Soil Biocrusts May Exert a Legacy Impact on the Rhizosphere Microbial Community of Plant Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Samplings
2.3. Soil Physicochemical Property Analyses
2.4. Soil Biocrust and Crop Rhizosphere Bacteria Analyses
2.5. Data Analyses
3. Results
3.1. Soil Physicochemical Property
3.2. Microbial Community in Pre-Planting and Crop Rhizosphere Soils
3.3. Relationships Between Rhizosphere Microbiome and Soil Properties
4. Discussion
4.1. The Effects of Biocrust Growth on Soil Physicochemistry
4.2. The Effects of Biocrust Growth on Soil Microbial Community
4.3. The Underlying Mechanisms of Biocrust Growth Influence Crop Rhizosphere Microbial Community
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garcia-Pichel, F. The microbiology of biological soil crusts. Annu. Rev. Microbiol. 2023, 77, 149–171. [Google Scholar] [CrossRef] [PubMed]
- Weber, B.; Belnap, J.; Büdel, B.; Antoninka, A.J.; Barger, N.N.; Chaudhary, V.B.; Darrouzet-Nardi, A.; Eldridge, D.J.; Faist, A.M.; Ferrenberg, S.; et al. What is a biocrust? A refined, contemporary definition for a broadening research community. Biol. Rev. 2022, 97, 1768–1785. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, D.J.; Greene, R.S.B. Microbiotic soil crusts: A review of their roles in soil and ecological processes in the rangelands of Australia. Aust. J. Soil Res. 1994, 32, 389–415. [Google Scholar] [CrossRef]
- Phillips, M.L.; McNellis, B.E.; Howell, A.; Lauria, C.M.; Belnap, J.; Reed, S.C. Biocrusts mediate a new mechanism for land degradation under a changing climate. Nat. Clim. Chang. 2022, 12, 71–76. [Google Scholar] [CrossRef]
- Qiu, D.; Bowker, M.A.; Xiao, B.; Zhao, Y.; Zhou, X.; Li, X. Mapping biocrust distribution in China’s drylands under changing climate. Sci. Total Environ. 2023, 905, 167211. [Google Scholar] [CrossRef]
- Havrilla, C.; Leslie, A.D.; Di Biase, J.L.; Barger, N.N. Biocrusts are associated with increased plant biomass and nutrition at seedling stage independently of root-associated fungal colonization. Plant Soil 2020, 446, 331–342. [Google Scholar] [CrossRef]
- Zhang, Y.; Aradottir, A.L.; Serpe, M.; Boeken, B. Interactions of Biological Soil Crusts with Vascular Plants. In Biological Soil Crusts: An Organizing Principle in Drylands; Weber, B., Büdel, B., Belnap, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 385–406. [Google Scholar]
- McCann, E.; Reed, S.C.; Saud, P.; Reibold, R.H.; Howell, A.; Faist, A.M. Plant growth and biocrust-fire interactions across five North American deserts. Geoderma 2021, 401, 115325. [Google Scholar] [CrossRef]
- Belnap, J.; Weber, B.; Büdel, B. Biological soil brusts as an organizing principle in drylands. In Biological Soil Crusts: An Organizing Principle in Drylands; Weber, B., Büdel, B., Belnap, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–13. [Google Scholar]
- Maestre, F.T.; Bowker, M.A.; Cantón, Y.; Castillo-Monroy, A.P.; Cortina, J.; Escolar, C.; Escudero, A.; Lázaro, R.; Martínez, I. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J. Arid Environ. 2011, 75, 1282–1291. [Google Scholar] [CrossRef]
- Castillo-Monroy, A.P.; Benítez, Á.; Reyes-Bueno, F.; Donoso, D.A.; Cueva, A. Biocrust structure responds to soil variables along a tropical scrubland elevation gradient. J. Arid Environ. 2016, 124, 31–38. [Google Scholar] [CrossRef]
- Riveras-Munoz, N.; Seitz, S.; Witzgall, K.; Rodriguez, V.; Kuhn, P.; Mueller, C.W.; Oses, R.; Seguel, O.; Wagner, D.; Scholten, T. Biocrust-linked changes in soil aggregate stability along a climatic gradient in the Chilean Coastal Range. Soil 2022, 8, 717–731. [Google Scholar] [CrossRef]
- Cheng, C.; Gao, M.; Zhang, Y.; Long, M.; Wu, Y.; Li, X. Effects of disturbance to moss biocrusts on soil nutrients, enzyme activities, and microbial communities in degraded karst landscapes in southwest China. Soil Biol. Biochem. 2021, 152, 108065. [Google Scholar] [CrossRef]
- Chamizo, S.; Canton, Y.; Miralles, I.; Domingo, F. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biol. Biochem. 2012, 49, 96–105. [Google Scholar] [CrossRef]
- Pointing, S.B.; Belnap, J. Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 2012, 10, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Baumann, K.; Eckhardt, K.-U.; Acksel, A.; Gros, P.; Glaser, K.; Gillespie, A.W.; Karsten, U.; Leinweber, P. Contribution of biological soil crusts to soil organic matter composition and stability in temperate forests. Soil Biol. Biochem. 2021, 160, 108315. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Y.; Shao, X.; Liu, N. Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands: A Meta-analysis. Sci. Total Environ. 2022, 803, 150030. [Google Scholar] [CrossRef]
- Housman, D.C.; Powers, H.H.; Collins, A.D.; Belnap, J. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J. Arid Environ. 2006, 66, 620–634. [Google Scholar] [CrossRef]
- Holst, J.; Butterbach-Bahl, K.; Liu, C.; Zheng, X.; Kaiser, A.J.; Schnitzler, J.-P.; Zechmeister-Boltenstern, S.; Brüggemann, N. Dinitrogen fixation by biological soil crusts in an Inner Mongolian steppe. Biol. Fertil. Soils 2009, 45, 679–690. [Google Scholar] [CrossRef]
- Williams, W.; Büdel, B.; Williams, S. Wet season cyanobacterial N enrichment highly correlated with species richness and Nostoc in the northern Australian savannah. Biogeosciences 2018, 15, 2149–2159. [Google Scholar] [CrossRef]
- Liao, X.; Inglett, P.W. Dynamics of periphyton nitrogen fixation in short-hydroperiod wetlands revealed by high-resolution seasonal sampling. Hydrobiologia 2014, 722, 263–277. [Google Scholar] [CrossRef]
- Baumann, K.; Glaser, K.; Mutz, J.-E.; Karsten, U.; MacLennan, A.; Hu, Y.; Michalik, D.; Kruse, J.; Eckhardt, K.-U.; Schall, P.; et al. Biological soil crusts of temperate forests: Their role in P cycling. Soil Biol. Biochem. 2017, 109, 156–166. [Google Scholar] [CrossRef]
- de-Bashan, L.E.; Magallon-Servin, P.; Lopez, B.R.; Nannipieri, P. Biological activities affect the dynamic of P in dryland soils. Biol. Fertil. Soils 2022, 58, 105–119. [Google Scholar] [CrossRef]
- Bolton, H.; Smith, J.L.; Link, S.O. Soil microbial biomass and activity of a disturbed and undisturbed shrub-steppe ecosystem. Soil Biol. Biochem. 1993, 25, 545–552. [Google Scholar] [CrossRef]
- Fick, S.E.; Day, N.; Duniway, M.C.; Hoy-Skubik, S.; Barger, N.N. Microsite enhancements for soil stabilization and rapid biocrust colonization in degraded drylands. Restor. Ecol. 2020, 28, S139–S149. [Google Scholar] [CrossRef]
- Sun, F.; Xiao, B.; Li, S.; Yu, X.; Kidron, G.J.; Heitman, J. Direct evidence and mechanism for biocrusts-induced improvements in pore structure of dryland soil and the hydrological implications. J. Hydrol. 2023, 623, 129846. [Google Scholar] [CrossRef]
- Dettweiler-Robinson, E.; Sinsabaugh, R.L.; Rudgers, J.A. Fungal connections between plants and biocrusts facilitate plants but have little effect on biocrusts. J. Ecol. 2020, 108, 894–907. [Google Scholar] [CrossRef]
- Koester, M.; Stock, S.C.; Nájera, F.; Abdallah, K.; Gorbushina, A.; Prietzel, J.; Matus, F.; Klysubun, W.; Boy, J.; Kuzyakov, Y.; et al. From rock eating to vegetarian ecosystems—Disentangling processes of phosphorus acquisition across biomes. Geoderma 2021, 388, 114827. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Y.; Li, N.; Yao, H.; Yang, E.; Soromotin, A.V.; Kuzyakov, Y.; Cheptsov, V.; Yang, Y.; An, S. Initial soil formation by biocrusts: Nitrogen demand and clay protection control microbial necromass accrual and recycling. Soil Biol. Biochem. 2022, 167, 108607. [Google Scholar] [CrossRef]
- Roman, J.R.; Chilton, A.M.; Canton, Y.; Munoz-Rojas, M. Assessing the viability of cyanobacteria pellets for application in arid land restoration. J. Environ. Manag. 2020, 270, 110795. [Google Scholar] [CrossRef]
- Nunes da Rocha, U.; Cadillo-Quiroz, H.; Karaoz, U.; Rajeev, L.; Klitgord, N.; Dunn, S.; Truong, V.; Buenrostro, M.; Bowen, B.P.; Garcia-Pichel, F.; et al. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust. Front. Microbiol. 2015, 6, 277. [Google Scholar] [CrossRef]
- Zheng, Q.; Hu, Y.; Zhang, S.; Noll, L.; Böckle, T.; Richter, A.; Wanek, W. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biol. Biochem. 2019, 128, 45–55. [Google Scholar] [CrossRef]
- Coleman-Derr, D.; Desgarennes, D.; Fonseca-Garcia, C.; Gross, S.; Clingenpeel, S.; Woyke, T.; North, G.; Visel, A.; Partida-Martinez, L.P.; Tringe, S.G. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 2016, 209, 798–811. [Google Scholar] [CrossRef] [PubMed]
- Lemanceau, P.; Blouin, M.; Muller, D.; Moënne-Loccoz, Y. Let the Core Microbiota Be Functional. Trends Plant Sci. 2017, 22, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Durán, P.; Flores-Uribe, J.; Wippel, K.; Zhang, P.; Guan, R.; Melkonian, B.; Melkonian, M.; Garrido-Oter, R. Shared features and reciprocal complementation of the Chlamydomonas and Arabidopsis microbiota. Nat. Commun. 2022, 13, 406. [Google Scholar] [CrossRef] [PubMed]
- Couradeau, E.; Giraldo-Silva, A.; De Martini, F.; Garcia-Pichel, F. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome 2019, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Hacquard, S.; Garrido-Oter, R.; González, A.; Spaepen, S.; Ackermann, G.; Lebeis, S.; McHardy, A.C.; Dangl, J.L.; Knight, R.; Ley, R.; et al. Microbiota and Host Nutrition across Plant and Animal Kingdoms. Cell Host Microbe 2015, 17, 603–616. [Google Scholar] [CrossRef]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef]
- Zheng, Q.; Hu, Y.; Kosina, S.M.; Van Goethem, M.W.; Tringe, S.G.; Bowen, B.P.; Northen, T.R. Conservation of beneficial microbes between the rhizosphere and the cyanosphere. New Phytol. 2023, 240, 1246–1258. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, N.; Zhang, L.; Liu, Z. Soil Physical and Chemical Analysis and Description of Soil Profiles; Standards Press of China: Beijing, China, 1996. (In Chineses) [Google Scholar]
- Rukun, L. Soil and Agro-Chemical Analytical Methods; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 1 November 2022).
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 November 2022).
- Yu, S.; Sayer, E.J.; Li, Z.; Mo, Q.; Wang, M.; Li, Y.; Li, Y.; Xu, G.; Hu, Z.; Wang, F. Delayed wet season increases soil net N mineralization in a seasonally dry tropical forest. Sci. Total Environ. 2022, 823, 153314. [Google Scholar] [CrossRef] [PubMed]
- Miller TLboFcbA leaps: Regression Subset Selection. Available online: https://CRAN.R-project.org/package=leaps (accessed on 1 November 2022).
- Belnap, J.; Lange, O. Biological Soil Crusts: Structure, Function, and Management. Bryologist 2001, 105, 500–501. [Google Scholar] [CrossRef]
- Giraldo-Silva, A.; Nelson, C.; Penfold, C.; Barger, N.N.; Garcia-Pichel, F. Effect of preconditioning to the soil environment on the performance of 20 cyanobacterial strains used as inoculum for biocrust restoration. Restor. Ecol. 2020, 28, S187–S193. [Google Scholar] [CrossRef]
- Castillo-Monroy, A.P.; Maestre, F.T.; Delgado-Baquerizo, M.; Gallardo, A. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: Insights from a Mediterranean grassland. Plant Soil 2010, 333, 21–34. [Google Scholar] [CrossRef]
- Belnap, J. Impacts of off road vehicles on nitrogen cycles in biological soil crusts: Resistance in different US deserts. J. Arid Environ. 2002, 52, 155–165. [Google Scholar] [CrossRef]
- Barger, N.N.; Weber, B.; Garcia-Pichel, F.; Zaady, E.; Belnap, J. Patterns and Controls on Nitrogen Cycling of Biological Soil Crusts. In Biological Soil Crusts: An Organizing Principle in Drylands; Weber, B., Büdel, B., Belnap, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 257–285. [Google Scholar]
- Bowker, M.A.; Belnap, J.; Davidson, D.W.; Goldstein, H. Correlates of biological soil crust abundance across a continuum of spatial scales: Support for a hierarchical conceptual model. J. Appl. Ecol. 2006, 43, 152–163. [Google Scholar] [CrossRef]
- Reynolds, R.; Belnap, J.; Reheis, M.; Lamothe, P.; Luiszer, F. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source. Proc. Natl. Acad. Sci. USA 2001, 98, 7123–7127. [Google Scholar] [CrossRef]
- Adessi, A.; de Carvalho, R.C.; De Philippis, R.; Branquinho, C.; da Silva, J.M. Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biol. Biochem. 2018, 116, 67–69. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Li, X.; Xing, Z. Effects of biological soil crusts on soil enzyme activities in revegetated areas of the Tengger Desert, China. Appl. Soil Ecol. 2014, 80, 6–14. [Google Scholar] [CrossRef]
- Maier, S.; Tamm, A.; Wu, D.; Caesar, J.; Grube, M.; Weber, B. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J. 2018, 12, 1032–1046. [Google Scholar] [CrossRef] [PubMed]
- Felde, V.J.M.N.L.; Chamizo, S.; Felix-Henningsen, P.; Drahorad, S.L. What stabilizes biological soil crusts in the Negev Desert? Plant Soil 2018, 429, 9–18. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Steven, B.; Belnap, J.; Kuske, C.R. Chronic Physical Disturbance Substantially Alters the Response of Biological Soil Crusts to a Wetting Pulse, as Characterized by Metatranscriptomic Sequencing. Front. Microbiol. 2018, 9, 2382. [Google Scholar] [CrossRef] [PubMed]
- Chilton, A.M.; Neilan, B.A.; Eldridge, D.J. Biocrust morphology is linked to marked differences in microbial community composition. Plant Soil 2018, 429, 65–75. [Google Scholar] [CrossRef]
- Bowker, M.A.; Reed, S.C.; Maestre, F.T.; Eldridge, D.J. Biocrusts: The living skin of the earth. Plant Soil 2018, 429, 1–7. [Google Scholar] [CrossRef]
- Belnap, J. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process. 2006, 20, 3159–3178. [Google Scholar] [CrossRef]
- Fukami, T. Historical Contingency in Community Assembly: Integrating Niches, Species Pools, and Priority Effects. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 1–23. [Google Scholar] [CrossRef]
- Lan, S.; Wu, L.; Zhang, D.; Hu, C. Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environ. Earth Sci. 2012, 65, 77–88. [Google Scholar] [CrossRef]
- Su, Y.-g.; Chen, Y.-W.; Padilla, F.M.; Zhang, Y.-m.; Huang, G. The influence of biocrusts on the spatial pattern of soil bacterial communities: A case study at landscape and slope scales. Soil Biol. Biochem. 2020, 142, 107721. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Furtak, K. Soil-Plant-Microbe Interactions Determine Soil Biological Fertility by Altering Rhizospheric Nutrient Cycling and Biocrust Formation. Sustainability 2023, 15, 625. [Google Scholar] [CrossRef]
+BC | −BC | p-Value | |
---|---|---|---|
pH | 5.49 (0.13) | 5.29 (0.07) | 0.197 |
SOM (g/kg) | 33.5 (2.0) | 22.7 (0.4) | <0.001 |
TN (%) | 0.147 (0.007) | 0.100 (0.002) | <0.001 |
Nalk (mg/kg) | 121.4 (3.6) | 98.0 (2.7) | <0.001 |
TP (%) | 0.166 (0.009) | 0.131 (0.002) | 0.005 |
Pextrac (mg/kg) | 175.0 (10.3) | 177.8 (3.5) | 0.803 |
TK (%) | 0.360 (0.028) | 0.236 (0.003) | 0.002 |
Kextrac (mg/kg) | 138.1 (9.6) | 60.8 (1.1) | <0.001 |
−BCPPS | +BCCRS | −BCCRS | |
---|---|---|---|
+BCPPS | Shared OTUs: 3866 | Shared OTUs: 3783 | Shared OTUs: 3486 |
Similarity: J = 0.643 *** | Similarity: J = 0.584 *** | Similarity: J = 0.557 *** | |
R2 = 0.629 ** | R2 = 0.614 *** | R2 = 0.477 *** | |
−BCPPS | - | Shared OTUs: 4685 | Shared OTUs: 4229 |
Similarity: J = 0.718 *** | Similarity: J = 0.646 *** | ||
R2 = 0.709 *** | R2 = 0.524 *** | ||
+BCCRS | Shared OTUs: 4854 | ||
Similarity: J = 0.772 *** | |||
R2 = 0.372 *** |
Soil Type | OS | H | Chao1 |
---|---|---|---|
+BCPPS | 2228.8 (92.5) | 6.84 (0.38) | 2968.8 (89.8) |
−BCPPS | 3548.8 (24.1) | 9.80 (0.03) | 4216.3 (39.9) |
p-value | <0.001 | <0.001 | <0.001 |
+BCCRS | 3822.5 (42.1) | 9.84 (0.05) | 4570.0 (51.4) |
−BCCRS | 2613.8 (323.7) | 8.24 (0.30) | 3175.0 (328.3) |
p-value | 0.007 | 0.001 | 0.003 |
r2 | p-Value | |
---|---|---|
pH | 0.156 | 0.316 |
SOM | 0.564 | 0.005 |
TN | 0.568 | 0.004 |
Nalk | 0.520 | 0.010 |
TP | 0.422 | 0.032 |
Pextrac | 0.002 | 0.992 |
TK | 0.453 | 0.019 |
Kextrac | 0.687 | 0.001 |
PCoA1 | 0.807 | 0.001 |
PCoA2 | 0.012 | 0.923 |
PCoA3 | 0.005 | 0.965 |
Dependent Variables | Independent Variables | Adjusted R2 | p Value |
---|---|---|---|
Chao1CRS | Chao1PPS ** | 0.474 | 0.002 |
Nalk *, Kextrac ** | 0.573 | 0.002 | |
OSCRS | OSPPS ** | 0.403 | 0.005 |
Nalk *, Kextrac *** | 0.592 | 0.001 | |
HCRS | HPPS ** | 0.514 | 0.001 |
SOM ***, Pextrac *** | 0.764 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Jiang, X.; Jiang, H.; Li, C.; Cheng, J.; Ji, D.; Wang, J.; Ruan, J.; Zhou, T.; Kuang, C.; et al. Soil Biocrusts May Exert a Legacy Impact on the Rhizosphere Microbial Community of Plant Crops. Agronomy 2024, 14, 2548. https://doi.org/10.3390/agronomy14112548
Zou X, Jiang X, Jiang H, Li C, Cheng J, Ji D, Wang J, Ruan J, Zhou T, Kuang C, et al. Soil Biocrusts May Exert a Legacy Impact on the Rhizosphere Microbial Community of Plant Crops. Agronomy. 2024; 14(11):2548. https://doi.org/10.3390/agronomy14112548
Chicago/Turabian StyleZou, Xiangbo, Xinyu Jiang, Heng Jiang, Cheng Li, Jiong Cheng, Dongqing Ji, Jin Wang, Jiajin Ruan, Tiancheng Zhou, Cao Kuang, and et al. 2024. "Soil Biocrusts May Exert a Legacy Impact on the Rhizosphere Microbial Community of Plant Crops" Agronomy 14, no. 11: 2548. https://doi.org/10.3390/agronomy14112548
APA StyleZou, X., Jiang, X., Jiang, H., Li, C., Cheng, J., Ji, D., Wang, J., Ruan, J., Zhou, T., Kuang, C., Ye, J., & Yu, S. (2024). Soil Biocrusts May Exert a Legacy Impact on the Rhizosphere Microbial Community of Plant Crops. Agronomy, 14(11), 2548. https://doi.org/10.3390/agronomy14112548