Identification of Reactive Oxygen Species Genes Mediating Resistance to Fusarium verticillioides in the Peroxisomes of Sugarcane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Transmission Electron Microscopy Analysis
2.3. Antioxidant Enzymatic Activity Determination
2.4. Validation of Relative mRNA Expressions
2.5. Western Blotting
2.6. Data Processing and Statistical Analysis
3. Results
3.1. Symptoms and Cytological Changes in Sugarcane
3.2. Accumulation of Key Oxidases in Sugarcane Following F. verticillioides Infection
3.3. Expressions of Peroxisome Biosynthesis Genes
3.4. Identification of Genes in Sugarcane
3.5. Protein Extraction and Expression
4. Discussion
4.1. F. verticillioides Affects the Cytological Structure of Sugarcane and ROS Accumulation
4.2. Metabolic Mechanism of Peroxisome Resistance
4.3. Potential Molecular Mechanisms Underlying the Response of Sugarcane to F. verticillioides
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sydney, E.B.; Carvalho, J.C.; Letti, L.A.J.; Magalhaes, A.I.; Jr Karp, S.G.; Martinez-Burgos, W.J.; Candeo, E.S.; Rodrigues, C.; Vandenberghe, L.P.S.; Neto, C.J.D.; et al. Current developments and challenges of green technologies for the valorization of liquid, solid, and gaseous wastes from sugarcane ethanol production. J. Hazard. Mater. 2021, 404, 124059. [Google Scholar] [CrossRef]
- Porika, J.; Yellagoni, S.; Reddy, E.; Gojuri, R.; Naguri, S. Evaluation of promising sugarcane clones in plant cane against natural infection of Pokkah Boeng Disease. Curr. J. Appl. Sci. Technol. 2020, 39, 129–134. [Google Scholar] [CrossRef]
- Ali, A.; Khan, M.; Sharif, R.; Mujtaba, M.; Gao, S.J. Sugarcane Omics: An update on the current status of research and crop improvement. Plants 2019, 8, 344. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, H.; Guo, Q.; Xu, S.; Wang, J.; Lin, S.; Zhang, M. Artificial inoculation method of Pokkah Boeng disease of sugarcane and screening of resistant germplasm resources in subtropical China. Sugar Tech 2017, 19, 283–292. [Google Scholar] [CrossRef]
- Sharma, D.D.K.; Kumar, A. Morphological, physiological and pathological variations among the isolates of Fusarium moniliforme Sheldon causing Pokkah Boeng of sugarcane. Agrica 2015, 4, 119–129. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, J.; Bao, Y.; Guo, Q.; Powell, C.A.; Xu, S.; Chen, B.; Zhang, M. Deciphering the transcriptomic response of Fusarium verticillioides in relation to nitrogen availability and the development of sugarcane Pokkah Boeng disease. Sci. Rep. 2016, 6, 29692. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, L.; Deng, Y.; Li, Y.; Zhang, G.; Lin, S.; He, T. Establishing a forecast mathematical model of sugarcane yield and brix reduction based on the extent of Pokkah Boeng disease. Sugar Tech 2017, 19, 656–661. [Google Scholar] [CrossRef]
- Lorrai, R.; Ferrari, S. Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions. Plants 2021, 10, 399. [Google Scholar] [CrossRef]
- Waszczak, C.; Carmody, M.; Kangasjarvi, J. Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 2018, 69, 209–236. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.; Fei, S.; Chen, Y.; Xu, Y.; Zhu, Z.; He, Y. Overexpression of Sly-miR398b compromises disease resistance against Botrytis cinerea through regulating ROS homeostasis and JA-related defense genes in tomato. Plants 2023, 12, 2572. [Google Scholar] [CrossRef]
- Piacentini, D.; Corpas, F.J.; D’Angeli, S.; Altamura, M.M.; Falasca, G. Cadmium and arsenic-induced-stress differentially modulates Arabidopsis root architecture, peroxisome distribution, enzymatic activities and their nitric oxide content. Plant Physiol. Biochem. 2020, 148, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Marti, L.; Savatin, D.V.; Gigli-Bisceglia, N.; de Turris, V.; Cervone, F.; De Lorenzo, G. The intracellular ROS accumulation in elicitor-induced immunity requires the multiple organelle-targeted Arabidopsis NPK1-related protein kinases. Plant Cell Environ. 2021, 44, 931–947. [Google Scholar] [CrossRef] [PubMed]
- Moreau, S.; van Aubel, G.; Janky, R.; Van Cutsem, P. Chloroplast electron chain, ROS production, and redox homeostasis are modulated by COS-OGA elicitation in tomato (Solanum lycopersicum) leaves. Front. Plant Sci. 2020, 11, 597589. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Liu, J.; Wang, S.; Hu, J. Peroxisomes: Versatile organelles with diverse roles in plants. New Phytol. 2020, 225, 1410–1427. [Google Scholar] [CrossRef]
- Pallavi, S.; Bhushan, J.A.; Shanker, D.R.; Mohammad, P. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Rachowka, J.; Anielska-Mazur, A.; Bucholc, M.; Stephenson, K.; Kulik, A. SnRK2.10 kinase differentially modulates expression of hub WRKY transcription factors genes under salinity and oxidative stress in Arabidopsis thaliana. Front. Plant Sci. 2023, 14, 1135240. [Google Scholar] [CrossRef]
- Ghozlan, M.H.; EL-Argawy, E.; Tokgöz, S.; Lakshman, D.K.; Mitra, A. Plant defense against necrotrophic pathogens. Am. J. Plant Sci. 2020, 11, 2122–2138. [Google Scholar] [CrossRef]
- Peters, L.P.; Teixeira-Silva, N.S.; Bini, A.P.; Silva, M.M.L.; Moraes, N.; Crestana, G.S.; Creste, S.; Azevedo, R.A.; Carvalho, G.; Monteiro-Vitorello, C.B. Differential responses of genes and enzymes associated with ROS protective responses in the sugarcane smut fungus. Fungal Biol. 2020, 124, 1039–1051. [Google Scholar] [CrossRef]
- Balamuralikrishnan, M.; Doraisamy, S.; Ganapathy, T.; Viswanathan, R. Effects of biotic and abiotic agents on sugarcane mosaic virus titre, oxidative enzymes and phenolics in sorghum bicolor. Acta Phytopathol. Entomol. Hung. 2005, 40, 9–22. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, S.; Liang, Q.; Li, Y.; Li, C.; Duan, W.; He, T. Effects of sugarcane canopy structure on Pokkah Boeng disease resistance. J. China Agric. Univ. 2017, 22, 40–46. [Google Scholar] [CrossRef]
- Wang, Z.; Song, Q.; Shuai, L.; Reemon, H.; Mukesh, K.; Li, Y.; Liang, Q.; Zhang, G.; Zhang, M.; Zhou, F. Metabolic and proteomic analysis of nitrogen metabolism mechanisms involved in the sugarcane—Fusarium verticillioides interaction. J. Plant Physiol. 2020, 251, 153207. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.Y.; Li, L.; Wang, J.Y.; Wang, Y.L.; Sun, G.C. The functions of PEX genes in peroxisome biogenesis and pathogenicity in phytopathogenic fungi. Hereditas 2017, 39, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Akbar, S.; Wei, Y.; Yuan, Y.; Khan, M.T.; Qin, L.; Powell, C.A.; Chen, B.; Zhang, M. Gene expression profiling of reactive oxygen species (ROS) and antioxidant defense system following Sugarcane mosaic virus (SCMV) infection. BMC Plant Biol. 2020, 20, 532. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Y.; Zeng, Z.; Zhao, X.; Zhang, Y.; Li, X.; Chen, J.; Shen, W. Silicon induces ROS scavengers, hormone signalling, antifungal metabolites, and silicon deposition against brown stripe disease in sugarcane. Physiol. Plant. 2024, 176, e14313. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.S.; Zhao, J.Y.; Javed, T.; Ali, A.; Huang, M.T.; Fu, H.Y.; Zhang, H.L.; Gao, S.J. Insights into Reactive Oxygen Species Production Scavenging System Involved in Sugarcane Response to Xanthomonas albilineans Infection under Drought Stress. Plants 2024, 13, 862. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Li, C.; Song, X.; Lei, J.; Gao, Y.; Liang, Q. Comparative transcriptome profiling of resistant and susceptible sugarcane genotypes in response to the airborne pathogen Fusarium verticillioides. Mol. Biol. Rep. 2019, 46, 3777–3789. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- St, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259–272. [Google Scholar] [CrossRef]
- Dunnett, C.W. A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 1955, 50, 1096–1121. [Google Scholar] [CrossRef]
- Pan, R.; Reumann, S.; Lisik, P.; Tietz, S.; Olsen, L.J.; Hu, J. Proteome analysis of peroxisomes from dark-treated senescent Arabidopsis leaves. J. Integr. Plant Biol. 2018, 60, 1028–1050. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, Y.; Zhou, G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front. Plant Sci. 2015, 6, 701. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.; Dang, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Lucas, W.J.; Groover, A.; Lichtenberger, R.; Furuta, K.; Yadav, S.R.; Helariutta, Y.; He, X.Q.; Fukuda, H.; Kang, J.; Brady, S.M.; et al. The plant vascular system: Evolution, development and functions. J. Integr. Plant Biol. 2013, 55, 294–388. [Google Scholar] [CrossRef] [PubMed]
- Nanda, A.K.; Andrio, E.; Marino, D.; Pauly, N.; Dunand, C. Reactive oxygen species during plant-microorganism early interactions. J. Integr. Plant Biol. 2010, 52, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Barnard-Kubow, K.B.; McCoy, M.A.; Galloway, L.F. Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility. New Phytol. 2017, 213, 1466–1476. [Google Scholar] [CrossRef]
- Rai, P.; Prasad, L.; Rai, P.K. Fungal effectors versus defense-related genes of B. juncea and the status of resistant transgenics against fungal pathogens. Front. Plant Sci. 2023, 14, 1139009. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Liang, Q.; Li, C.; Wei, J.; Liu, L.; Lin, S. Change of nitrogen metabolic indexs in different sugarcane varieties inoculated with Pokkah Boeng disease pathogen. Plant Physiol. J. 2017, 53, 1963–1970. [Google Scholar] [CrossRef]
- Wright, Z.J.; Bartel, B. Peroxisomes form intralumenal vesicles with roles in fatty acid catabolism and protein compartmentalization in Arabidopsis. Nat. Commun. 2020, 11, 6221. [Google Scholar] [CrossRef] [PubMed]
- Nordzieke, D.E.; Fernandes, T.R.; El Ghalid, M.; Turra, D.; Di Pietro, A. NADPH oxidase regulates chemotropic growth of the fungal pathogen Fusarium oxysporum towards the host plant. New Phytol. 2019, 224, 1600–1612. [Google Scholar] [CrossRef]
- Valenzuela-Cota, D.F.; Buitimea-Cantua, G.V.; Plascencia-Jatomea, M.; Cinco-Moroyoqui, F.J.; Martinez-Higuera, A.A.; Rosas-Burgos, E.C. Inhibition of the antioxidant activity of catalase and superoxide dismutase from Fusarium verticillioides exposed to a Jacquinia macrocarpa antifungal fraction. J. Environ. Sci. Health B 2019, 54, 647–654. [Google Scholar] [CrossRef]
- Liu, H.; Dong, S.; Li, M.; Gu, F.; Yang, G.; Guo, T.; Chen, Z.; Wang, J. The Class III peroxidase gene OsPrx30, transcriptionally modulated by the AT-hook protein OsATH1, mediates rice bacterial blight-induced ROS accumulation. J. Integr. Plant Biol. 2021, 63, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Reumann, S.; Babujee, L.; Ma, C.; Wienkoop, S.; Siemsen, T.; Antonicelli, G.E.; Rasche, N.; Luder, F.; Weckwerth, W.; Jahn, O. Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell. 2007, 19, 3170–3193. [Google Scholar] [CrossRef] [PubMed]
- Poursakhi, S.R.; Asadi, H.A.G.; Nasr-Esfahani, M.; Abbasi, Z.; Hassanzadeh, H.K. Identification of novel associations of candidate marker genes with resistance to onion-fusarium basal rot interaction pathosystem. Plant Gene 2023, 37, 100440–100450. [Google Scholar] [CrossRef]
Metabolic Process | Gene ID | KEGG | Code Protein | Function | R-CK | R-PI | S-CK | S-PI | Significance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RPKM a | CV b | SE c | RPKM | CV | SE | RPKM | CV | SE | RPKM | CV | SE | R-PI/R-CK | S-PI/S-CK | |||||
Peroxisome biogenesis | Unigene0033806 | K13341 | PEX7 | peroxisome biogenesis protein 7 | 7.9662 | 0.0697 | 0.3207 | 8.8019 | 0.0146 | 0.0084 | 8.6725 | 0.0310 | 0.0179 | 7.1804 | 0.1271 | 0.0734 | NO | NO |
Unigene0063263 | K13342 | PEX5 | peroxisome biogenesis protein 5-like | 44.2071 | 0.0112 | 0.2857 | 50.3211 | 0.0088 | 0.0051 | 48.4445 | 0.0211 | 0.0122 | 50.5650 | 0.0288 | 0.0166 | NO | NO | |
Unigene0051250 | K13343 | PEX14 | LOC100283640 isoform X11 | 59.2501 | 0.0210 | 0.7171 | 66.8849 | 0.0094 | 0.0055 | 54.5609 | 0.0061 | 0.0035 | 54.8432 | 0.0355 | 0.0205 | NO | NO | |
Unigene0007964 | K13344 | PEX13 | peroxisomal membrane protein 13 isoform X2 | 70.7417 | 0.0332 | 1.3564 | 84.3885 | 0.0183 | 0.0106 | 82.8340 | 0.0508 | 0.0294 | 117.7248 | 0.0555 | 0.0321 | NO | NO | |
Unigene0057386 | K13345 | PEX12 | peroxisome biogenesis protein 12 | 1.0384 | 0.1644 | 0.0986 | 1.3756 | 0.0601 | 0.0347 | 1.4643 | 0.1880 | 0.1086 | 1.0259 | 0.2383 | 0.1376 | NO | NO | |
Unigene0003622 | K13346 | PEX10 | LOC100274236 isoform X1 | 7.5197 | 0.0602 | 0.2612 | 8.4905 | 0.0600 | 0.0346 | 7.7226 | 0.0804 | 0.0464 | 6.7297 | 0.0629 | 0.0363 | NO | NO | |
Unigene0050655 | K06664 | PEX2 | peroxisome biogenesis protein 2-like | 0.6116 | 0.2469 | 0.0872 | 0.7423 | 0.7562 | 0.4366 | 1.2340 | 0.1645 | 0.0950 | 0.7335 | 0.1024 | 0.0591 | NO | NO | |
Unigene0053439 | K13339 | PEX6 | peroxisome biogenesis protein 6 | 11.6791 | 0.0249 | 0.1678 | 11.3455 | 0.0083 | 0.0048 | 12.5484 | 0.0468 | 0.0270 | 10.5095 | 0.0289 | 0.0167 | NO | NO | |
Unigene0069315 | K13338 | PEX1 | peroxisome biogenesis protein 1 isoform X1 | 7.3921 | 0.0919 | 0.3923 | 8.6209 | 0.0116 | 0.0067 | 7.6606 | 0.0741 | 0.0428 | 6.6528 | 0.0443 | 0.0256 | NO | NO | |
Unigene0004130 | K13336 | PEX3 | lysine and histidine specific transporter | 16.5820 | 0.0415 | 0.3975 | 19.9717 | 0.0775 | 0.0447 | 6.6793 | 0.0285 | 0.0165 | 7.6846 | 0.0935 | 0.0540 | NO | NO | |
Unigene0062306 | K13335 | PEX16 | peroxisome biogenesis protein 16 isoform X1 | 10.4384 | 0.0446 | 0.2689 | 12.8050 | 0.0359 | 0.0207 | 5.3889 | 0.1053 | 0.0608 | 5.8376 | 0.0508 | 0.0293 | NO | NO | |
Unigene0064371 | K13337 | PEX19 | aspartic-type endopeptidase/ pepsin A | 14.4008 | 0.0083 | 0.0686 | 23.2056 | 0.0253 | 0.0146 | 9.5224 | 0.1544 | 0.0892 | 16.7123 | 0.0824 | 0.0476 | YES | YES | |
Unigene0067682 | K05677 | PMP70 | Os01g0966100, partial | 29.3037 | 0.0761 | 1.2867 | 40.2446 | 0.0031 | 0.0018 | 30.5205 | 0.0387 | 0.0223 | 34.2896 | 0.0312 | 0.0180 | YES | NO | |
Unigene0055607 | K13347 | PXMP2 | peroxisomal membrane protein | 6.3976 | 0.0775 | 0.2861 | 7.0398 | 0.0206 | 0.0119 | 6.9736 | 0.0346 | 0.0200 | 5.9972 | 0.0908 | 0.0524 | NO | NO | |
Unigene0074780 | K13354 | PMP34 | peroxisomal adenine nucleotide carrier 1 | 0.0010 | - | - | 0.4985 | 0.4571 | 0.2639 | 0.8365 | 1.4142 | 0.8165 | 7.6053 | 0.1482 | 0.0856 | YES | YES | |
Unigene0075468 | K13348 | MPV17 | ___ | 0.0010 | - | - | 0.6891 | 0.4085 | 0.2359 | 0.0718 | 1.4142 | 0.8165 | 0.3957 | 0.7074 | 0.4084 | YES | YES | |
Antioxidant system | Unigene0075430 | K03781 | CAT | proteasome subunit alpha type-6 | 0.0010 | - | - | 0.6608 | 0.6385 | 0.3687 | 0.0010 | - | - | 0.6853 | 0.2730 | 0.1576 | YES | YES |
Unigene0072216 | CAT | 0.0348 | 1.4142 | 0.0284 | 1.0953 | 0.3181 | 0.1837 | 0.1198 | 1.4142 | 0.8165 | 1.1568 | 0.2896 | 0.1672 | YES | YES | |||
Unigene0072215 | CAT | 0.0010 | - | - | 1.2638 | 0.4371 | 0.2523 | 0.2535 | 1.4142 | 0.8165 | 1.3211 | 0.3759 | 0.2170 | YES | YES | |||
Unigene0051330 | CAT | 29.3319 | 0.0238 | 0.4037 | 48.2154 | 0.0154 | 0.0089 | 25.0659 | 0.0606 | 0.0350 | 34.8034 | 0.0381 | 0.0220 | YES | YES | |||
Unigene0039369 | CAT-1 | 186.0828 | 0.0573 | 6.1565 | 101.7058 | 0.0557 | 0.0322 | 226.0953 | 0.0504 | 0.0291 | 147.1190 | 0.0747 | 0.0432 | YES | YES | |||
Unigene0038299 | CAT | 60.9404 | 0.1336 | 4.6989 | 130.1449 | 0.2192 | 0.1265 | 54.2589 | 0.2117 | 0.1222 | 153.2739 | 0.0772 | 0.0446 | YES | YES | |||
Unigene0037020 | zinc ion binding protein | 1.0075 | 0.1362 | 0.0792 | 1.2050 | 0.0526 | 0.0304 | 2.8569 | 0.1161 | 0.0671 | 3.2169 | 0.0155 | 0.0090 | NO | NO | |||
Unigene0006408 | TPA: CAT 2 | 7.6359 | 0.0598 | 0.2636 | 5.4813 | 0.0706 | 0.0407 | 24.6224 | 0.0783 | 0.0452 | 19.6959 | 0.0156 | 0.0090 | NO | YES | |||
Unigene0073932 | k04565 | SOD1 | Cu/Zn-SOD | 0.0010 | - | - | 5.6634 | 0.3144 | 0.1815 | 0.2573 | 1.4142 | 0.8165 | 3.2312 | 0.1882 | 0.1087 | YES | YES | |
Unigene0053392 | SOD 9 | 4.0918 | 0.1621 | 0.3829 | 3.2999 | 0.1690 | 0.0976 | 6.3614 | 0.1917 | 0.1107 | 6.2701 | 0.1587 | 0.0916 | NO | NO | |||
Unigene0051686 | Cu/Zn-SOD 2 isoform X3 | 7.2757 | 0.0648 | 0.2723 | 7.7570 | 0.2255 | 0.1302 | 6.5861 | 0.1267 | 0.0731 | 10.4463 | 0.1752 | 0.1011 | NO | YES | |||
Unigene0051680 | Cu/Zn-SOD 2 isoform X2 | 9.3292 | 0.0429 | 0.2309 | 9.8792 | 0.0863 | 0.0498 | 8.3408 | 0.0380 | 0.0220 | 10.0856 | 0.0441 | 0.0255 | NO | NO | |||
Unigene0041388 | Ring finger protein 3-like | 0.3712 | 0.2642 | 0.0566 | 0.2444 | 1.4142 | 0.8165 | 0.0821 | 0.7071 | 0.4083 | 0.0010 | - | - | NO | YES | |||
Unigene0033801 | SOD 1a | 275.1232 | 0.0380 | 6.0387 | 200.8140 | 0.0331 | 0.0191 | 162.0119 | 0.0626 | 0.0361 | 176.7839 | 0.0640 | 0.0369 | YES | YES | |||
Unigene0015729 | Cu/Zn-SOD 2-like | 9.7619 | 0.0607 | 0.3423 | 9.4188 | 0.0587 | 0.0339 | 7.0985 | 0.0578 | 0.0334 | 7.4083 | 0.0492 | 0.0284 | NO | NO | |||
Unigene0076134 | k04564 | SOD2 | Mn-SOD | 0.0198 | 1.4142 | 0.0162 | 2.2697 | 0.8307 | 0.4796 | 0.1556 | 1.4142 | 0.8165 | 0.8202 | 0.3658 | 0.2112 | YES | YES | |
Unigene0073241 | SOD | 0.0010 | - | - | 0.8986 | 0.1926 | 0.1112 | 0.0374 | 1.4142 | 0.8165 | 0.6176 | 0.3720 | 0.2148 | YES | YES | |||
Unigene0059824 | SOD precursor | 36.1071 | 0.0310 | 0.5574 | 18.5760 | 0.0043 | 0.0025 | 31.9689 | 0.0606 | 0.0350 | 15.2202 | 0.0357 | 0.0206 | YES | YES | |||
Unigene0050341 | SOD, chloroplast | 21.6923 | 0.0460 | 0.5765 | 14.6023 | 0.0627 | 0.0362 | 25.6472 | 0.0362 | 0.0209 | 17.1011 | 0.0811 | 0.0468 | YES | YES | |||
Unigene0033124 | SOD | 80.6034 | 0.0366 | 1.7029 | 81.9991 | 0.0161 | 0.0093 | 62.9326 | 0.0029 | 0.0017 | 67.2948 | 0.0106 | 0.0061 | NO | NO | |||
Unigene0074176 | k11187 | PRDX5 | redoxin domain protein | 0.0010 | - | - | 1.6403 | 0.3757 | 0.2169 | 0.0300 | 1.4142 | 0.8165 | 0.7234 | 0.0963 | 0.0556 | YES | YES | |
Fatty acid oxidation | Unigene0049557 | K12261 | HPCL2 | 2-hydroxyphytanoyl-CoA lyase | 10.7552 | 0.0808 | 0.5015 | 13.9140 | 0.0218 | 0.0126 | 12.7508 | 0.1095 | 0.0632 | 15.6975 | 0.0392 | 0.0226 | NO | NO |
Unigene0039674 | K00477 | PHYH | phytanoyl-CoA dioxygenase 1-like | 14.1838 | 0.0442 | 0.3620 | 31.9888 | 0.0170 | 0.0098 | 14.6421 | 0.0862 | 0.0498 | 24.3260 | 0.0554 | 0.0320 | YES | YES | |
Unigene0059982 | K00232 | ACOX | acyl-coenzyme A oxidase | 16.9339 | 0.0172 | 0.1683 | 27.1372 | 0.0409 | 0.0236 | 18.1096 | 0.0503 | 0.0291 | 21.3300 | 0.0615 | 0.0355 | YES | NO | |
Unigene0073157 | K07513 | ACAA1 | 3-ketoacyl-CoA thiolase 2, peroxisomal-like | 0.0010 | - | - | 1.4563 | 0.5443 | 0.3142 | 0.1057 | 1.4142 | 0.8165 | 0.9680 | 0.3247 | 0.1875 | YES | YES | |
Unigene0034895 | K13237 | PDCR | peroxisomal 2,4-dienoyl-CoA reductase | 10.6589 | 0.0553 | 0.3403 | 14.5500 | 0.1055 | 0.0609 | 12.6575 | 0.0617 | 0.0356 | 13.1610 | 0.1843 | 0.1064 | NO | NO | |
Unigene0067682 | K05677 | ABCD | Os01g0966100, partial | 29.3037 | 0.0761 | 1.2867 | 40.2446 | 0.0031 | 0.0018 | 30.5205 | 0.0387 | 0.0223 | 34.2896 | 0.0312 | 0.0180 | YES | NO | |
Unigene0037471 | K12633 | ECH | δ(3,5)-δ iimport(2,4)-dienoyl-CoA isomerase | 0.3408 | 0.5574 | 0.1097 | 0.3579 | 0.6247 | 0.3607 | 0.5305 | 0.2143 | 0.1237 | 0.4221 | 0.0980 | 0.0566 | NO | NO | |
Unigene0072308 | K01897 | ACSL | BnaA10g20090D | 0.7402 | - | - | 1.6447 | 0.7731 | 0.4464 | 0.0010 | 1.4142 | 0.8165 | 0.1130 | 0.2041 | 0.1179 | YES | YES | |
Unigene0049878 | K03426 | NUDT12 | hydrolase, NUDIX family protein | 27.0357 | 0.0198 | 0.3089 | 27.4400 | 0.0395 | 0.0228 | 19.3755 | 0.0447 | 0.0258 | 22.4392 | 0.0344 | 0.0199 | NO | NO | |
Unigene0010648 | K01578 | MLYCD | malonyl-CoA decarboxylase | 2.7265 | 0.1003 | 0.1579 | 3.7668 | 0.0921 | 0.0532 | 2.8768 | 0.0639 | 0.0369 | 2.6193 | 0.0335 | 0.0193 | NO | NO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Gao, Y.; Yang, C.; Huang, H.; Li, Y.; Long, S.; Yang, H.; Liu, L.; Shen, Y.; Wang, Z. Identification of Reactive Oxygen Species Genes Mediating Resistance to Fusarium verticillioides in the Peroxisomes of Sugarcane. Agronomy 2024, 14, 2640. https://doi.org/10.3390/agronomy14112640
Li X, Gao Y, Yang C, Huang H, Li Y, Long S, Yang H, Liu L, Shen Y, Wang Z. Identification of Reactive Oxygen Species Genes Mediating Resistance to Fusarium verticillioides in the Peroxisomes of Sugarcane. Agronomy. 2024; 14(11):2640. https://doi.org/10.3390/agronomy14112640
Chicago/Turabian StyleLi, Xiang, Yijing Gao, Cuifang Yang, Hairong Huang, Yijie Li, Shengfeng Long, Hai Yang, Lu Liu, Yaoyang Shen, and Zeping Wang. 2024. "Identification of Reactive Oxygen Species Genes Mediating Resistance to Fusarium verticillioides in the Peroxisomes of Sugarcane" Agronomy 14, no. 11: 2640. https://doi.org/10.3390/agronomy14112640
APA StyleLi, X., Gao, Y., Yang, C., Huang, H., Li, Y., Long, S., Yang, H., Liu, L., Shen, Y., & Wang, Z. (2024). Identification of Reactive Oxygen Species Genes Mediating Resistance to Fusarium verticillioides in the Peroxisomes of Sugarcane. Agronomy, 14(11), 2640. https://doi.org/10.3390/agronomy14112640