Effects of Habitat Loss on Tenebrionidae in Gravel–Sand Mulching Areas of Desert Steppe in Ningxia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Methods
2.2.1. Classification of Habitat Loss Levels
2.2.2. Collection of Tenebrionidae
2.2.3. Collection of Vegetation
2.2.4. Soil Collection and Physicochemical Property Measurement
2.2.5. Diversity Index Calculation
2.3. Data Analysis
3. Results
3.1. Diversity of Tenebrionidae Across Different Habitat Loss Grades
3.2. Effects of Habitat Loss on Tenebrionidae Diversity
3.3. Effects of Habitat Loss on Vegetation Diversity
3.4. Effects of Habitat Loss on Soil Physicochemical Properties
3.5. Redundancy Analysis of Tenebrionidae and Vegetation
3.6. Redundancy Analysis of Tenebrionidae and Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Chang, C.; Zhou, X.; Zhang, G.; Wang, J. Land use significantly improved grassland degradation and desertification states in China over the last two decades. J. Environ. Manag. 2024, 349, 119419. [Google Scholar] [CrossRef]
- Du, L.; Gong, F.; Zeng, Y.; Ma, L.; Qiao, C.; Wu, H. Carbon use efficiency of terrestrial ecosystems in desert/grassland biome transition zone: A case in Ningxia province, northwest China. Ecol. Indic. 2021, 120, 106971. [Google Scholar]
- An, H.; Tang, Z.; Keesstra, S.; Shangguan, Z. Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland. Sci. Rep. 2019, 9, 9422. [Google Scholar] [CrossRef]
- Wang, D.; Hao, H.; Liu, H.; Sun, L.; Li, Y. Spatial–temporal changes of landscape and habitat quality in typical ecologically fragile areas of western China over the past 40 years: A case study of the Ningxia Hui Autonomous Region. Ecol. Evol. 2024, 14, e10847. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Huang, W.; Zhu, M.; Gao, L.; Wang, Y.; Zhang, R.; Li, Z.; Zhao, Z. The asymmetric responses of carabid beetles to steppe fragmentation in Northwest China. Glob. Ecol. Conserv. 2020, 23, e01058. [Google Scholar] [CrossRef]
- Wang, X.; Song, N.P.; Yang, X.G.; Chen, L.; Qu, W.J.; Wang, L. Inferring community assembly mechanisms from functional and phylogenetic diversity: The relative contribution of environmental filtering decreases along a sand desertification gradient in a desert steppe community. Land Degrad. Dev. 2021, 32, 2360–2370. [Google Scholar] [CrossRef]
- Hao, H.; Zhao, X.; Wang, Y.; Zhang, Y.; Xie, Z.; Guo, Z.; Wang, R. Effects of gravel-sand mulching on soil bacterial community and metabolic capability in the semi-arid Loess Plateau, China. World J. Microbiol. Biotechnol. 2017, 33, 209. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Malhi, S.S.; Vera, C.L.; Zhang, Y.; Guo, Z. Effects of gravel and mulch, plastic mulch and ridge and furrow rainfall harvesting system combinations on water use efficiency, soil temperature and watermelon yield in a semi-arid Loess Plateau of northwestern China. Agric. Water Manag. 2011, 101, 88–92. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, X.; Cai, L.; Jiang, Q.; Zhang, R. Temporal and Habitat Dynamics of Soil Fungal Diversity in Gravel-Sand Mulching Watermelon Fields in the Semi-Arid Loess Plateau of China. Microbiol. Spectr. 2023, 11, e03150-22. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Y.; Xie, Z. Long-term gravel–sand mulch affects soil physicochemical properties, microbial biomass and enzyme activities in the semi-arid Loess Plateau of North-western China. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 64, 294–303. [Google Scholar] [CrossRef]
- Chase, J.M.; Blowes, S.A.; Knight, T.M.; Gerstner, K.; May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 2020, 584, 238–243. [Google Scholar] [PubMed]
- Collinge, S.K. Effects of grassland fragmentation on insect species loss, colonization, and movement patterns. Ecology 2000, 81, 2211–2226. [Google Scholar]
- Fahrig, L. Why do several small patches hold more species than few large patches? Glob. Ecol. Biogeogr. 2020, 29, 615–628. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar]
- Gonçalves-Souza, D.; Verburg, P.H.; Dobrovolski, R. Habitat loss, extinction predictability and conservation efforts in the terrestrial ecoregions. Biol. Conserv. 2020, 246, 108579. [Google Scholar] [CrossRef]
- Zhang, H.; Chase, J.M.; Liao, J. Habitat amount modulates biodiversity responses to fragmentation. Nat. Ecol. Evol. 2024, 8, 1437–1447. [Google Scholar]
- Wilson, M.C.; Chen, X.; Corlett, R.T.; Didham, R.K.; Ding, P.; Holt, R.D.; Holyoak, M.; Hu, G.; Hughes, A.C.; Jiang, L. Habitat Fragmentation and Biodiversity Conservation: Key Findings and Future Challenges; Springer: Berlin/Heidelberg, Germany, 2016; Volume 31, pp. 219–227. [Google Scholar]
- Fahrig, L.; Arroyo-Rodríguez, V.; Bennett, J.R.; Boucher-Lalonde, V.; Cazetta, E.; Currie, D.J.; Eigenbrod, F.; Ford, A.T.; Harrison, S.P.; Jaeger, J.A. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 2019, 230, 179–186. [Google Scholar] [CrossRef]
- Fletcher Jr, R.J.; Didham, R.K.; Banks-Leite, C.; Barlow, J.; Ewers, R.M.; Rosindell, J.; Holt, R.D.; Gonzalez, A.; Pardini, R.; Damschen, E.I. Is habitat fragmentation good for biodiversity? Biol. Conserv. 2018, 226, 9–15. [Google Scholar] [CrossRef]
- Hasui, É.; Martensen, A.C.; Uezu, A.; Pimentel, R.G.; Ramos, F.N.; Ribeiro, M.C.; Metzger, J.P. Populations across bird species distribution ranges respond differently to habitat loss and fragmentation: Implications for conservation strategies. Perspect. Ecol. Conserv. 2024, 22, 43–54. [Google Scholar] [CrossRef]
- Macinnis Ng, C.; Mcintosh, A.R.; Monks, J.M.; Waipara, N.; White, R.S.; Boudjelas, S.; Clark, C.D.; Clearwater, M.J.; Curran, T.J.; Dickinson, K.J. Climate-change impacts exacerbate conservation threats in island systems: New Zealand as a case study. Front. Ecol. Environ. 2021, 19, 216–224. [Google Scholar]
- Rybicki, J.; Abrego, N.; Ovaskainen, O. Habitat fragmentation and species diversity in competitive communities. Ecol. Lett. 2020, 23, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Grez, A.; Zaviezo, T.; Tischendorf, L.; Fahrig, L. A transient, positive effect of habitat fragmentation on insect population densities. Oecologia 2004, 141, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Rösch, V.; Tscharntke, T.; Scherber, C.; Batary, P. Landscape composition, connectivity and fragment size drive effects of grassland fragmentation on insect communities. J. Appl. Ecol. 2013, 50, 387–394. [Google Scholar] [CrossRef]
- Coudrain, V.; Herzog, F.; Entling, M.H. Effects of habitat fragmentation on abundance, larval food and parasitism of a spider-hunting wasp. PLoS ONE 2013, 8, e59286. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, R.J., Jr.; Smith, T.A.; Kortessis, N.; Bruna, E.M.; Holt, R.D. Landscape experiments unlock relationships among habitat loss, fragmentation, and patch-size effects. Ecology 2023, 104, e4037. [Google Scholar] [CrossRef]
- Li, Y.; Moritz, C.; Brennan, I.G.; Zwick, A.; Nicholls, J.; Grealy, A.; Slipinski, A. Evolution across the adaptive landscape in a hyperdiverse beetle radiation. Curr. Biol. 2024, 34, 3685–3697.e6. [Google Scholar]
- Lescano, M.N.; Elizalde, L.; Werenkraut, V.; Pirk, G.I.; Flores, G.E. Ant and tenebrionid beetle assemblages in arid lands: Their associations with vegetation types in the Patagonian steppe. J. Arid. Environ. 2017, 138, 51–57. [Google Scholar] [CrossRef]
- Wei, Z.; Shi, A. The complete mitochondrial genomes of four lagriine species (Coleoptera, Tenebrionidae) and phylogenetic relationships within Tenebrionidae. PeerJ 2023, 11, e15483. [Google Scholar] [CrossRef]
- Tonkel, K.C.; Kirchoff, V.S.; Rector, B.G. Carabidae and Tenebrionidae diversity in the Great Basin Province of California. J. Insect Sci. 2023, 23, 9. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Z.; Cui, Y.; Xiong, C.; Sun, W.; Wang, Y.; Ban, L.; Zhang, R.; Wei, S. Effects of Different Tillage Years on Soil Composition and Ground-Dwelling Arthropod Diversity in Gravel-Sand Mulching Watermelon Fields. Agronomy 2024, 14, 1841. [Google Scholar] [CrossRef]
- Shi, X.; Ma, C.; Gustave, W.; Orr, M.; Sritongchuay, T.; Yuan, Z.; Wang, M.; Zhang, X.; Zhou, Q.; Huang, Y.; et al. Effects of arsenic and selenium pollution on wild bee communities in the agricultural landscapes. Sci. Total Environ. 2024, 907, 168052. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Z.; Wang, Y.; Shi, X.; Cheng, R.; Ban, L.; Zhang, R.; Wei, S. Beta diversity of grasshoppers and predatory beetles across steppes is closely associated with altitude and average annual precipitation in Ningxia, northwest China. Glob. Ecol. Conserv. 2024, 51, e02941. [Google Scholar] [CrossRef]
- Graystock, P.; Ng, W.H.; Parks, K.; Tripodi, A.D.; Muñiz, P.A.; Fersch, A.A.; Myers, C.R.; McFrederick, Q.S.; McArt, S.H. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 2020, 4, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Gopal, K.; Agrawal, A.; Gopal, K. Application of diversity index in measurement of species diversity. In Biomonitoring of Water and Waste Water; Springer: Berlin/Heidelberg, Germany, 2013; pp. 41–48. [Google Scholar]
- Hsieh, T.C.; Ma, K.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 2016; 7, 1451–1456. [Google Scholar]
- Lai, J.; Zou, Y.; Zhang, J.; Peres Neto, P.R. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package. Methods Ecol. Evol. 2022, 13, 782–788. [Google Scholar] [CrossRef]
- Henschel, J.R. Long-Term Population Dynamics of Namib Desert Tenebrionid Beetles Reveal Complex Relationships to Pulse-Reserve Conditions. Insects 2021, 12, 804. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xiao, H.; Luo, S.; Hodgson, J.A.; Bianchi, F.J.J.A.; He, H.; van der Werf, W.; Zou, Y. Can landscape level semi-natural habitat compensate for pollinator biodiversity loss due to farmland consolidation? Agric. Ecosyst. Environ. 2021, 319, 107519. [Google Scholar] [CrossRef]
- Massaloux, D.; Sarrazin, B.; Roume, A.; Tolon, V.; Wezel, A. Landscape diversity and field border density enhance carabid diversity in adjacent grasslands and cereal fields. Landsc. Ecol. 2020, 35, 1857–1873. [Google Scholar] [CrossRef]
- Herrmann, J.; Buchholz, S.; Theodorou, P. The degree of urbanisation reduces wild bee and butterfly diversity and alters the patterns of flower-visitation in urban dry grasslands. Sci. Rep. 2023, 13, 2702. [Google Scholar] [CrossRef]
- Wang, Z.; Chase, J.M.; Xu, W.; Liu, J.; Wu, D.; Zhang, A.; Wang, J.; Luo, Y.; Yu, M. Higher trophic levels and species with poorer dispersal traits are more susceptible to habitat loss on island fragments. Ecology 2024, 105, e4300. [Google Scholar] [CrossRef]
- Wen, Z.; Fu, Y.; Zheng, H.; Ouyang, Z. Metapopulation networks unlock the effects of landscape fragmentation on agricultural pests and natural predators. Glob. Ecol. Conserv. 2024, 50, e02849. [Google Scholar] [CrossRef]
- Banks-Leite, C.; Ewers, R.M.; Folkard-Tapp, H.; Fraser, A. Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration. One Earth 2020, 3, 672–676. [Google Scholar] [CrossRef]
- Hillebrand, H.; Bennett, D.M.; Cadotte, M.W. Consequences of Dominance: A Review of Evenness Effects on Local and Regional Ecosystem Processes. Ecology 2008, 89, 1510–1520. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, D.; Wang, L.; Bai, Y.; Fang, J.; Liu, J.; Wilsey, B. The effects of large herbivore grazing on meadow steppe plant and insect diversity. J. Appl. Ecol. 2012, 49, 1075–1083. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, M.; Qi, L.; Zhao, C.; Zhang, W.; Zhang, Y.; Wen, W.; Yuan, J. Coupled Relationship between Soil Physicochemical Properties and Plant Diversity in the Process of Vegetation Restoration. Forests 2022, 13, 648. [Google Scholar] [CrossRef]
- Hanski, I.; Pöyry, J. Insect populations in fragmented habitats. In Insect Conservation Biology; Royal Entomological Society of London: London, UK, 2007; pp. 175–202. [Google Scholar]
- Meyer, S.T.; Heuss, L.; Feldhaar, H.; Weisser, W.W.; Gossner, M.M. Land-use components, abundance of predatory arthropods, and vegetation height affect predation rates in grasslands. Agric. Ecosyst. Environ. 2019, 270–271, 84–92. [Google Scholar] [CrossRef]
- Cárdenas, A.M.; Bujalance, J.L.; Camacho, A. Environmental factors affecting phenology and distribution of Tentyria species (Coleoptera: Tenebrionidae) in Doñana National Park (Southern Iberian Peninsula). J. Insect Sci. 2024, 24, 19. [Google Scholar] [CrossRef]
- Liu, Q.; Buyantuev, A.; Wu, J.; Niu, J.; Yu, D.; Zhang, Q. Intensive land-use drives regional-scale homogenization of plant communities. Sci. Total Environ. 2018, 644, 806–814. [Google Scholar] [CrossRef]
- Sasaki, T.; Lauenroth, W.K. Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 2011, 166, 761–768. [Google Scholar] [CrossRef]
- Liu, J.; Li, F.; Sun, T.; Ma, L.; Liu, L.; Yang, K. Interactive effects of vegetation and soil determine the composition and diversity of carabid and tenebrionid functional groups in an arid ecosystem. J. Arid. Environ. 2016, 128, 80–90. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Lázaro-Nogal, A.; Matesanz, S.; Gimeno, T.E.; Escudero, A.; Valladares, F. Fragmentation modulates the strong impact of habitat quality and plant cover on fertility and microbial activity of semiarid gypsum soils. Plant Soil 2012, 358, 213–223. [Google Scholar] [CrossRef]
- Ewers, R.M.; Didham, R.K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 2006, 81, 117–142. [Google Scholar] [CrossRef] [PubMed]
- Kudrevatykh, I.Y.; Kalinin, P.I.; Mitenko, G.V.; Alekseev, A.O. The role of plant in the formation of the topsoil chemical composition in different climatic conditions of steppe landscape. Plant Soil 2021, 465, 453–472. [Google Scholar] [CrossRef]
- Kleiman, B.; Koptur, S. Weeds enhance insect diversity and abundance and may improve soil conditions in mango cultivation of South Florida. Insects 2023, 14, 65. [Google Scholar] [CrossRef]
- Das, P.P.; Singh, K.R.; Nagpure, G.; Mansoori, A.; Singh, R.P.; Ghazi, I.A.; Kumar, A.; Singh, J. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ. Res. 2022, 214, 113821. [Google Scholar] [CrossRef] [PubMed]
Name | Grade | Proportion (%) | ||||
---|---|---|---|---|---|---|
I | II | III | IV | V | ||
Blaps femoralis (Fischer von Waldheim, 1844) | 1783 | 908 | 451 | 411 | 169 | 56.69% |
Anatolica nureti Schuster et Reymond, 1937 | 172 | 340 | 239 | 118 | 10 | 13.39% |
Pterocoma vittata Frivaldszky, 1889 | 360 | 101 | 202 | 28 | 6 | 10.62% |
Trigonocnera pseudopimelia (Reitter, 1889) | 325 | 23 | 6 | 7 | 3 | 5.54% |
Microderakroatzi alashanica Skopin, 1964 | 231 | 46 | 64 | 8 | 9 | 5.45% |
Blaps variolosa Faldermann, 1835 | 39 | 51 | 9 | 7 | 6 | 1.71% |
Pterocoma reitteri Frivaldszky, 1889 | 76 | 13 | 10 | 1 | 8 | 1.65% |
Penthicus alashanicus (Reichardt, 1936) | 41 | 22 | 17 | 11 | 7 | 1.49% |
Blaps opaca (Reitter, 1889) | 20 | 8 | 9 | 14 | 4 | 0.84% |
Scleropatrum horridum Reitter, 1898 | 23 | 13 | 8 | 1 | 0 | 0.69% |
Microdera mongolica (Reitter, 1889) | 0 | 6 | 6 | 12 | 16 | 0.61% |
Anatolica potanini Reitter, 1889 | 2 | 8 | 18 | 1 | 0 | 0.44% |
Platyscelis hauseri Reitter, 1889 | 1 | 3 | 6 | 11 | 4 | 0.38% |
Cyphogenia chinensis (Faldermann, 1835) | 6 | 2 | 0 | 4 | 6 | 0.27% |
Blaps medusula Kaszab, 1968 | 1 | 0 | 5 | 2 | 0 | 0.12% |
Platyscelis gebieni Schuster, 1915 | 0 | 0 | 0 | 5 | 0 | 0.08% |
Prosodes kreitneri Frivaldszky, 1889 | 1 | 0 | 0 | 0 | 0 | 0.02% |
Sternoplax szechenyi (Frivaldszky, 1889) | 1 | 0 | 0 | 0 | 0 | 0.02% |
Total | 3082 | 1544 | 1050 | 641 | 248 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Zhang, H.; Luo, Y.; Xiong, C.; Cui, Y.; Sun, W.; Wang, Y.; Shi, C.; Ban, L.; Zhang, R.; et al. Effects of Habitat Loss on Tenebrionidae in Gravel–Sand Mulching Areas of Desert Steppe in Ningxia, China. Agronomy 2024, 14, 2518. https://doi.org/10.3390/agronomy14112518
Cao Z, Zhang H, Luo Y, Xiong C, Cui Y, Sun W, Wang Y, Shi C, Ban L, Zhang R, et al. Effects of Habitat Loss on Tenebrionidae in Gravel–Sand Mulching Areas of Desert Steppe in Ningxia, China. Agronomy. 2024; 14(11):2518. https://doi.org/10.3390/agronomy14112518
Chicago/Turabian StyleCao, Ziyu, Haixiang Zhang, Yonghong Luo, Changyu Xiong, Yifan Cui, Wei Sun, Ying Wang, Chun Shi, Liping Ban, Rong Zhang, and et al. 2024. "Effects of Habitat Loss on Tenebrionidae in Gravel–Sand Mulching Areas of Desert Steppe in Ningxia, China" Agronomy 14, no. 11: 2518. https://doi.org/10.3390/agronomy14112518
APA StyleCao, Z., Zhang, H., Luo, Y., Xiong, C., Cui, Y., Sun, W., Wang, Y., Shi, C., Ban, L., Zhang, R., & Wei, S. (2024). Effects of Habitat Loss on Tenebrionidae in Gravel–Sand Mulching Areas of Desert Steppe in Ningxia, China. Agronomy, 14(11), 2518. https://doi.org/10.3390/agronomy14112518