowarczyk, R.; Ochmian, I.; Lachowicz, S.; Kapusta, I.; Sotek, Z.; Błaszak, M. Phytochemical parasite-host relations and interactions: A Cistanche armena case study. Sci. Total Environ. 2020, 716, 137071. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Sudhakar, C.; Lakshim, A.; Giridarakumar, S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 2001, 161, 613–619. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Han, H.; Du, R.; Wang, X. Physiological and molecular mechanisms of plant responses to copper stress. Int. J. Mol. Sci. 2022, 23, 12950. [Google Scholar] [CrossRef]
- Ernst, W.H.O.; Verkleij, J.A.C.; Schat, H. Metal tolerance in plants. Acta Bot. Neerl. 1992, 41, 229–248. [Google Scholar] [CrossRef]
- Pongprayonn, W.; Roytrakul, S.; Pichayangkura, R.; Chadchawan, S. The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regul. 2013, 70, 159–173. [Google Scholar] [CrossRef]
- Jabeen, N.; Ahmad, R. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. J. Sci. Food Agric. 2013, 93, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Basit, A.; Ahmad, I.; Ullah, I.; Shah, S.T.; Mohamed, H.I.; Javed, S. Mitigation the adverse effect of salinity stress on the performance of the tomato crop by exogenous application of chitosan. Bull. Natl. Res. Cent. 2020, 44, 181. [Google Scholar] [CrossRef]
- Rostami, A.A.; Shahsavar, A. Nano-silver particles eliminate the in vitro contaminations of olive ‘Mission’ explants. Asian J. Plant Sci. 2009, 8, 505–509. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, X.; Zhang, W.; Pei, H.; Chen, Y. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 2012, 4, 1105–1112. [Google Scholar] [CrossRef]
- Sonmez, S.; Kaplan, M.; Sonmez, N.K.; Kaya, H.; Uz, I. High level of copper application to soil and leaves reduce the growth and yield of tomato plants. Sci. Agric. 2006, 63, 213–218. [Google Scholar] [CrossRef]
- El Amerany, F.; Rhazi, M.; Balcke, G.; Wahbi, S.; Meddich, A.; Taourirte, M.; Hause, B. The effect of chitosan on plant physiology, wound response, and fruit quality of tomato. Polymers 2022, 14, 5006. [Google Scholar] [CrossRef]
- Saad Ullah, M.; Mahmood, A.; Javaid, M.M.; Naqve, M.; Bibi, S.; Abidin, Z.U.; Khan, S.R. Chitosan for Plant Growth and Stress Tolerance. In Climate-Resilient Agriculture, Agro-Biotechnological Advancement for Crop Production; Springer International Publishing: Cham, Switzerland, 2023; Volume 2, pp. 259–280. [Google Scholar] [CrossRef]
- Hemeir, A.; Masmoudi, A.; Reguieg, Y.H.A. Phytotoxicity of copper and zinc in tomato plants (Lycopersicon esculentum Mill.): Impact on growth and mineral nutrition. In Recent Advances in Environmental Science, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 559–565. [Google Scholar]
- Romero, P.; Lafuente, M.T. Molecular responses of red ripe tomato fruit to Copper deficiency stress. Plants 2023, 12, 2062. [Google Scholar] [CrossRef]
- Alves, A.; Ribeiro, R.; Azenha, M.; Cunha, M.; Teixeira, J. Effects of exogenously applied copper in tomato plants’ oxidative and nitrogen metabolisms under organic farming conditions. Horticulturae 2023, 9, 323. [Google Scholar] [CrossRef]
- Hirpara, D.G.; Gajera, H.P. Green synthesis and antifungal mechanism of silver nanoparticles derived from chitin-induced exometabolites of Trichoderma interfusant. Appl. Organomet. Chem. 2020, 34, e5407. [Google Scholar] [CrossRef]
- Gao, D.; Li, M.; Zhang, J.; Song, D.; Sun, H.; Qiao, L.; Zhao, R. Improvement of chlorophyll content estimation on maize leaf by vein removal in hyperspectral image. Comput. Electron. Agric. 2021, 184, 106077. [Google Scholar] [CrossRef]
- Rastogi, A.; Zivcak, M.; Tripathi, D.; Yadav, S.; Kalaji, H.; Brestic, M. Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 2019, 57, 209–216. [Google Scholar] [CrossRef]
- Ezenne, G.I.; Jupp, L.; Mantel, S.K.; Tanner, J.L. Current and potential capabilities of UAS for crop water productivity in precision agriculture. Agric. Water Manag. 2019, 218, 158–164. [Google Scholar] [CrossRef]
- Enciso, J.; Avila, C.A.; Jung, J.; Elsayed-Farag, S.; Chang, A.; Yeom, J.; Chavez, J.C. Validation of agronomic UAV and field measurements for tomato varieties. Comput. Electron. Agric. 2019, 158, 278–283. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; He, Z. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Badiaa, O.; Yssaad, H.A.R.; Topcuoglu, B. Effect of heavy metals (copper and zinc) on proline, polyphenols and flavonoids content of tomato (Lycopersicon esculentum Mill.). Plant Arch. 2020, 20, 2125–2137. [Google Scholar]
- Gupta, D.K.; Chatterjee, S. (Eds.) Heavy Metal Remediation: Transport and Accumulation in Plants; Nova Science Publishers: New York, NY, USA, 2014. [Google Scholar]
- Ma, J.; Zhang, M.; Liu, Z.; Chen, H.; Li, Y.C.; Sun, Y.; Ma, Q.; Zhao, C. Effects of foliar application of the mixture of copper and chelated iron on the yield, quality, photosynthesis, and microelement concentration of table grape (Vitis vinifera L.). Sci. Hortic. 2019, 254, 106–115. [Google Scholar] [CrossRef]
- Baldi, E.; Miotto, A.; Ceretta, C.A.; Quartieri, M.; Sorrenti, G.; Brunetto, G.; Toselli, M. Soil-applied phosphorous is an effective tool to mitigate the toxicity of copper excess on grapevine grown in rhizobox. Sci. Hortic. 2018, 227, 102–111. [Google Scholar] [CrossRef]
- De Conti, L.; Cesco, S.; Mimmo, T.; Pii, Y.; Valentinuzzi, F.; Melo, G.W.B.; Ceretta, C.A.; Trentin, E.; Marques, A.C.; Brunetto, G. Iron fertilization to enhance tolerance mechanisms to copper toxicity of ryegrass plants used as cover crop in vineyards. Chemosphere 2020, 243, 125298. [Google Scholar] [CrossRef]
- Jacobson, A.R.; Dousset, S.; Guichard, N.; Baveye, P.; Andreux, F. Diuron mobility through vineyard soils contaminated with copper. Environ. Pollut. 2005, 138, 250–259. [Google Scholar] [CrossRef]
- Siebielec, G.; Stuczynski, T.; Terelak, H.; Filipiak, K.; Koza, P.; Korzeniowska-Puculek, R.; Lopatka, A.; Jadczyszyn, J. Źródła zanieczyszczenia gleb metalami. Stud. Rap. IUNG-PIB 2018, 58, 81–95. (In Polish) [Google Scholar]
- Panagos, P.; Ballabio, C.; Lugato, E.; Jones, A.; Borrelli, P.; Scarpa, S.; Orgiazzi, A.; Montanarella, L. Potential sources of anthropogenic copper inputs to European agricultural soils. Sustainability 2018, 10, 2380. [Google Scholar] [CrossRef]
- Rhoads, F.M.; Olson, S.M.; Manning, A. Copper toxicity in tomato plants. Am. Soc. Agron. Crop Sci. Soc. Am. Soil Sci. Soc. Am. 1989, 18, 195–197. [Google Scholar] [CrossRef]
- Contreras, J.I.; Galindo, P.; Segura, L. Response of greenhouse tomato crop to NPK fertilization and quality of irrigation water. Acta Hortic. 2006, 747, 485–488. [Google Scholar]
- Vystavna, Y.; Rushenko, L.; Diadin, D.; Klymenko, O.; Klymenko, M. Trace metals in wine and vineyard environment in southern Ukraine. Food Chem. 2024, 146, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Vinit-Dunand, F.; Epron, D.; Alaoui-Sossé, B.; Badot, P.M. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Sci. 2002, 163, 53–58. [Google Scholar] [CrossRef]
- Kaplan, M. Accumulation of copper in soils and leaves of tomato plants in greenhouses in Turkey. J. Plant Nutr. 1999, 22, 237–244. [Google Scholar] [CrossRef]
- Gemin, L.G.; de Lara, G.B.; Mógor, Á.F.; Mazaro, S.M.; Sant’Anna-Santos, B.F.; Mógor, G.; Marques, H.M.C. Polysaccharides combined to copper and magnesium improve tomato growth, yield, anti-oxidant and plant defense enzymes. Sci. Hortic. 2023, 310, 111758. [Google Scholar] [CrossRef]
- Salachna, P. Mitigation effects of water-soluble chitosan on boron toxicity in pepper plants. Prog. Chem. Appl. Chitin Deriv. 2023, 28, 151–159. [Google Scholar] [CrossRef]
- Toselli, M.; Baldi, E.; Marcolini, G.; Malaguti, D.; Quartieri, M.; Sorrenti, G.; Marangoni, B. Response of potted grapevines to increasing soil copper concentration. Aust. J. Grape Wine Res. 2009, 15, 85–92. [Google Scholar] [CrossRef]
- Leonardi, C.; Ambrosino, P.; Esposito, F.; Fogliano, V. Antioxidative activity and carotenoid and tomatine content in different typologies of fresh consumption tomatoes. J. Agric. Food Chem. 2000, 48, 4723–4727. [Google Scholar] [CrossRef] [PubMed]
- Soytong, M.; Guevarra, P.R.; Mateo, J.M.C.; Galvez, H.F. Evaluation of tomatoes fruits flesh colour, beta-carotene and lycopene content. Int. J. Agric. Technol. 2021, 17, 727–736. [Google Scholar]
- Eskin, N.A.M. Quality and Preservation of Vegetables; CRC Press: Boca Raton, FL, USA, 2000; pp. 53–67. [Google Scholar]
- Tigist, M.; Workneh, T.S.; Woldetsadik, K. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 2013, 50, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Leoni, S.; Bussieres, P.; Dadomo, M.; Christou, M.; Macua, I.J.; Cornillon, P. The influence of water and nitrogen levels on the quality of the processing tomato grown in the European Union countries. Acta Hortic. 1994, 376, 275–278. [Google Scholar] [CrossRef]
- Anthon, G.E.; LeStrange, M.; Barrett, D.M. Changes in pH, acids, sugars and other quality parameters during extended vine holding of ripe processing tomatoes. J. Sci. Food Agric. 2011, 91, 1175–1181. [Google Scholar] [CrossRef]
- Shigeoka, S.; Ishikawa, T.; Tamoi, M.; Miyagawa, Y.; Takeda, T.; Yabuta, Y.; Yoshimura, K. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 2002, 53, 1305–1319. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Demirci, M.; Selen, S.; Toydemir, G.; Boyacioglu, D.; Capanoglu, E. Home processing of tomatoes (Solanum lycopersicum): Effects on in vitro bio-accessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity. J. Sci. Food Agric. 2014, 94, 2225–2233. [Google Scholar] [CrossRef]
- Haukioja, E.; Ossipov, V.; Koricheva, J.; Honkanen, T.; Larsson, S.; Lempa, K. Biosynthetic origin of carbon-based secondary compounds: Cause of variable responses of woody plants to fertilization? Chemoecology 1998, 8, 133–139. [Google Scholar] [CrossRef]
- Sharma, P.; Bhardwaj, R.; Arora, N. Copper-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) plants. Sci. Hort. 2014, 168, 133–141. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Li, X.; Wang, H. Copper nanoparticles induce antioxidant defense in cucumber (Cucumis sativus L.) by enhancing phenolic and flavonoid content. Environ. Sci. Poll. Res. 2020, 27, 29719–29728. [Google Scholar]
- Piscitelli, C.; Lavorgna, M.; De Prisco, R.; Coppola, E.; Grilli, E.; Russo, C.; Isidori, M. Tomato plants (Solanum lycopersicum L.) grown in experimental contaminated soil: Bioconcentration of potentially toxic elements and free radical scavenging evaluation. PLoS ONE 2020, 15, e0237031. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Ahmed, S.; Abbasi, A.; Hamad, N.A.; Ali, H.M.; Khan, M.T.; Haq, I.U.; Zaman, Q. Green synthesized silver nanoparticles: A novel approach for the enhanced growth and yield of tomato against early blight disease. Microorganisms 2023, 11, 886. [Google Scholar] [CrossRef] [PubMed]
- Kısa, D.; Kayır, Ö.; Sağlam, N.; Şahin, S.; Öztürk, L.; Elmastaş, M. Changes of phenolic compounds in tomato associated with the heavy metal stress. Bartın Univ. Int. J. Nat. Appl. Sci. 2019, 2, 35–43. [Google Scholar]
Shoot Length [cm] | ||||||
---|---|---|---|---|---|---|
Week | Control | Cu | Cu+Ch | Ch | nAg | Cu+nAg |
0 | 21.8 | 21.8 | 21.3 | 21.5 | 20.2 | 20.2 |
I | 29.3 | 31.3 | 27.0 | 26.5 | 21.2 | 21.0 |
II | 37.0 | 40.5 | 35.3 | 36 | 21.6 | 22.0 |
III | 42.3 | 46.8 | 42.0 | 41.5 | 29.6 | 31.0 |
IV | 48.3 | 52.0 | 46.3 | 45.5 | 36.6 | 38.4 |
V | 55.0 | 59.3 | 53.0 | 52.5 | 44.6 | 45.4 |
VI | 64.5 | 66.8 | 61.8 | 59.5 | 52.2 | 53.4 |
Mean | 42.6 a | 45.5 a | 40.9 a | 40.4 a | 32.3 a | 33.0 a |
Root Length [cm] | ||||||
Mean | 21.8 a | 32.3 a | 37.8 a | 33.3 a | 23.3 a | 36.3 a |
N | Ca | Mg | P | K | Na | Fe | Mn | Cu | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
g 100−1 | mg 1000−1 | |||||||||
control | 4.93 c | 2.11 d | 0.49 d | 0.47 d | 3.37 a | 1.35 bc | 88 a | 33 a | 16.5 a | 62 a |
Cu | 4.11 b | 1.73 a | 0.39 c | 0.38 c | 3.06 a | 1.42 c | 112 b | 41 b | 18.4 b | 84 c |
Cu+Ch | 3.87 b | 2.17 d | 0.32 b | 0.31 b | 3.89 bc | 1.33 b | 109 b | 37 ab | 19.0 b | 78 b |
Cu+nAg | 2.55 a | 1.85 b | 0.33 b | 0.22 a | 4.11 d | 1.20 a | 127 c | 49 c | 20.8 c | 94 d |
Ch | 4.82 c | 1.73 a | 0.53 d | 0.46 d | 3.30 a | 1.38 bc | 90 a | 35 a | 16.7 a | 77 b |
nAg | 2.34 a | 1.94 c | 0.27 a | 0.24 a | 4.06 cd | 1.11 a | 125 c | 56 d | 21.3 c | 90 d |
N | Ca | Mg | P | K | Na | Fe | Mn | Cu | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
g 100−1 | mg 1000−1 | |||||||||
control | 1.94 ab | 0.42 d | 0.24 d | 0.31 d | 2.11 a | 1.29 a | 51 a | 13 a | 10.5 b | 45 c |
Cu | 1.83 a | 0.32 ab | 0.17 b | 0.27 c | 2.35 b | 1.55 b | 59 a | 18 bc | 9.6 a | 40 ab |
Cu+Ch | 2.25 c | 0.40 d | 0.15 b | 0.21 b | 2.71 c | 1.52 b | 69 b | 16 ab | 10.2 b | 39 a |
Cu+nAg | 2.46 d | 0.30 a | 0.12 a | 0.17 a | 2.93 d | 1.69 c | 78 b | 22 c | 11.8 d | 48 d |
Ch | 2.39 d | 0.34 b | 0.21 c | 0.33 d | 2.75 c | 1.74 c | 57 a | 15 ab | 11.3 c | 43 bc |
nAg | 2.07 b | 0.37 c | 0.11 a | 0.25 c | 2.88 d | 1.25 a | 72 b | 21 c | 9.7 a | 46 cd |
Dry Matter (%) | Soluble Solids (%) | Titratable Acidity (g 100 g−1) | Ascorbic Acid (mg kg−1) | β-Carotene (mg kg−1) | Lycopene (mg kg−1) | |
---|---|---|---|---|---|---|
control | 8.3 b | 8.0 c | 0.33 de | 217 c | 9.1 cd | 27.3 d |
Cu | 7.9 b | 6.7 a | 0.27 ab | 145 a | 9.4 d | 18.7 a |
Cu+Ch | 9.4 e | 7.2 b | 0.31 cd | 178 b | 8.6 b | 22.8 c |
Ch | 8.5 b | 8.3 c | 0.25 a | 205 c | 7.7 a | 31.4 e |
Cu+nAg | 9.0 d | 7.1 b | 0.35 e | 132 a | 8.8 bc | 20.5 b |
nAg | 7.6 a | 6.7 a | 0.29 bc | 166 b | 9.2 d | 24.1 c |
ABTS•+ (μmol T g−1) | DPPH (μmol T g−1) | FRAP (μmol T g−1) | Total Phenolics (mg GAE kg−1) | |
---|---|---|---|---|
control | 124 bc | 211 c | 167 bc | 48.5 bc |
Cu | 140 cd | 204 c | 129 a | 49.7 c |
Cu+Ch | 151 d | 175 b | 204 d | 45.3 a |
Ch | 79 a | 224 c | 143 a | 52.4 d |
Cu+nAg | 115 b | 156 a | 185 cd | 47.2 ab |
nAg | 82 a | 160 ab | 162 b | 55.8 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupa-Małkiewicz, M.; Ochmian, I. Sustainable Approaches to Alleviate Heavy Metal Stress in Tomatoes: Exploring the Role of Chitosan and Nanosilver. Agronomy 2024, 14, 2477. https://doi.org/10.3390/agronomy14112477
Krupa-Małkiewicz M, Ochmian I. Sustainable Approaches to Alleviate Heavy Metal Stress in Tomatoes: Exploring the Role of Chitosan and Nanosilver. Agronomy. 2024; 14(11):2477. https://doi.org/10.3390/agronomy14112477
Chicago/Turabian StyleKrupa-Małkiewicz, Marcelina, and Ireneusz Ochmian. 2024. "Sustainable Approaches to Alleviate Heavy Metal Stress in Tomatoes: Exploring the Role of Chitosan and Nanosilver" Agronomy 14, no. 11: 2477. https://doi.org/10.3390/agronomy14112477
APA StyleKrupa-Małkiewicz, M., & Ochmian, I. (2024). Sustainable Approaches to Alleviate Heavy Metal Stress in Tomatoes: Exploring the Role of Chitosan and Nanosilver. Agronomy, 14(11), 2477. https://doi.org/10.3390/agronomy14112477